Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830128

RESUMO

A biomaterial that is both bioactive and capable of controlled drug release is highly attractive for bone regeneration. In previous works, we demonstrated the possibility of combining activated carbon fiber cloth (ACC) and biomimetic apatite (such as calcium-deficient hydroxyapatite (CDA)) to develop an efficient material for bone regeneration. The aim to use the adsorption properties of an activated carbon/biomimetic apatite composite to synthetize a biomaterial to be used as a controlled drug release system after implantation. The adsorption and desorption of tetracycline and aspirin were first investigated in the ACC and CDA components and then on ACC/CDA composite. The results showed that drug adsorption and release are dependent on the adsorbent material and the drug polarity/hydrophilicity, leading to two distinct modes of drug adsorption and release. Consequently, a double adsorption approach was successfully performed, leading to a multifunctional and innovative ACC-aspirin/CDA-tetracycline implantable biomaterial. In a second step, in vitro tests emphasized a better affinity of the drug (tetracycline or aspirin)-loaded ACC/CDA materials towards human primary osteoblast viability and proliferation. Then, in vivo experiments on a large cortical bone defect in rats was carried out to test biocompatibility and bone regeneration ability. Data clearly highlighted a significant acceleration of bone reconstruction in the presence of the ACC/CDA patch. The ability of the aspirin-loaded ACC/CDA material to release the drug in situ for improving bone healing was also underlined, as a proof of concept. This work highlights the possibility of bone patches with controlled (multi)drug release features being used for bone tissue repair.


Assuntos
Apatitas/química , Aspirina/administração & dosagem , Materiais Biomiméticos/química , Fibra de Carbono/química , Sistemas de Liberação de Medicamentos/métodos , Tetraciclina/administração & dosagem , Adsorção , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Aspirina/química , Aspirina/farmacocinética , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Osso e Ossos/metabolismo , Carvão Vegetal/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tetraciclina/química , Tetraciclina/farmacocinética
2.
Biotechnol J ; 19(7): e2300751, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987220

RESUMO

The compatibility of bone graft substitutes (BGS) with mesenchymal stem cells (MSCs) is an important parameter to consider for their use in repairing bone defects as it eventually affects the clinical outcome. In the present study, a few commercially available BGS - ß-tricalcium phosphate (ß-TCP), calcium sulfate, gelatin sponge, and different forms of hydroxyapatite (HAP) were screened for their interactions with MSCs from adipose tissue (ADSCs). It was demonstrated that HAP block favorably supported ADSC viability, morphology, migration, and differentiation compared to other scaffolds. The results strongly suggest the importance of preclinical evaluation of bone scaffolds for their cellular compatibility. Furthermore, the bone regenerative potential of HAP block with ADSCs was evaluated in an ex vivo bone defect model developed using patient derived trabecular bone explants. The explants were cultured for 45 days in vitro and bone formation was assessed by expression of osteogenic genes, ALP secretion, and high resolution computed tomography. Our findings confirmed active bone repair process in ex vivo settings. Addition of ADSCs significantly accelerated the repair process and improved bone microarchitecture. This ex vivo bone defect model can emerge as a viable alternative to animal experimentation and also as a potent tool to evaluate patient specific bone therapeutics under controlled conditions.


Assuntos
Tecido Adiposo , Regeneração Óssea , Diferenciação Celular , Células-Tronco Mesenquimais , Engenharia Tecidual , Alicerces Teciduais , Humanos , Tecido Adiposo/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Cabeça do Fêmur , Osteogênese , Células Cultivadas , Substitutos Ósseos/química , Durapatita/química , Fosfatos de Cálcio/química
3.
Biomed Mater ; 18(6)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37852221

RESUMO

Development of tissue-engineeredin vitrohuman bone defect models for evaluation of bone repair materials (BRMs) is a promising approach for addressing both translational and ethical concerns regarding animal models. In this study, human bone marrow mesenchymal stem cell sheets were stacked to form a periosteum like tissue. HE staining showed a cell-dense, multilayered structure. BRMs were implanted in the defect area of the three-dimensional (3D) model. The CCK-8 test demonstrated that the 3D model was stronger in resisting the cytotoxicity of three kinds of commercial BRMs than the 2D culture model, which was consistent within vivoresults. After 28 d implantation in the 3D model, western blot and RT-qPCR showed that three materials induced increased expressions of RUNX2, OSX, OCN, OPN, while Materials B and C seemed to have stronger osteoinductivity than A.In vivoexperiments also confirmed the osteoinductivity of the BRMs after 28 and 182 d implantation. Alizarin red staining proved that the mineralized nodules of Materials B and C were more than that of A. The differences of osteogenic properties among three BMRs might be attributed to calcium ion release. This cell sheet-based bone tissue model can resist cytotoxicity of BRMs, demonstrating the priority of long-term evaluation of osteoinductivity of BRMs. Further, the osteoinduction results of the 3D model corresponded to that ofin vivoexperiments, suggesting this model may have a potential to be used as a novel tool for rapid, accurate evaluation of BRMs, and thus shorten their research and development process.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Humanos , Diferenciação Celular , Periósteo , Células Cultivadas , Células da Medula Óssea
4.
Stem Cell Res Ther ; 14(1): 132, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189187

RESUMO

INTRODUCTION: Human adult dental pulp stem cells (hDPSC) and stem cells from human exfoliated deciduous teeth (SHED) hold promise in bone regeneration for their easy accessibility, high proliferation rate, self-renewal and osteogenic differentiation capacity. Various organic and inorganic scaffold materials were pre-seeded with human dental pulp stem cells in animals, with promising outcomes in new bone formation. Nevertheless, the clinical trial for bone regeneration using dental pulp stem cells is still in its infancy. Thus, the aim of this systematic review and meta-analysis is to synthesise the evidence of the efficacy of human dental pulp stem cells and the scaffold combination for bone regeneration in animal bone defect models. METHODOLOGY: This study was registered in PROSPERO (CRD2021274976), and PRISMA guideline was followed to include the relevant full-text papers using exclusion and inclusion criteria. Data were extracted for the systematic review. Quality assessment and the risk of bias were also carried out using the CAMARADES tool. Quantitative bone regeneration data of the experimental (scaffold + hDPSC/SHED) and the control (scaffold-only) groups were also extracted for meta-analysis. RESULTS: Forty-nine papers were included for systematic review and only 27 of them were qualified for meta-analysis. 90% of the included papers were assessed as medium to low risk. In the meta-analysis, qualified studies were grouped by the unit of bone regeneration measurement. Overall, bone regeneration was significantly higher (p < 0.0001) in experimental group (scaffold + hDPSC/SHED) compared to the control group (scaffold-only) (SMD: 1.863, 95% CI 1.121-2.605). However, the effect is almost entirely driven by the % new bone formation group (SMD: 3.929, 95% CI 2.612-5.246) while % BV/TV (SMD: 2.693, 95% CI - 0.001-5.388) shows a marginal effect. Dogs and hydroxyapatite-containing scaffolds have the highest capacity in % new bone formation in response to human DPSC/SHED. The funnel plot exhibits no apparent asymmetry representing a lack of remarkable publication bias. Sensitivity analysis also indicated that the results generated in this meta-analysis are robust and reliable. CONCLUSION: This is the first synthesised evidence showing that human DPSCs/SHED and scaffold combination enhanced bone regeneration highly significantly compared to the cell-free scaffold irrespective of scaffold type and animal species used. So, dental pulp stem cells could be a promising tool for treating various bone diseases, and more clinical trials need to be conducted to evaluate the effectiveness of dental pulp stem cell-based therapies.


Assuntos
Polpa Dentária , Osteogênese , Adulto , Animais , Cães , Humanos , Regeneração Óssea/fisiologia , Diferenciação Celular , Osteogênese/fisiologia , Transplante de Células-Tronco/métodos , Alicerces Teciduais
5.
J Korean Med Sci ; 26(4): 482-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21468254

RESUMO

Human adipose tissue-derived mesenchymal stem cell (hATMSC) have emerged as a potentially powerful tool for bone repair, but an appropriate evaluation system has not been established. The purpose of this study was to establish a preclinical assessment system to evaluate the efficacy and safety of cell therapies in a nude rat bone defect model. Segmental defects (5 mm) were created in the femoral diaphyses and transplanted with cell media (control), hydroxyapatite/tricalcium phosphate scaffolds (HA/TCP, Group I), hATMSCs (Group II), or three cell-loading density of hATMSC-loaded HA/TCP (Group III-V). Healing response was evaluated by serial radiography, micro-computed tomography and histology at 16 weeks. To address safety-concerns, we conducted a GLP-compliant toxicity study. Scanning electron microscopy studies showed that hATMSCs filled the pores/surfaces of scaffolds in a cell-loading density-dependent manner. We detected significant increases in bone formation in the hATMSC-loaded HA/TCP groups compared with other groups. The amount of new bone formation increased with increases in loaded cell number. In a toxicity study, no significant hATMSC-related changes were found in body weights, clinical signs, hematological/biochemical values, organ weights, or histopathological findings. In conclusion, hATMSCs loaded on HA/TCP enhance the repair of bone defects and was found to be safe under our preclinical efficacy/safety hybrid assessment system.


Assuntos
Tecido Adiposo/citologia , Doenças Ósseas/terapia , Fêmur/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Materiais Biocompatíveis/uso terapêutico , Doenças Ósseas/diagnóstico por imagem , Doenças Ósseas/patologia , Regeneração Óssea/fisiologia , Fosfatos de Cálcio/uso terapêutico , Diáfises/diagnóstico por imagem , Diáfises/cirurgia , Diáfises/ultraestrutura , Modelos Animais de Doenças , Durapatita/uso terapêutico , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Humanos , Masculino , Ratos , Ratos Nus , Engenharia Tecidual , Tomografia Computadorizada por Raios X , Transplante Heterólogo
6.
Sovrem Tekhnologii Med ; 12(6): 36-44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796017

RESUMO

The aim of the study is to evaluate biocompatibility of a novel hybrid polyoligomer in in vitro and in vivo models. MATERIALS AND METHODS: Cytotoxicity of the material was investigated using the MTT assay with human dermal fibroblasts as test cultures. To study direct interaction of the hybrid polyoligomer with cells, the fibroblasts were cultured on the polymer samples for 96 h, the cultures were assessed every 24 h using fluorescence microscopy. To study the tissue reaction in the area of contact with the donor bed and the morphological features of the implanted sample restructuring, a case-control study was performed using a rabbit model. Samples of hybrid polyoligomer were implanted into the bone defect formed in the left iliac crest in 10 rabbits. In the control group, the prepared allograft samples were transplanted into similar defects in 10 animals. The rabbits were sacrificed 4 and 8 weeks after the operation. The standard morphological methods with hematoxylin and eosin staining and immunohistochemical Ki-67 proliferation marker evaluation were used to assess the state of tissues in the defect area. RESULTS: The results demonstrate that the hybrid polyoligomer is not cytotoxic (cytotoxicity score 0-1), cells adhere well to its surface, retain their viability and typical morphology throughout the entire observation period. No negative impact of material implantation on the health state and behavior of animals was detected. Morphological examination showed the absence of inflammatory changes, formation of thin-walled capillary vessels, and considerable proliferative activity of mesenchymal cells in the defect area, even though it was more intense than in the control group. CONCLUSION: No inflammation signs were detected by 8th week of the experiment. It was defined that new bone was beginning to form. The results of analysis support the conclusion that the developed hybrid materials are prospective for further research as potential bone substitute.


Assuntos
Substitutos Ósseos , Células-Tronco Mesenquimais , Animais , Osso e Ossos , Estudos de Casos e Controles , Estudos Prospectivos , Coelhos
7.
Biomedicines ; 9(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202189

RESUMO

Animals with elodont dentition and unfused mandible symphyses are hypothesized to have symmetric incisor morphology. Since these animals maintain their teeth by gnawing, they may provide physiologic feedback on mechanical function when unilateral mandible defects are created that manifest as ipsilateral changes in tooth structure. This defect model would potentially generate important information on the functional/mechanical properties of implants. Rats' and rabbits' mandibles and teeth are analyzed with µCT at baseline and post-intervention (n = 8 for each). Baseline incisors were compared. In a unilateral mandible pilot study, defects-ranging from critical size defect to complete ramus osteotomies-were created to assess effect on dentition (rats, n = 7; rabbits, n = 6). Within 90% confidence intervals, animals showed no baseline left/right differences in their incisors. There are apparent dental changes associated with unilateral defect type and location. Thus, at baseline, animals exhibit statistically significant incisor symmetry and there is an apparent relationship between mandible defect and incisor growth. The baseline symmetry proven here sets the stage to study the degree to which hemi-mandible destabilizing procedures result in measurable & reproducible disruption of dental asymmetry. In a validated model, an implant designed to function under load that prevents incisor asymmetry would provide supporting evidence that the implant has clinically useful load-bearing function.

8.
Front Bioeng Biotechnol ; 9: 638494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012955

RESUMO

Different types of biomaterials have been used to repair the defect of bony orbit. However, exposure and infections are still critical risks in clinical application. Biomaterials with characteristics of osteogenesis and antibiosis are needed for bone regeneration. In this study, we aimed to characterize the antimicrobial effects of cathelicidin-LL37 and to assess any impacts on osteogenic activity. Furthermore, we attempted to demonstrate the feasibility of LL37 as a potential strategy in the reconstruction of clinical bone defects. Human adipose-derived mesenchyme stem cells (hADSCs) were cultured with different concentrations of LL37 and the optimum concentration for osteogenesis was selected for further in vitro studies. We then evaluated the antibiotic properties of LL37 at the optimum osteogenic concentration. Finally, we estimated the efficiency of a PSeD/hADSCs/LL37 combined scaffold on reconstructing bone defects in the rat calvarial defect model. The osteogenic ability on hADSCs in vitro was shown to be dependent on the concentration of LL37 and reached a peak at 4 µg/ml. The optimum concentration of LL37 showed good antimicrobial properties against Escherichia coli and Staphylococcus anurans. The combination scaffold of PSeD/hADSCs/LL37 showed superior osteogenic properties compared to the PSeD/hADSCs, PSeD, and control groups scaffolds, indicating a strong bone reconstruction effect in the rat calvarial bone defect model. In Conclusion, LL37 was shown to promote osteogenic differentiation in vitro as well as antibacterial properties. The combination of PSeD/hADSCs/LL37 was advantageous in the rat calvarial defect reconstruction model, showing high potential in clinical bone regeneration.

9.
J Orthop Res ; 39(5): 929-940, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32691903

RESUMO

The objectives of this study were to (a) assess primary stability of a press-fit cup in a simplified acetabular defect model, filled with compacted cancellous bone chips, and (b) to compare the results with primary stability of a press-fit cup combined with two different types of bone graft substitute in the same defect model. A previously developed acetabular test model made of polyurethane foam was used, in which a mainly medial contained defect was implemented. Three test groups (N = 6 each) were prepared: Cancellous bone chips (bone chips), tricalciumphosphate tetrapods + collagen matrix (tetrapods + coll), bioactive glass S53P4 + polyethylene glycol-glycerol matrix (b.a.glass + PEG). Each material was compacted into the acetabulum and a press-fit cup was implanted. The specimens were loaded dynamically in the direction of the maximum resultant force during level walking. Relative motion between cup and test model was assessed with an optical measurement system. At the last load step (3000 N), inducible displacement was highest for bone chips with median [25th percentile; 75th percentile] value of 113 [110; 114] µm and lowest for b.a.glass + PEG with 91 [89; 93] µm. Migration at this load step was highest for b.a.glass + PEG with 868 [845; 936] µm and lowest for tetrapods + coll with 491 [487; 497] µm. The results show a comparable behavior under load of tetrapods + coll and bone chips and suggest that tetrapods + coll could be an attractive alternative to bone chips. However, so far, this was found for one specific defect type and primary stability should be further investigated in additional/more severe defects.


Assuntos
Acetábulo/cirurgia , Artroplastia de Quadril/métodos , Transplante Ósseo/métodos , Prótese de Quadril , Humanos
10.
J Orthop Res ; 38(8): 1769-1778, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31944372

RESUMO

The objectives of this study were to develop a simplified acetabular bone defect model based on a representative clinical case, derive four bone defect increments from the simplified defect to establish a step-wise testing procedure, and analyze the impact of bone defect and bone defect filling on primary stability of a press-fit cup in the smallest defined bone defect increment. The original bone defect was approximated with nine reaming procedures and by exclusion of specific procedures, four defect increments were derived. The smallest increment was used in an artificial acetabular test model to test primary stability of a press-fit cup in combination with bone graft substitute (BGS). A primary acetabular test model and a defect model without filling were used as reference. Load was applied in direction of level walking in sinusoidal waveform with an incrementally increasing maximum load (300 N/1000 cycles from 600 to 3000 N). Relative motions (inducible displacement, migration, and total motion) between cup and test model were assessed with an optical measurement system. Original and simplified bone defect volume showed a conformity of 99%. Maximum total motion in the primary setup at 600 N (45.7 ± 5.6 µm) was in a range comparable to tests in human donor specimens (36.0 ± 16.8 µm). Primary stability was reduced by the bone defect, but could mostly be reestablished by BGS-filling. The presented method could be used as platform to test and compare different treatment strategies for increasing bone defect severity in a standardized way.


Assuntos
Acetábulo , Modelos Biológicos , Falha de Prótese , Humanos , Tomografia Computadorizada por Raios X
11.
J Biomed Mater Res B Appl Biomater ; 108(1): 174-182, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950569

RESUMO

The application of strontium is one option for the clinical treatment of osteoporosis-a disease characterized by reduced bone density and quality-in order to reduce the risk of vertebral and nonvertebral fractures. Unlike other drugs used in osteoporosis therapy, strontium shows a dual effect on bone metabolism by attenuating cellular resorption and simultaneously enhancing new bone tissue formation. Current concerns regarding the systemic application of highly dosed strontium ranelate led to the development of strontium-modified scaffolds based on mineralized collagen (MCM) capable to release biologically active Sr2+ ions directly at the fracture site. In this study, we investigated the regenerative potential of these scaffolds. For in vitro investigations, human mesenchymal stromal cells were cultivated on the scaffolds for 21 days (w/ and w/o osteogenic supplements). Biochemical analysis revealed a significant promoting effect on proliferation rate and osteogenic differentiation on strontium-modified scaffolds. In vivo, scaffolds were implanted in a murine segmental bone defect model-partly additionally functionalized with the osteogenic growth factor bone morphogenetic protein 2 (BMP-2). After 6 weeks, bridging calluses were obtained in BMP-2 functionalized scaffolds; the quality of the newly formed bone tissue by means of morphological scores was clearly enhanced in strontium-modified scaffolds. Histological analysis revealed increased numbers of osteoblasts and blood vessels, decreased numbers of osteoclasts, and significantly enhanced mechanical properties. These results indicate that the combined release of Sr2+ ions and BMP-2 from the biomimetic scaffolds is a promising strategy to enhance bone regeneration, especially in patients suffering from osteoporosis. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:174-182, 2020.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , Fraturas do Fêmur/terapia , Fêmur/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estrôncio/farmacologia , Alicerces Teciduais , Animais , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Fêmur/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Nus
12.
Biomed Mater Eng ; 30(5-6): 475-486, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31771032

RESUMO

BACKGROUND: We have developed a technology to electrically polarize living bone. OBJECTIVE: The effects of stored electrical charge in electrical polarized bone on the facilitation of new bone formation were assayed. METHODS: Stimulated depolarized current measurement was performed in electrically polarized and nonpolarized femora of SD rats. These bone specimens were implanted into bone defects of the rat femora and fixed with a custom-made external fixator. X-ray imaging of the implant was performed every week. After 3 weeks, micro-CT scanning was performed to evaluate the displacement rate. Histological observation was performed, and the occupancy ratio of the newly formed bone was calculated from tissue specimens stained with Villanueva's Goldner method. RESULTS: There was a tendency for the displacement rate of the implant to be smaller and the occupancy ratio of the newly formed bone to be larger, especially at the distal end, in the polarized group compared with the nonpolarized group. The time of callus appearance was significantly earlier in the polarized group than in the nonpolarized group, and bridging callus grew from the distal to the proximal end. CONCLUSIONS: Bone specimens can be electrically polarized, and the stored electrical charge can work effectively to facilitate new bone formation.


Assuntos
Terapia por Estimulação Elétrica , Fixadores Externos , Fraturas do Fêmur/terapia , Implantes Experimentais , Animais , Temperatura Corporal/fisiologia , Regeneração Óssea/fisiologia , Modelos Animais de Doenças , Estimulação Elétrica , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Eletricidade , Fraturas do Fêmur/patologia , Masculino , Osteogênese/fisiologia , Medicina de Precisão/instrumentação , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
13.
Mater Sci Eng C Mater Biol Appl ; 98: 949-959, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813102

RESUMO

In clinical conditions, the reconstructions performed in the complex and three-dimensional bone defects in the craniomaxillofacial (CMF) area are often limited in facial esthetics and jaw function. Furthermore, to regenerate a bone defect in the CMF area, the used scaffold should have unique features such as different mechanical strength or physical property suitable for complex shape and function of the CMF bones. Therefore, a three-dimensional synthetic scaffold with a patient-customized structure and mechanical properties is more suitable for the regeneration. In this study, the customized kagome-structure scaffold with complex morphology was assessed in vivo. The customized 3D kagome-structure model for the defect region was designed according to data using 3D computed tomography. The kagome-structure scaffold and the conventional grid-structure scaffold (as a control group) were fabricated using a 3D printer with a precision extruding deposition head using poly(ε-caprolactone) (PCL). The two types of 3D printed scaffolds were implanted in the 8-shaped defect model on the rabbit calvarium. To evaluate the osteoconductivity of the implanted scaffolds, new bone formation, hematoxylin and eosin staining, immunohistochemistry, and Masson's trichrome staining were evaluated for 16 weeks after implantation of the scaffolds. To assess the mechanical robustness and stability of the kagome-structure scaffold, numerical analysis considering the 'elastic-perfectly plastic' material properties and deformation under self-contact condition was performed by finite element analysis. As a result, the kagome-structure scaffold fabricated using 3D printing technology showed excellent mechanical robustness and enhanced osteoconductivity than the control group. Therefore, the 3D printed kagome-structure scaffold can be a better option for bone regeneration in complex and large defects than the conventional grid-type 3D printed scaffold.


Assuntos
Regeneração Óssea , Teste de Materiais/métodos , Impressão Tridimensional , Crânio/patologia , Alicerces Teciduais/química , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Análise Numérica Assistida por Computador , Osteogênese , Poliésteres/química , Coelhos
14.
Mater Sci Eng C Mater Biol Appl ; 94: 385-392, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423721

RESUMO

Calcium phosphate brushite type of cements have been used to replace bone graft materials because of their biocompatibility and other attractive features. Especially, injectability of cement allows easy handling of minimally invasive surgical techniques. New calcium phosphate cement (CPC) system, brushite based cement incorporated into polyelectrolyte complex, was developed in this study. Chitosan-alginate complex produced by an interaction between a cationic polymer (chitosan) and an anionic polymer (alginate) was loaded in the cement. This improved the functional properties and biocompatibility of the final cement. We optimized the liquid/solid (L/S) ratio of the cement components and investigated the compressive strength, setting time, pH change of CPC0 (with only citric acid) and CPC0.5, 1, and 1.5 (0.5, 1, and 1.5 v/v % chitosan-alginate complex in citric acid solution, respectively). The L/S ratio did not affect structural formation, while the addition of polymer complex showed new formation of macro-pores within CPC. However, a lower L/S ratio and higher amount of added polymer complex shortened the setting time and improved the compressive strength. The appropriate conditions for the injectable bone substitute were CPC1 with an L/S ratio of 0.45. To investigate the effect of the chitosan-alginate complex on CPC system in physiological conditions, CPC0 and CPC1 were implanted in a rabbit femoral head defect model for 1 and 3 months. Micro-computed tomography revealed improved bone formation in CPC1 compared to CPC0 3 months after implantation. Histological analysis revealed newly formed bone tissues around the peripheral sides of CPC0 and CPC1. The results indicate the potential value of the CPC system containing polymer complex as an injectable bone substitute. The study of the CPC-polymer complex system incorporating drugs or cells can be further developed into a controlled release system for faster bone regeneration.


Assuntos
Alginatos/química , Cimentos Ósseos/química , Transplante Ósseo , Fosfatos de Cálcio/química , Quitosana/química , Injeções , Animais , Força Compressiva , Concentração de Íons de Hidrogênio , Masculino , Porosidade , Coelhos , Difração de Raios X
15.
Dent Mater J ; 37(6): 912-918, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29962416

RESUMO

The effectiveness of a previously developed unsintered hydroxyapatite (uHA) and poly(L-lactic acid) (PLLA) hydrophilic membrane as a resorbable barrier for guided bone regeneration (GBR) was evaluated. Critical-size 8-mm diameter bone defects were surgically generated in the parietal bones of 24 12-week-old male Wistar rats, which were then divided into three groups in which either a uHA/PLLA or a collagen membrane or no membrane (control) was placed onto the bone defect. Following sacrifice of the animals 2 or 4 weeks after surgery, bone defects were examined using microcomputed tomography and histological analysis. Bone mineral density, bone mineral content, and relative bone growth area values 2 or 4 weeks after surgery were highest in the uHA/PLLA group. Four weeks after surgery, the relative bone growth area in the uHA/PLLA group was larger than that in the collagen group. The resorbable uHA/PLLA membrane is thus potentially effective for GBR.


Assuntos
Durapatita/farmacologia , Regeneração Tecidual Guiada/métodos , Poliésteres/farmacologia , Crânio/cirurgia , Animais , Densidade Óssea , Colágeno , Modelos Animais de Doenças , Interações Hidrofóbicas e Hidrofílicas , Masculino , Teste de Materiais , Membranas Artificiais , Ratos , Ratos Wistar , Propriedades de Superfície , Raios Ultravioleta , Microtomografia por Raio-X
16.
Materials (Basel) ; 9(2)2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28787903

RESUMO

The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with ß-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:ß-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material.

17.
J Biomed Mater Res A ; 103(12): 3764-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26053543

RESUMO

The skull defect model is the existing representative osteogenesis model. The skull defect model involves monitoring osteogenesis patterns at the site of a skull defect, which has the advantages that identical defects can be induced across individual experimental animals and the results can be quantitatively evaluated. However, it can damage the cerebrum because it requires a complex surgery performed on the parietal bone. This study aims to develop a new osteogenesis model that compensates for the weak points of the existing model. Male 8-week-old imprinting control region mice were put under inhalational anesthesia, and the surgery area was disinfected with 70% ethanol prior to the creation of a 5-mm incision along the sagittal line between the glabella with a pair of scissors. The incised area was opened and, after we checked the positions of the inferior cerebral vein and the sagittal suture, a 21-gauge needle was used to make two symmetrical holes with respect to the sagittal suture 3 mm below the inferior cerebral vein and 2 mm on either side of the sagittal suture. After images were obtained using micro-computed tomography, the degree of osteogenesis was quantitatively analyzed. In addition, mRNA extracted from the site of the defect confirmed a significant increase in mRNA levels of collagen 1a, alkaline phosphatase, bone sialoprotein, osteocalcin, and Runx2, known markers for osteoblasts. The promotion of osteogenesis could be observed at the site of the defect, by histological analysis.


Assuntos
Osso Frontal/lesões , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/uso terapêutico , Animais , Regeneração Óssea/efeitos dos fármacos , Modelos Animais de Doenças , Osso Frontal/metabolismo , Osso Frontal/patologia , Masculino , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/patologia , RNA Mensageiro/genética , Microtomografia por Raio-X
18.
J Tissue Eng Regen Med ; 9(3): 276-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255518

RESUMO

Many kinds of bone graft materials have been developed and reported to repair various bone defects. The defects are usually created by surgical resection of pre-existing bone tissue. However, spontaneous healing of bone defects without implantation of materials could be seen, because bone tissue possesses inherent repairing property. The central portion of the lower jaw bone in many animals consists of fibrous tissue and is called the mandibular symphysis. It persists even in old animals and thus can be interpreted as a physiological bone gap or a non-healing bone defect. We implanted calcium phosphate porous ceramics alone or composites of the ceramics and bone marrow stromal cells (BMSCs) into the bone defect (mandibular symphysis) to examine whether it could be filled with new bone tissue, resulting in bone union. Eight weeks after implantation, micro-computed tomography (micro-CT) and histological and biomechanical analyses demonstrated that bone union of the mandibles occurred in all rats with composites but in none of those with ceramics alone. These results showed that the rat mandibular symphysis is a unique bone defect site for the evaluation of bone graft materials. These analyses demonstrated that ceramics alone could not contribute to bone healing in the defect; however, supplementation with BMSCs drastically changed the properties of the ceramics (turning them into osteogenic ceramics), which completely healed the defect. As BMSCs can be culture-expanded using small amounts of bone marrow, the use of the composites might have clinical significance for the reconstruction of various bone tissues, including facial bone.


Assuntos
Substitutos Ósseos/farmacologia , Transplante Ósseo , Terapia Baseada em Transplante de Células e Tecidos , Cerâmica/farmacologia , Mandíbula , Traumatismos Mandibulares , Animais , Humanos , Masculino , Mandíbula/metabolismo , Mandíbula/patologia , Traumatismos Mandibulares/metabolismo , Traumatismos Mandibulares/patologia , Traumatismos Mandibulares/terapia , Ratos , Ratos Endogâmicos F344
19.
Artigo em Chinês | WPRIM | ID: wpr-847411

RESUMO

BACKGROUND: Establishment of a standard experimental animal model of atrophic nonunion is necessary for experimental study and related treatment of atrophic nonunion. However, the common modeling methods cannot accurately simulate atrophic nonunion in the clinical practice. OBJECTIVE: To construct a standard animal model of atrophic nonunion. METHODS: Thirty male Sprague-Dawley rats were randomly divided into experimental and control groups. All animals were subjected to bone cutting at the middle-lower segment of the right tibia and the circular external fixator was applied to keep a 4 mm defect interval. The animals in the experimental group were subjected to an additional cauterization of the periosteum at the fracture end of the tibia with a length of 1 mm. The periosteum was not treated in the control group. The study protocol was approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Guangzhou University of Chinese Medicine on January 01, 2018, with approval No. TCMF1-2018002. RESULTS AND CONCLUSION: After modeling, there was one case of loose external fixation in each group, and no infection occurred in both groups. Imaging examination showed no bone connection and no sign of healing between the fractures of the tibia in the two groups at 6 weeks after modeling. Imaging and histological findings showed no healing at the end of fracture but typical atrophic nonunion in the experimental group at 12 weeks after modeling. By contrast, six animals had atrophic nonunion, and eight had hypertrophic nonunion in the control group. Overall, the animal model of atrophic tibial nonunion can be successfully constructed using circular external fixator combined with periosteal cauterization at the fracture end.

20.
J Biomech ; 47(11): 2700-8, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24882739

RESUMO

Segmental bone defect animal models are often used for evaluating the bone regeneration performance of bone substituting biomaterials. Since bone regeneration is dependent on mechanical loading, it is important to determine mechanical load transfer after stabilization of the defect and to study the effects of biomaterial stiffness on the transmitted load. In this study, we assess the mechanical load transmitted over a 6mm femur defect that is stabilized with an internal PEEK fixation plate. Subsequently, three types of selective laser melted porous titanium implants with different stiffness values were used to graft the defect (five specimens per group). In one additional group, the defect was left empty. Micro strain gauges were used to measure strain values at four different locations of the fixation plate during external loading on the femoral head. The load sharing between the fixation plate and titanium implant was highly variable with standard deviations of measured strain values between 31 and 93% of the mean values. As a consequence, no significant differences were measured between the forces transmitted through the titanium implants with different elastic moduli. Only some non-significant trends were observed in the mean strain values that, consistent with the results of a previous finite element study, implied the force transmitted through the implant increases with the implant stiffness. The applied internal fixation method does not standardize mechanical loading over the defect to enable detecting small differences in bone regeneration performances of bone substituting biomaterials. In conclusion, the fixation method requires further optimization to reduce the effects of the operative procedure and make the mechanical loading more consistent and improve the overall sensitivity of this rat femur defect model.


Assuntos
Materiais Biocompatíveis , Placas Ósseas , Fixação Interna de Fraturas/instrumentação , Fixadores Internos , Animais , Regeneração Óssea , Substitutos Ósseos , Módulo de Elasticidade , Fêmur/cirurgia , Análise de Elementos Finitos , Lasers , Masculino , Próteses e Implantes , Ratos , Ratos Wistar , Titânio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa