Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.085
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Stem Cells ; 41(9): 862-876, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317792

RESUMO

Numerous intrinsic factors regulate mesenchymal progenitor commitment to a specific cell fate, such as osteogenic or adipogenic lineages. Identification and modulation of novel intrinsic regulatory factors represent an opportunity to harness the regenerative potential of mesenchymal progenitors. In the present study, the transcription factor (TF) ZIC1 was identified to be differentially expressed among adipose compared with skeletal-derived mesenchymal progenitor cells. We observed that ZIC1 overexpression in human mesenchymal progenitors promotes osteogenesis and prevents adipogenesis. ZIC1 knockdown demonstrated the converse effects on cell differentiation. ZIC1 misexpression was associated with altered Hedgehog signaling, and the Hedgehog antagonist cyclopamine reversed the osteo/adipogenic differentiation alterations associated with ZIC1 overexpression. Finally, human mesenchymal progenitor cells with or without ZIC1 overexpression were implanted in an ossicle assay in NOD-SCID gamma mice. ZIC1 overexpression led to significantly increased ossicle formation in comparison to the control, as assessed by radiographic and histologic measures. Together, these data suggest that ZIC1 represents a TF at the center of osteo/adipogenic cell fate determinations-findings that have relevance in the fields of stem cell biology and therapeutic regenerative medicine.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Adipogenia/genética , Proteínas Hedgehog , Osteogênese/fisiologia , Camundongos Endogâmicos NOD , Camundongos SCID , Diferenciação Celular , Fatores de Transcrição/genética
2.
FASEB J ; 37(10): e23166, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650876

RESUMO

Osteomyelitis is a pathological condition of the bone, frequently associated with the presence of infectious agents - namely Staphylococcus aureus - that induce inflammation and tissue destruction. Recent advances in the understanding of its pathophysiology and the identification of innovative therapeutic approaches were gathered from experimental in vitro and in vivo systems. However, cell culture models offer limited representativeness of the cellular functionality and the cell-cell and cell-matrix interactions, further failing to mimic the three-dimensional tissue organization; and animal models allow for limited mechanistic assessment given the complex nature of systemic and paracrine regulatory systems and are endorsed with ethical constraints. Accordingly, this study aims at the establishment and assessment of a new ex vivo bone infection model, upon the organotypic culture of embryonic chicken femurs colonized with S. aureus, highlighting the model responsiveness at the molecular, cellular, and tissue levels. Upon infection with distinct bacterial inoculums, data reported an initial exponential bacterial growth, followed by diminished metabolic activity. At the tissue level, evidence of S. aureus-mediated tissue destruction was attained and demonstrated through distinct methodologies, conjoined with decreased osteoblastic/osteogenic and increased osteoclastic/osteoclastogenic functionalities-representative of the osteomyelitis clinical course. Overall, the establishment and characterization of an innovative bone tissue infection model that is simple, reproducible, easily manipulated, cost-effective, and simulates many features of human osteomyelitis, further allowing the maintenance of the bone tissue's three-dimensional morphology and cellular arrangement, was achieved. Model responsiveness was further demonstrated, showcasing the capability to improve the research pipeline in bone tissue infection-related research.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Embrião de Galinha , Humanos , Staphylococcus aureus , Osso e Ossos , Osteogênese , Inflamação
3.
Connect Tissue Res ; 65(4): 313-329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982804

RESUMO

AIM: As osteoblasts deposit a mineralized collagen network, a subpopulation of these cells differentiates into osteocytes. Biochemical and mechanical stimuli, particularly fluid shear stress (FSS), are thought to regulate this, but their relative influence remains unclear. Here, we assess both biochemical and mechanical stimuli on long-term bone formation and osteocytogenesis using the osteoblast-osteocyte cell line IDG-SW3. METHODS: Due to the relative novelty and uncommon culture conditions of IDG-SW3 versus other osteoblast-lineage cell lines, effects of temperature and media formulation on matrix deposition and osteocytogenesis were initially characterized. Subsequently, the relative influence of biochemical (ß-glycerophosphate (ßGP) and ascorbic acid 2-phosphate (AA2P)) and mechanical stimulation on osteocytogenesis was compared, with intermittent application of low magnitude FSS generated by see-saw rocker. RESULTS: ßGP and AA2P supplementation were required for mineralization and osteocytogenesis, with 33°C cultures retaining a more osteoblastic phenotype and 37°C cultures undergoing significantly higher osteocytogenesis. ßGP concentration positively correlated with calcium deposition, whilst AA2P stimulated alkaline phosphatase (ALP) activity and collagen deposition. We demonstrate that increasing ßGP concentration also significantly enhances osteocytogenesis as quantified by the expression of green fluorescent protein linked to Dmp1. Intermittent FSS (~0.06 Pa) rocker had no effect on osteocytogenesis and matrix deposition. CONCLUSIONS: This work demonstrates the suitability and ease with which IDG-SW3 can be utilized in osteocytogenesis studies. IDG-SW3 mineralization was only mediated through biochemical stimuli with no detectable effect of low magnitude FSS. Osteocytogenesis of IDG-SW3 primarily occurred in mineralized areas, further demonstrating the role mineralization of the bone extracellular matrix has in osteocyte differentiation.


Assuntos
Glicerofosfatos , Osteoblastos , Osteócitos , Estresse Mecânico , Glicerofosfatos/farmacologia , Glicerofosfatos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Osteócitos/metabolismo , Osteócitos/citologia , Linhagem Celular , Camundongos , Osteogênese/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Ácido Ascórbico/análogos & derivados
4.
J Bone Miner Metab ; 42(3): 302-315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753007

RESUMO

INTRODUCTION: High + Gz loads, the gravitational forces experienced by the body in hypergravity environments, can lead to bone loss in pilots and astronauts, posing significant health risks. MATERIALS AND METHODS: To explore the effect of treadmill exercise on bone tissue recovery, a study was conducted on 72 male Wistar rats. These rats were subjected to four weeks of varying levels of periodic high + Gz loads (1G, 8G, 20G) experiments, and were subsequently divided into the treadmill group and the control group. The treadmill group underwent a continuous two-week treadmill experiment, while the control group rested during this period. The mechanical properties, microstructure, and molecular markers of their tibial bone tissue were measured using three-point bending, micro-CT, and PCR. RESULTS: The results showed that treadmill exercise improved the elastic modulus, ultimate deflection, and ultimate load of rat bone tissue. It also increased the number, density, and volume fraction of bone trabeculae, and decreased their separation. Moreover, treadmill exercise enhanced osteogenesis and inhibited osteoclastogenesis. CONCLUSION: This study demonstrates that treadmill exercise can promote the recovery of bone tissue in rats subjected to high + Gz loads, providing a potential countermeasure for bone loss in pilots and astronauts.


Assuntos
Hipergravidade , Osteogênese , Condicionamento Físico Animal , Ratos Wistar , Animais , Masculino , Condicionamento Físico Animal/fisiologia , Ratos , Osteogênese/fisiologia , Hipergravidade/efeitos adversos , Tíbia/fisiologia , Osso e Ossos/fisiologia , Microtomografia por Raio-X , Densidade Óssea/fisiologia
5.
Nanotechnology ; 35(14)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37992401

RESUMO

Creating a scaffold for bone tissue engineering that is bioactive and capable of acting as a local-dual delivery system, releasing bioactive molecules and regulating the bone remodeling process to achieve balanced bone resorption and formation, is a significant challenge. The objective of this research is to create a composite scaffold using chitosan/gelatin (CHS/Gel) and the calcium (Ca)-alendronate (ALN) metal-organic frameworks (MOFs). The scaffold will act as a dual-delivery system, releasing Ca ions and ALN to regulate bone formation. Ca-ALN MOF nanoparticles (NPs) were prepared in mild conditions and studied by FTIR, XRD, FESEM, and TGA. Ca-ALN NPs-loaded CHS/Gel scaffolds were opportunely fabricated through freeze-drying approach. Physicochemical features of the scaffolds after incorporating NPs equated by CHS/Gel scaffold changed, therefore, the attendance of NPs caused a decreasing porosity, decreased swelling, and low rate of degradation. The release profile results showed that the NPs-loaded CHS/Gel scaffolds were able to simultaneously release ALN and Ca ions due to the decomposition of NPs. Additionally, the loading of NPs in the CHS/Gel scaffold led to an increment in alkaline phosphatase (ALP) activity and the quantity of deposited Ca along with osteogenesis gene markers. These findings suggest that the NPs-loaded CHS/Gel scaffold has the potential to enhance the differentiation of human adipose tissue-derived mesenchymal stem cells, making it a promising approach for bone repair.


Assuntos
Quitosana , Estruturas Metalorgânicas , Humanos , Engenharia Tecidual/métodos , Gelatina/química , Quitosana/química , Cálcio , Alicerces Teciduais/química , Osteogênese , Alendronato , Íons , Porosidade
6.
Nanotechnology ; 35(13)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38081081

RESUMO

Nanomaterials can provide unique solutions for the problems experienced in tissue engineering by improving a scaffold's physico-bio-chemical properties. With its piezoelectric property, bone is an active tissue with easy adaptation and remodeling through complicated mechanisms of electromechanical operations. Although poly(ε-caprolactone) (PCL) is an excellent polymer for bone tissue engineering, it is lack of conductivity. In this study, piezoelectric barium titanates (BaTiO3) and boron nitride nanotubes (BNNTs) are used as ultrasound (US) stimulated piezoelectric components in PCL to mimic piezoelectric nature of bone tissue. Electric-responsive Human Osteoblast cells on the scaffolds were stimulated by applying low-frequency US during cell growth. Biocompatibility, cell adhesion, alkaline phosphatase activities and mineralization of osteoblast cells on piezo-composite scaffolds were investigated. BaTiO3or BNNTs as reinforcement agents improved physical and mechanical properties of PCL scaffolds.In vitrostudies show that the use of BaTiO3or BNNTs as additives in non-conductive scaffolds significantly induces and increases the osteogenic activities even without US stimulation. Although BaTiO3is one of the best piezoelectric materials, the improvement is more dramatic in the case of BNNTs with the increased mineralization, and excellent chemical and mechanical properties.


Assuntos
Nanofibras , Nanotubos , Humanos , Engenharia Tecidual , Alicerces Teciduais/química , Bário , Nanofibras/química , Osso e Ossos , Osteogênese , Nanotubos/química , Poliésteres/química , Proliferação de Células
7.
Anal Bioanal Chem ; 416(23): 5155-5164, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39090265

RESUMO

Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease characterized by disability and deformity. To better understand ONFH at molecular level and to explore the possibility of early diagnosis, instead of diagnosis based on macroscopic spatial characteristics, a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) method was developed for ONFH disease for the first time. The most challenging step for ONFH MSI is to deal with human bone tissues which are much harder than the other biological samples studied by the reported MSI studies. In this work, the MSI sectioning method of hard bone tissues was established using tender acids and a series of test criteria. Small-molecule metabolites, such as lipids and amino acids, were detected in bone sections, realizing the in situ detection of spatial distribution of biometabolites. By comparing the distribution of metabolites from different regions of normal femoral head, ONFH bone tissue (ONBT), and adjacent ONFH bone tissue (ANBT), the whole process of femoral head from normal stage to necrosis was monitored and visualized at molecular level. Moreover, this developed MSI method was used for metabolomics study of ONFH. 72 differential metabolites were identified, suggesting that disturbances in energy metabolism and lipid metabolism affected the normal life activities of osteoblasts and osteoclasts. This study provides new perspectives for future pathological studies of ONFH.


Assuntos
Necrose da Cabeça do Fêmur , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/patologia , Metabolômica/métodos , Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/patologia , Masculino , Feminino
8.
Mol Biol Rep ; 51(1): 482, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578512

RESUMO

BACKGROUND: Natural bone grafts are the highly preferred materials for restoring the lost bone, while being constrained of donor availability and risk of disease transmission. As a result, tissue engineering is emerging as an efficacious and competitive technique for bone repair. Bone tissue engineering (TE) scaffolds to support bone regeneration and devoid of aforesaid limitations are being vastly explored and among these the avian eggshell membrane has drawn attention for TE owing to its low immunogenicity, similarity with the extracellular matrix, and easy availability. METHODOLOGY AND RESULTS: In this study, the development of bone ingrowth support system from avian eggshell membrane derived collagen hydrolysates (Col-h) is reported. The hydrolysate, cross-linked with glutaraldehyde, was developed into hydrogels with poly-(vinyl alcohol) (PVA) by freeze-thawing and further characterized with ATR-FTIR, XRD, FESEM. The biodegradability, swelling, mechanical, anti-microbial, and biocompatibility evaluation were performed further for the suitability in bone regeneration. The presence of amide I, amide III, and -OH functional groups at 1639 cm- 1,1264 cm- 1, and 3308 cm- 1 respectively and broad peak between 16°-21° (2θ) in XRD data reinstated the composition and form. CONCLUSIONS: The maximum ratio of Col-h/PVA that produced well defined hydrogels was 50:50. Though all the hydrogel matrices alluded towards their competitive attributes and applicability towards restorative bone repair, the hydrogel with 40:60 ratios showed better mechanical strength and cell proliferation than its counterparts. The prominent E. coli growth inhibition by the hydrogel matrices was also observed, along with excellent biocompatibility with MG-63 osteoblasts. The findings indicate strongly the promising application of avian eggshell-derived Col-h in supporting bone regeneration.


Assuntos
Casca de Ovo , Escherichia coli , Animais , Colágeno/farmacologia , Alicerces Teciduais , Engenharia Tecidual/métodos , Hidrogéis , Regeneração Óssea , Amidas
9.
Platelets ; 35(1): 2316744, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38390838

RESUMO

Blood concentrates like platelet rich fibrin (PRF) have been established as a potential autologous source of cells and growth factors with regenerative properties in the field of dentistry and regenerative medicine. To further analyze the effect of PRF on bone tissue regeneration, this study investigated the influence of liquid PRF matrices on human healthy primary osteoblasts (pOB) and co-cultures composed of pOB and human dermal vascular endothelial cells (HDMEC) as in vitro model for bone tissue regeneration. Special attention was paid to the PRF mediated influence on osteoblastic differentiation and angiogenesis. Based on the low-speed centrifugation concept, cells were treated indirectly with PRF prepared with a low (44 g) and high relative centrifugal force (710 g) before the PRF mediated effect on osteoblast proliferation and differentiation was assessed via gene and protein expression analyses and immunofluorescence. The results revealed a PRF-mediated positive effect on osteogenic proliferation and differentiation accompanied by increased concentration of osteogenic growth factors and upregulated expression of osteogenic differentiation factors. Furthermore, it could be shown that PRF treatment resulted in an increased formation of angiogenic structures in a bone tissue mimic co-culture of endothelial cells and osteoblasts induced by the PRF mediated increased release of proangiogenic growth factors. The effects on osteogenic proliferation, differentiation and vascularization were more evident when low RCF PRF was applied to the cells. In conclusion, PRF possess proosteogenic, potentially osteoconductive as well as proangiogenic properties, making it a beneficial tool for bone tissue regeneration.


What is the context?The treatment of bone defects is still a challenge in the field of regenerative medicine. In this context, researchers and clinicians are continuously focusing on developing new therapeutic strategies like the use of autologous blood concentrates like Platelet rich fibrin (PRF) to improve regeneration by directly delivering wound healing promoting cells and growth factors to the defect side in order to restore the structure and functional integrity of damaged hard tissue in combination with adequate tissue regeneration.What is new?Focus of the present in vitro study was to further evaluate the potential of PRF paying particular attention to the PRF-mediated effect on osteogenic differentiation and angiogenesis of human primary osteoblasts as well as on a more complex tissue like co-culture consisting of osteoblasts and microvascular endothelial cells. We could demonstrate that PRF is able to support and affect a variety of processes involved in bone tissue regeneration including osteogenic proliferation, osteogenic differentiation as well as angiogenic structure formation.Treatment of PRF resulted in:- increased cell viability*- higher expression of osteogenic differentiation factors*- higher release of osteogenic growth factors*- increased formation of microvessel-like structures*(*compared to untreated control)What is the impact?PRF represents a beneficial autologous tool for regenerative purposes combining proosteogenic and proangiogenic properties. Therefore, PRF might be used for applications in versatile fields of medicine in the context of improving bone tissue regeneration.


Assuntos
Fibrina Rica em Plaquetas , Humanos , Fibrina Rica em Plaquetas/metabolismo , Osteogênese , Células Endoteliais , Osso e Ossos , Técnicas de Cocultura
10.
J Nanobiotechnology ; 22(1): 525, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217329

RESUMO

The complex anatomy and biology of craniofacial bones pose difficulties in their effective and precise reconstruction. Injectable hydrogels (IHs) with water-swollen networks are emerging as a shape-adaptive alternative for noninvasively rebuilding craniofacial bones. The advent of versatile nanomaterials (NMs) customizes IHs with strengthened mechanical properties and therapeutically favorable performance, presenting excellent contenders over traditional substitutes. Structurally, NM-reinforced IHs are energy dissipative and covalently crosslinked, providing the mechanics necessary to support craniofacial structures and physiological functions. Biofunctionally, incorporating unique NMs into IH expands a plethora of biological activities, including immunomodulatory, osteogenic, angiogenic, and antibacterial effects, further favoring controllable dynamic tissue regeneration. Mechanistically, NM-engineered IHs optimize the physical traits to direct cell responses, regulate intracellular signaling pathways, and control the release of biomolecules, collectively bestowing structure-induced features and multifunctionality. By encompassing state-of-the-art advances in NM-integrated IHs, this review offers a foundation for future clinical translation of craniofacial bone reconstruction.


Assuntos
Regeneração Óssea , Ossos Faciais , Hidrogéis , Nanoestruturas , Engenharia Tecidual , Hidrogéis/química , Humanos , Nanoestruturas/química , Animais , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Crânio/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Materiais Biocompatíveis/química , Alicerces Teciduais/química
11.
Clin Oral Implants Res ; 35(2): 141-154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964421

RESUMO

OBJECTIVES: Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS: MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS: While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION: Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.


Assuntos
Células-Tronco Mesenquimais , Fibrina Rica em Plaquetas , Ratos , Humanos , Animais , Meios de Cultivo Condicionados/metabolismo , Proteômica , Secretoma , Regeneração Óssea , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Colágeno/metabolismo , Crânio/cirurgia , Crânio/patologia , Leucócitos/metabolismo
12.
BMC Pediatr ; 24(1): 247, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594697

RESUMO

BACKGROUND: Sports practice during adolescence is important to enhance bone development, although it may provide different effects depending on the mechanical impact present in the sport. Besides, resistance training (RT) may also induce bone changes directly (via muscle contractions) and indirectly (via myokines). However, there have been no studies analyzing the longitudinal influence of engaging in sport with and without added mechanical load. Thus, this study aims to analyze the combined effects of sports participation and resistance training on areal bone mineral density (aBMD) accrual in adolescent athletes participating in swimming and impact sports for 12-months. METHODS: This was a 12-month longitudinal study. The sample comprised 91 adolescents (21 females) aged 10 to 18 years, engaged in impact sports (basketball, tennis, track & field, baseball and gymnastics, n = 66) and non-impact sport (swimming, n = 25). The sample was divided according to resistance training participation: impact sports only (n = 45), impact sports + resistance training (n = 21), swimming-only (n = 17) and swimming + resistance training (n = 8). aBMD and soft tissues were measured using dual-energy X-ray absorptiometry. Generalized linear models analysis was used for the resistance training (RT) x type of sport interaction in predicting aBMD changes overtime, adjusting for maturation, sex and baseline aBMD. RESULTS: After 12-months, all groups showed a significant increase in aBMD, except for the swimming groups (regardless of resistant training), which showed a significant loss in spine aBMD (-0.045 [-0.085 to -0.004] g/cm2 in swimming-only and - 0.047 [-0.073 to -0.021] g/cm2 in swimming + RT). In comparisons between groups, only swimming + RT group, compared with swimming-only group presented higher upper limbs aBMD (0.096 g/cm2 [0.074 to 0.118] in swimming + RT vs. 0.046 [0.032 to 0.060] g/cm2 in swimming only; p < 0.05) and whole body less head (WBLH) aBMD (0.039 [0.024 to 0.054] g/cm2 in swimming + RT vs. 0.017 [0.007 to 0.027] g/cm2 swimming-only; p < 0.05). CONCLUSION: Despite the significant gain in aBMD in all groups and body sites after 12-months, except for the spine site of swimmers, the results indicate that participation in RT seems to improve aBMD accrual in swimmers at the upper limbs and WBLH.


Assuntos
Treinamento Resistido , Natação , Feminino , Adolescente , Humanos , Natação/fisiologia , Estudos Longitudinais , Densidade Óssea/fisiologia , Absorciometria de Fóton/métodos , Desenvolvimento Ósseo/fisiologia
13.
J Mater Sci Mater Med ; 35(1): 22, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526601

RESUMO

Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg-1.5Zn-0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF2 and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450-600 µm) and interconnected pores (150-200 µm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF2 coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.


Assuntos
Procedimentos de Cirurgia Plástica , Porosidade , Apatitas , Zinco
14.
Clin Oral Investig ; 28(1): 86, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195898

RESUMO

OBJECTIVES: Conducting a scoping review (SR) to assess scientific evidence for topical simvastatin's impact on alveolar bone regeneration and determine its level of support for clinical applications. MATERIALS AND METHODS: This SR followed the PRISMA-ScR and OSF registries protocol; systematic searching was conducted on MEDLINE/PubMed, Cochrane, Embase, Scopus, Web of Science, and LILACS, to identify relevant articles until June 2023. Inclusion criteria covered clinical trials, case series, prospective and retrospective studies, along with in vivo investigations, involving participants of any sex and age. RESULTS: Out of 1312 identified studies, 20 (9 in vivo, 11 RCTs) met inclusion criteria. RCTs focused on third molar extraction, in vivo on mandibular incisor surgery. The majority of RCTs employed a collagen sponge and a simvastatin concentration of 10mg; conversely, most in vivo studies favored polylactide-co-glycolide and a 2 mg simvastatin concentration. RCTs had 3-month follow-ups; in vivo, studies extended to 8 weeks. Seven RCTs assessed pain outcomes, simvastatin did not significantly affect pain in six studies. Among four RCTs on postoperative swelling, only two observed a significant increase in the simvastatin group. In general, positive bone formation and the absence of adverse effects directly linked to topical simvastatin were observed across the study models. CONCLUSIONS: Intra-alveolar simvastatin post-tooth extraction has been to be shown to be effective and safe for preserving alveolar bone, with varied concentrations and carriers, with no significant adverse effects. CLINICAL RELEVANCE: This review provides critical insights into the effects of simvastatin on alveolar bone regeneration, informing potential benefits and possible challenges associated with its post-extraction application. OSF REGISTRY PROTOCOL: osf.io/q3bnf.


Assuntos
Incisivo , Extração Dentária , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Dor
15.
J Formos Med Assoc ; 123(1): 71-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709573

RESUMO

BACKGROUND/PURPOSE: 3D-printing technology is an important tool for the bone tissue engineering (BTE). The aim of this study was to investigate the interaction of polycaprolactone (PCL) scaffolds and modified mesh PCL coated with beta TCP (PCL/ß-TCP) scaffolds with MG-63. METHODS: This study used the fused deposition modeling (FDM) technique with the 3D printing technique to fabricate the thermoplastic polymer and composite scaffolds. Scaffold structure and coating quality were observed under a scanning electron microscope (SEM). MG-63 cells were injected and attached to the mesh-manufactured PCL scaffolds. The biocompatibility of mesh structured PCL and PCL/ß-TCP scaffolds could be examined by measuring the viability of MG-63 cells of MTT assay. Bone cell differentiation was evaluated ALP activity by mineralization assay. RESULTS: The results showed that both mesh PCL scaffolds and PCL/ß-TCP scaffolds were non-toxic to the cells. The ALP activities of cells in PCL/ß-TCP scaffolds groups were significant differences and better than PCL groups in all groups at all experimental dates. The mineralization process was time-dependent, and significantly higher mineralization of osteosarcoma cells was observed on PCL/ß-TCP scaffolds at experimental dates. CONCLUSION: We concluded that both meshes structured PCL and PCL/ß-TCP scaffolds could promote the MG-63 cell growth, and PCL/ß-TCP was better than the PCL scaffolds for the outcome of MG63 cell differentiation and mineralization.


Assuntos
Regeneração Óssea , Poliésteres , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Impressão Tridimensional
16.
Cell Tissue Bank ; 25(1): 389-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159136

RESUMO

Exosomes, the naturally secreted nanocarriers of cells, have recently been demonstrated to have therapeutic benefits in a variety of disease models where parent cells are not present. However, the use of exosomes in bone defect regeneration has been unusual, and little is documented about the underlying processes. In recent study we produced and characterized exosomes derived human endometrial mesenchymal stem stromal cells and 58S bioactive glass scaffolds; in following, in this research exosome loaded scaffolds synthetized and release of exosome, porosity and bioactivity of them were assessed. More over the effect of scaffolds on repair of critical-size bone defects in rat's calvaria was evaluated by histological examination and micro computed tomography (µ CT). The findings confirmed that constructed porous scaffolds consistently release exosomes; additionally, in vivo findings including Hematoxilin & Eosin staining, Immunohistochemistry, Masson's trichrome, histomorphometric analysis, and µ CT clarified that our implant has osteogenic properties. We discovered that Exo-treated scaffolds might promote osteogenesis especially compared to pure scaffolds, indicating that produced scaffolds containing exosomes could be a potential replacement in bone tissue engineering.


Assuntos
Exossomos , Vidro , Alicerces Teciduais , Ratos , Humanos , Animais , Alicerces Teciduais/química , Microtomografia por Raio-X , Diferenciação Celular , Regeneração Óssea , Osteogênese , Crânio , Porosidade
17.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612646

RESUMO

Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.


Assuntos
Osso e Ossos , Engenharia Tecidual , Idoso , Humanos , Materiais Biocompatíveis/uso terapêutico , Transplante Ósseo , Laboratórios
18.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732199

RESUMO

Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers' diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation.


Assuntos
Nanofibras , Polivinil , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Polivinil/química , Humanos , Alicerces Teciduais/química , Nanofibras/química , Materiais Biocompatíveis/química , Células Cultivadas , Espectroscopia de Infravermelho com Transformada de Fourier , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/metabolismo , Peso Molecular , Polímeros de Fluorcarboneto
19.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397055

RESUMO

Statins, widely prescribed for lipid disorders, primarily target 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase competitively and reversibly, resulting in reduced low-density lipoprotein cholesterol (LDL-C). This mechanism proves effective in lowering the risk of lipid-related diseases such as ischemic cerebrovascular and coronary artery diseases. Beyond their established use, statins are under scrutiny for potential applications in treating bone diseases. The focus of research centers mainly on simvastatin, a lipophilic statin demonstrating efficacy in preventing osteoporosis and aiding in fracture and bone defect healing. Notably, these effects manifest at elevated doses (20 mg/kg/day) of statins, posing challenges for systematic administration due to their limited bone affinity. Current investigations explore intraosseous statin delivery facilitated by specialized carriers. This paper outlines various carrier types, characterizing their structures and underscoring various statins' potential as local treatments for bone diseases.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Osteoporose , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , LDL-Colesterol , Osteoporose/tratamento farmacológico , Osso e Ossos
20.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999953

RESUMO

Hybrid scaffolds that are based on PLA and PLA/PMMA with 75/25, 50/50, and 25/75 weight ratios and functionalized with 10 wt.% of bioglass nanoparticles (n-BG) were developed using an electrospinning technique with a chloroform/dimethylformamide mixture in a 9:1 ratio for bone tissue engineering applications. Neat PLA and PLA/PMMA hybrid scaffolds were developed successfully through a (CF/DMF) solvent system, obtaining a random fiber deposition that generated a porous structure with pore interconnectivity. However, with the solvent system used, it was not possible to generate fibers in the case of the neat PMMA sample. With the increase in the amount of PMMA in PLA/PMMA ratios, the fiber diameter of hybrid scaffolds decreases, and the defects (beads) in the fiber structure increase; these beads are associated with a nanoparticle agglomeration, that could be related to a low interaction between n-BG and the polymer matrix. The Young's modulus of PLA/PMMA/n-BG decreases by 34 and 80%, indicating more flexible behavior compared to neat PLA. The PLA/PMMA/n-BG scaffolds showed a bioactive property related to the presence of hydroxyapatite crystals in the fiber surface after 28 days of immersion in a Simulated Body Fluids solution (SBF). In addition, the hydrolytic degradation process of PLA/PMMA/n-BG, analyzed after 35 days of immersion in a phosphate-buffered saline solution (PBS), was less than that of the pure PLA. The in vitro analysis using an HBOF-1.19 cell line indicated that the PLA/PMMA/n-BG scaffold showed good cell viability and was able to promote cell proliferation after 7 days. On the other hand, the in vivo biocompatibility evaluated via a subdermal model in BALC male mice corroborated the good behavior of the scaffolds in avoiding the generation of a cytotoxic effect and being able to enhance the healing process, suggesting that the materials are suitable for potential applications in tissue engineering.


Assuntos
Cerâmica , Nanopartículas , Poliésteres , Polimetil Metacrilato , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Poliésteres/química , Polimetil Metacrilato/química , Alicerces Teciduais/química , Cerâmica/química , Cerâmica/farmacologia , Nanopartículas/química , Animais , Camundongos , Osso e Ossos/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa