Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Annu Rev Neurosci ; 44: 197-219, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33722070

RESUMO

Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.


Assuntos
Axônios , Bainha de Mielina , Animais , Neuroglia , Neurônios , Oligodendroglia
2.
Annu Rev Cell Dev Biol ; 30: 503-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288117

RESUMO

Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.


Assuntos
Bainha de Mielina/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Axônios/fisiologia , Sistema Nervoso Central/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Citoesqueleto/ultraestrutura , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Glucose/metabolismo , Humanos , Inflamação , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Camundongos , Microscopia Eletrônica , Proteínas da Mielina/fisiologia , Plasticidade Neuronal , Oligodendroglia/fisiologia , Sistema Nervoso Periférico/metabolismo , Células de Schwann/fisiologia , Transmissão Sináptica/fisiologia
3.
J Physiol ; 602(4): 683-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349000

RESUMO

Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.


Assuntos
Hipercapnia , Oxigênio , Humanos , Oxigênio/metabolismo , Dióxido de Carbono , Encéfalo/metabolismo , Hipóxia , Consumo de Oxigênio , Termodinâmica , Glucose/metabolismo , Altitude
4.
Glia ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899762

RESUMO

The neurometabolic disorder succinic semialdehyde dehydrogenase (SSADH) deficiency leads to great neurochemical imbalances and severe neurological manifestations. The cause of the disease is loss of function of the enzyme SSADH, leading to impaired metabolism of the principal inhibitory neurotransmitter GABA. Despite the known identity of the enzymatic deficit, the underlying pathology of SSADH deficiency remains unclear. To uncover new mechanisms of the disease, we performed an untargeted integrative analysis of cerebral protein expression, functional metabolism, and lipid composition in a genetic mouse model of SSADH deficiency (ALDH5A1 knockout mice). Our proteomic analysis revealed a clear regional vulnerability, as protein alterations primarily manifested in the hippocampus and cerebral cortex of the ALDH5A1 knockout mice. These regions displayed aberrant expression of proteins linked to amino acid homeostasis, mitochondria, glial function, and myelination. Stable isotope tracing in acutely isolated brain slices demonstrated an overall maintained oxidative metabolism of glucose, but a selective decrease in astrocyte metabolic activity in the cerebral cortex of ALDH5A1 knockout mice. In contrast, an elevated capacity of oxidative glutamine metabolism was observed in the ALDH5A1 knockout brain, which may serve as a neuronal compensation of impaired astrocyte glutamine provision. In addition to reduced expression of critical oligodendrocyte proteins, a severe depletion of myelin-enriched sphingolipids was found in the brains of ALDH5A1 knockout mice, suggesting degeneration of myelin. Altogether, our study highlights that impaired astrocyte and oligodendrocyte function is intimately linked to SSADH deficiency pathology, suggesting that selective targeting of glial cells may hold therapeutic potential in this disease.

5.
J Neurophysiol ; 131(1): 88-105, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056422

RESUMO

Neural population modeling, including the role of neural attractors, is a promising tool for understanding many aspects of brain function. We propose a modeling framework to connect the abstract variables used in modeling to recent cellular-level estimates of the bioenergetic costs of different aspects of neural activity, measured in ATP consumed per second per neuron. Based on recent work, an empirical reference for brain ATP use for the awake resting brain was estimated as ∼2 × 109 ATP/s-neuron across several mammalian species. The energetics framework was applied to the Wilson-Cowan (WC) model of two interacting populations of neurons, one excitatory (E) and one inhibitory (I). Attractors were considered to exhibit steady-state behavior and limit cycle behavior, both of which end when the excitatory stimulus ends, and sustained activity that persists after the stimulus ends. The energy cost of limit cycles, with oscillations much faster than the average neuronal firing rate of the population, is tracked more closely with the firing rate than the limit cycle frequency. Self-sustained firing driven by recurrent excitation, though, involves higher firing rates and a higher energy cost. As an example of a simple network in which each node is a WC model, a combination of three nodes can serve as a flexible circuit element that turns on with an oscillating output when input passes a threshold and then persists after the input ends (an "on-switch"), with moderate overall ATP use. The proposed framework can serve as a guide for anchoring neural population models to plausible bioenergetics requirements.NEW & NOTEWORTHY This work bridges two approaches for understanding brain function: cellular-level studies of the metabolic energy costs of different aspects of neural activity and neural population modeling, including the role of neural attractors. The proposed modeling framework connects energetic costs, in ATP consumed per second per neuron, to the more abstract variables used in neural population modeling. In particular, this work anchors potential neural attractors to physiologically plausible bioenergetics requirements.


Assuntos
Encéfalo , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/fisiologia , Trifosfato de Adenosina , Modelos Neurológicos , Mamíferos
6.
J Neurochem ; 168(5): 443-449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613180

RESUMO

This Preface introduces the Special Issue entitled, "Energy Substrates and Microbiome Govern Brain Bioenergetics and Cognitive Function with Aging", which is comprised of manuscripts contributed by invited speakers and program/organizing committee members who participated in the 14th International Conference on Brain Energy Metabolism (ICBEM) held on October 24-27, 2022 in Santa Fe, New Mexico, USA. The conference covered the latest developments in research related to neuronal energetics, emerging roles for glycogen in higher brain functions, the impact of dietary intervention on aging, memory, and Alzheimer's disease, roles of the microbiome in gut-brain signaling, astrocyte-neuron interactions related to cognition and memory, novel roles for mitochondria and their metabolites, and metabolic neuroimaging in aging and neurodegeneration. The special issue contains 25 manuscripts on these topics plus three tributes to outstanding scientists who have made important contributions to brain energy metabolism and participated in numerous ICBEM conferences. In addition, two of the manuscripts describe important directions and the rationale for future research in many thematic areas covered by the conference.


Assuntos
Envelhecimento , Encéfalo , Cognição , Metabolismo Energético , Humanos , Metabolismo Energético/fisiologia , Encéfalo/metabolismo , Cognição/fisiologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Microbiota/fisiologia , Congressos como Assunto
7.
Neurobiol Dis ; 194: 106462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442845

RESUMO

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Fenofibrato , Ratos , Animais , Distonia/genética , Distonia/metabolismo , Roedores/metabolismo , Fluordesoxiglucose F18 , PPAR alfa/metabolismo , Distúrbios Distônicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucose
8.
Magn Reson Med ; 91(1): 39-50, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796151

RESUMO

PURPOSE: To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS: A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS: The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION: DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Deutério , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Glucose
9.
J Neurochem ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594756

RESUMO

Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.

10.
Neurobiol Dis ; 182: 106145, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150307

RESUMO

Disrupted brain metabolism is a critical component of several neurodegenerative diseases. Energy metabolism of both neurons and astrocytes is closely connected to neurotransmitter recycling via the glutamate/GABA-glutamine cycle. Neurons and astrocytes hereby work in close metabolic collaboration which is essential to sustain neurotransmission. Elucidating the mechanistic involvement of altered brain metabolism in disease progression has been aided by the advance of techniques to monitor cellular metabolism, in particular by mapping metabolism of substrates containing stable isotopes, a technique known as isotope tracing. Here we review key aspects of isotope tracing including advantages, drawbacks and applications to different cerebral preparations. In addition, we narrate how isotope tracing has facilitated the discovery of central metabolic features in neurodegeneration with a focus on the metabolic cooperation between neurons and astrocytes.


Assuntos
Neuroglia , Neurônios , Neurônios/metabolismo , Astrócitos/metabolismo , Transmissão Sináptica , Isótopos/metabolismo
11.
Magn Reson Med ; 89(1): 29-39, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36063499

RESUMO

PURPOSE: To explore the potential of deuterium metabolic imaging (DMI) in the human brain in vivo at 7 T, using a multi-element deuterium (2 H) RF coil for 3D volume coverage. METHODS: 1 H-MR images and localized 2 H MR spectra were acquired in vivo in the human brain of 3 healthy subjects to generate DMI maps of 2 H-labeled water, glucose, and glutamate/glutamine (Glx). In addition, non-localized 2 H-MR spectra were acquired both in vivo and in vitro to determine T1 and T2 relaxation times of deuterated metabolites at 7 T. The performance of the 2 H coil was assessed through numeric simulations and experimentally acquired B1 + maps. RESULTS: 3D DMI maps covering the entire human brain in vivo were obtained from well-resolved deuterated (2 H) metabolite resonances of water, glucose, and Glx. The T1 and T2 relaxation times were consistent with those reported at adjacent field strengths. Experimental B1 + maps were in good agreement with simulations, indicating efficient and homogeneous B1 + transmission and low RF power deposition for 2 H, consistent with a similar array coil design reported at 9.4 T. CONCLUSION: Here, we have demonstrated the successful implementation of 3D DMI in the human brain in vivo at 7 T. The spatial and temporal nominal resolutions achieved at 7 T (i.e., 2.7 mL in 28 min, respectively) were close to those achieved at 9.4 T and greatly outperformed DMI at lower magnetic fields. DMI at 7 T and beyond has clear potential in applications dealing with small brain lesions.


Assuntos
Encéfalo , Imageamento Tridimensional , Humanos , Deutério , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento Tridimensional/métodos , Glucose/metabolismo , Água , Imageamento por Ressonância Magnética/métodos
12.
NMR Biomed ; 36(11): e4998, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37424110

RESUMO

A new and efficient magnetisation transfer 31 P magnetic resonance fingerprinting (MT-31 P-MRF) approach is introduced to measure the creatine kinase metabolic rate k CK between phosphocreatine (PCr) and adenosine triphosphate (ATP) in human brain. The MRF framework is extended to overcome challenges in conventional 31 P measurement methods in the human brain, enabling reduced acquisition time and specific absorption rate (SAR). To address the challenge of creating and matching large multiparametric dictionaries in an MRF scheme, a nested iteration interpolation method (NIIM) is introduced. As the number of parameters to estimate increases, the size of the dictionary grows exponentially. NIIM can reduce the computational load by breaking dictionary matching into subsolutions of linear computational order. MT-31 P-MRF combined with NIIM provides T 1 PCr , T 1 ATP and k CK estimates in good agreement with those obtained by the exchange kinetics by band inversion transfer (EBIT) method and literature values. Furthermore, the test-retest reproducibility results showed that MT-31 P-MRF achieves a similar or better coefficient of variation (<12%) for T 1 ATP and k CK measurements in 4 min 15 s, than EBIT with 17 min 4 s scan time, enabling a fourfold reduction in scan time. We conclude that MT-31 P-MRF in combination with NIIM is a fast, accurate, and reproducible approach for in vivo k CK assays in the human brain, which enables the potential to investigate energy metabolism in a clinical setting.

13.
J Theor Biol ; 572: 111567, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37393987

RESUMO

The different active roles of neurons and astrocytes during neuronal activation are associated with the metabolic processes necessary to supply the energy needed for their respective tasks at rest and during neuronal activation. Metabolism, in turn, relies on the delivery of metabolites and removal of toxic byproducts through diffusion processes and the cerebral blood flow. A comprehensive mathematical model of brain metabolism should account not only for the biochemical processes and the interaction of neurons and astrocytes, but also the diffusion of metabolites. In the present article, we present a computational methodology based on a multidomain model of the brain tissue and a homogenization argument for the diffusion processes. In our spatially distributed compartment model, communication between compartments occur both through local transport fluxes, as is the case within local astrocyte-neuron complexes, and through diffusion of some substances in some of the compartments. The model assumes that diffusion takes place in the extracellular space (ECS) and in the astrocyte compartment. In the astrocyte compartment, the diffusion across the syncytium network is implemented as a function of gap junction strength. The diffusion process is implemented numerically by means of a finite element method (FEM) based spatial discretization, and robust stiff solvers are used to time integrate the resulting large system. Computed experiments show the effects of ECS tortuosity, gap junction strength and spatial anisotropy in the astrocyte network on the brain energy metabolism.

14.
FASEB J ; 35(2): e21321, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543543

RESUMO

Healthy aging is associated with a decline in cognitive function, and is a major risk factor for many neurodegenerative diseases. Although, there are several evidence that brain mitochondrial function is altered with aging its significance at the cellular level is elusive. In this study, we have investigated mitochondrial TCA cycle and neurotransmitter cycle fluxes associated with glutamatergic, GABAergic neurons and astroglia in the cerebral cortex and hippocampus of young (6 months) and aged (24 months) C57BL6 mice by using 1 H-[13 C]-NMR spectroscopy together with timed infusion of 13 C-labeled glucose and acetate. The ratio VCyc /VTCA was determined from a steady-state [2-13 C]acetate experiment. Metabolic fluxes were obtained by fitting a three-compartment metabolic model to 13 C turnover of amino acids from glucose. Levels of glutamate, aspartate and taurine were reduced in the cerebral cortex, while glutamine and choline were elevated in the hippocampus of aged mice. Interestingly, the rate of acetate oxidation increased in the cerebral cortex, while the flux of mitochondrial TCA cycle of glutamatergic neurons decreased in the cerebral cortex (P < .0001) and hippocampus (P = .025) of aged mice. The glutamate-glutamine neurotransmitter cycle flux was reduced in the cerebral cortex (P < .0001). The GABAergic TCA cycle flux was reduced in the cerebral cortex (P = .0008), while GABA-glutamine neurotransmitter cycling flux was also reduced in the cerebral cortex (P = .011) and hippocampus (P = .042) of aged brain. In conclusion, the reduction in excitatory and inhibitory neurotransmitter activity of glutamatergic and GABAergic neurons in the cerebral cortex and hippocampus correlates qualitatively with declined cognitive function in aged mice.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico/metabolismo , Envelhecimento/fisiologia , Animais , Western Blotting , Metabolismo Energético/fisiologia , Membro Anterior/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Ratos
15.
Neurochem Res ; 47(5): 1429-1441, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35099720

RESUMO

Clonidine is an anti-hypertensive drug that inhibits the release of norepinephrine from pre-synaptic terminals binding to pre-synaptic α2-adrenoreceptors. Some studies suggest that this drug decreases brain energy expenditure, particularly in hypoxic-ischemic injury. However, data about clonidine effects on the functional parameters regulating brain energy metabolism are lacking. In this study, the effects of acute clonidine treatment (5 µg×kg-1 i.p., 30 min) were evaluated on the catalytic activity of regulatory energy-linked enzymes of Krebs' cycle, Electron Transport Chain and glutamate metabolism of temporal cerebral cortex of 3-month-old male Sprague-Dawley rats. Enzyme activities were assayed on non-synaptic "free" mitochondria (FM) of neuronal perikaryon and partly of glial cells, and on intra-synaptic "light" (LM) and "heavy" mitochondria (HM), localized within synaptic terminals. This subcellular analysis differentiates clonidine effects on post-synaptic and pre-synaptic neuronal compartments. The results showed that clonidine increased citrate synthase, cytochrome oxidase and glutamate-oxaloacetate transaminase activities of FM. In LM, citrate synthase activity was decreased, while cytochrome oxidase and glutamate-oxaloacetate transaminase activities were increased; on the contrary, citrate synthase, cytochrome oxidase and glutamate dehydrogenase were all decreased in HM. Therefore, clonidine exerted different effects with respect to brain mitochondria, coherently with the in vivo energy requirements of each synaptic compartment: the drug increased energy-linked enzyme activities in post-synaptic compartment, while the metabolic variations were complex in the pre-synaptic one, being enzyme activities heterogeneously modified in LM and decreased in HM. This study highlights the relationships existing between the clonidine-induced neuroreceptorial effects and the energy metabolism in pre- and post- synaptic bioenergetics.


Assuntos
Clonidina , Metabolismo Energético , Animais , Encéfalo/metabolismo , Clonidina/metabolismo , Clonidina/farmacologia , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Eur J Pediatr ; 181(6): 2227-2235, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35304646

RESUMO

Traditionally, clinicians consider lactate as a waste product of anaerobic glycolysis. Interestingly, research has shown that lactate may serve as an alternative fuel for the brain to protect it against harm. The increasing scientific awareness of the potential beneficial side of lactate, however, is entering the clinic rather slowly. Following this, and realizing that the application of potential novel therapeutic strategies in pediatric populations often lags behind the development in adults, this review summarizes the key data on therapeutic use of intravenous infusion of sodium lactate in humans. PubMed and clinicaltrial.gov were searched up until November 2021 focusing on interventional studies in humans. Thirty-four articles were included in this review, with protocols of lactate infusion in adults with diabetes mellitus, traumatic brain injury, Alzheimer's disease, and cardiac disease. One study on lactate infusion in children was also included. Results of our literature search show that sodium lactate can be safely administrated, without major side effects. Additionally, the present literature clearly shows the potential benefits of therapeutic lactate infusion under certain pathological circumstances, including rather common clinical conditions like traumatic brain injury. CONCLUSION: This review shows that lactate is a save, alternative energy source for the adult brain warranting studies on the potential therapeutic effects of sodium lactate infusion in children. WHAT IS KNOWN: • Lactate is generally considered a waste product of anaerobic glycolysis. However, lactate also is an alternative fuel for different organs, including the brain. • Lactate infusion is not incorporated in standard care for any patient population. WHAT IS NEW: • Thirty-four studies investigated the therapeutic use of intravenous sodium lactate in different patient populations, all with different study protocols. • Literature shows that lactate infusion may have beneficial effects in case of hypoglycemia, traumatic brain injury, and cardiac failure without the risk of major side effects.


Assuntos
Lesões Encefálicas Traumáticas , Hipoglicemia , Adulto , Lesões Encefálicas Traumáticas/tratamento farmacológico , Criança , Humanos , Hipoglicemia/tratamento farmacológico , Ácido Láctico/uso terapêutico , Lactato de Sódio/uso terapêutico , Resíduos
17.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408993

RESUMO

The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.


Assuntos
Sinapses , Transmissão Sináptica , Animais , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Mamíferos , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
18.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613988

RESUMO

According to Alzheimer's Disease International, 55 million people worldwide are living with dementia. Dementia is a disorder that manifests as a set of related symptoms, which usually result from the brain being damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, usually accompanied by emotional problems, difficulties with language, and decreased motivation. The most common variant of dementia is Alzheimer's disease with symptoms dominated by cognitive disorders, particularly memory loss, impaired personality, and judgmental disorders. So far, all attempts to treat dementias by removing their symptoms rather than their causes have failed. Therefore, in the presented narrative review, I will attempt to explain the etiology of dementia and Alzheimer's disease from the perspective of energy and cognitive metabolism dysfunction in an aging brain. I hope that this perspective, though perhaps too simplified, will bring us closer to the essence of aging-related neurodegenerative disorders and will soon allow us to develop new preventive/therapeutic strategies in our struggle with dementia, Alzheimer's disease, and Parkinson's disease.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/complicações , Encéfalo/metabolismo , Transtornos Cognitivos/complicações
19.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293175

RESUMO

Abnormal energy expenditure during seizures and metabolic regulation through post-translational protein acylation suggest acylation as a therapeutic target in epilepsy. Our goal is to characterize an interplay between the brain acylation system components and their changes after seizures. In a rat model of pentylenetetrazole (PTZ)-induced epilepsy, we quantify 43 acylations in 29 cerebral cortex proteins; levels of NAD+; expression of NAD+-dependent deacylases (SIRT2, SIRT3, SIRT5); activities of the acyl-CoA-producing/NAD+-utilizing complexes of 2-oxoacid dehydrogenases. Compared to the control group, acylations of 14 sites in 11 proteins are found to differ significantly after seizures, with six of the proteins involved in glycolysis and energy metabolism. Comparing the single and chronic seizures does not reveal significant differences in the acylations, pyruvate dehydrogenase activity, SIRT2 expression or NAD+. On the contrary, expression of SIRT3, SIRT5 and activity of 2-oxoglutarate dehydrogenase (OGDH) decrease in chronic seizures vs. a single seizure. Negative correlations between the protein succinylation/glutarylation and SIRT5 expression, and positive correlations between the protein acetylation and SIRT2 expression are shown. Our findings unravel involvement of SIRT5 and OGDH in metabolic adaptation to seizures through protein acylation, consistent with the known neuroprotective role of SIRT5 and contribution of OGDH to the Glu/GABA balance perturbed in epilepsy.


Assuntos
Epilepsia , Sirtuína 3 , Animais , Ratos , Sirtuína 3/metabolismo , Pentilenotetrazol , Sirtuína 2/metabolismo , NAD/metabolismo , Acilação , Acil Coenzima A/metabolismo , Convulsões/induzido quimicamente , Epilepsia/induzido quimicamente , Encéfalo/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Cetoácidos , Oxirredutases/metabolismo , Piruvatos , Ácido gama-Aminobutírico/metabolismo
20.
Stress ; 24(1): 87-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510270

RESUMO

Unfortunately, adverse environments in early life are frequently found in most human populations. Early life stress leads to diverse cognitive impairments, some of them related to learning and memory and executive functions such as working memory (WM). We employ an animal model of early stress using repeated maternal separation (MS) for 4 h a day on 21 consecutive days, pre-weaning. In adulthood, we tested their spatial WM using the Morris water maze. MS subjects showed a marked delay in the acquisition of the task. In addition, we explored brain energy oxidative metabolism and found an increase in cytochrome c oxidase (CCO) activity in the cingulate cortex, anterior thalamus, and supramammillary areas, indicating an intense effort to successfully solve the WM task. However, decreased CCO activity was found in the medial-medial mammillary nucleus in MS animals, which would partially explain the delayed acquisition of the WM task. Further studies are needed to explore the long-term alterations produced by early stress. LAY SUMMARY A stressful environment caused by the separation of baby rats from the mother for several hours a day in the first stages of postnatal life can be devastating to brain cells, making them look for alternative sources of energy, among other changes. These alterations in brain functional networks would lead to cognitive impairments such as the delayed acquisition of new learning and strategies.


Assuntos
Memória de Curto Prazo , Estresse Psicológico , Animais , Ratos , Encéfalo , Privação Materna , Aprendizagem em Labirinto , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa