Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Hum Brain Mapp ; 45(9): e26721, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38899549

RESUMO

With the rise of open data, identifiability of individuals based on 3D renderings obtained from routine structural magnetic resonance imaging (MRI) scans of the head has become a growing privacy concern. To protect subject privacy, several algorithms have been developed to de-identify imaging data using blurring, defacing or refacing. Completely removing facial structures provides the best re-identification protection but can significantly impact post-processing steps, like brain morphometry. As an alternative, refacing methods that replace individual facial structures with generic templates have a lower effect on the geometry and intensity distribution of original scans, and are able to provide more consistent post-processing results by the price of higher re-identification risk and computational complexity. In the current study, we propose a novel method for anonymized face generation for defaced 3D T1-weighted scans based on a 3D conditional generative adversarial network. To evaluate the performance of the proposed de-identification tool, a comparative study was conducted between several existing defacing and refacing tools, with two different segmentation algorithms (FAST and Morphobox). The aim was to evaluate (i) impact on brain morphometry reproducibility, (ii) re-identification risk, (iii) balance between (i) and (ii), and (iv) the processing time. The proposed method takes 9 s for face generation and is suitable for recovering consistent post-processing results after defacing.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Masculino , Feminino , Redes Neurais de Computação , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Neuroimagem/normas , Anonimização de Dados , Adulto Jovem , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Algoritmos
2.
Brain Topogr ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662300

RESUMO

Subthalamic deep brain stimulation (STN-DBS) is known to improve motor function in advanced Parkinson's disease (PD) and to enable a reduction of anti-parkinsonian medication. While the levodopa challenge test and disease duration are considered good predictors of STN-DBS outcome, other clinical and neuroanatomical predictors are less established. This study aimed to evaluate, in addition to clinical predictors, the effect of patients' individual brain topography on DBS outcome. The medical records of 35 PD patients were used to analyze DBS outcomes measured with the following scales: Part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) off medication at baseline, and at 6-months during medication off and stimulation on, use of anti-parkinsonian medication (LED), Abnormal Involuntary Movement Scale (AIMS) and Non-Motor Symptoms Questionnaire (NMS-Quest). Furthermore, preoperative brain MRI images were utilized to analyze the brain morphology in relation to STN-DBS outcome. With STN-DBS, a 44% reduction in the UPDRS-III score and a 43% decrease in the LED were observed (p<0.001). Dyskinesia and non-motor symptoms decreased significantly [median reductions of 78,6% (IQR 45,5%) and 18,4% (IQR 32,2%) respectively, p=0.001 - 0.047]. Along with the levodopa challenge test, patients' age correlated with the observed DBS outcome measured as UPDRS-III improvement (ρ= -0.466 - -0.521, p<0.005). Patients with greater LED decline had lower grey matter volumes in left superior medial frontal gyrus, in supplementary motor area and cingulum bilaterally. Additionally, patients with greater UPDRS-III score improvement had lower grey matter volume in similar grey matter areas. These findings remained significant when adjusted for sex, age, baseline LED and UPDRS scores respectively and for total intracranial volume (p=0.0041- 0.001). However, only the LED decrease finding remained significant when the analyses were further controlled for stimulation amplitude. It appears that along with the clinical predictors of STN-DBS outcome, individual patient topographic differences may influence DBS outcome. Clinical Trial Registration Number: NCT06095245, registration date October 23, 2023, retrospectively registered.

3.
Cereb Cortex ; 33(18): 10087-10097, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522299

RESUMO

Pediatric overweight/obesity can lead to sleep-disordered breathing (SDB), abnormal neurological and cognitive development, and psychiatric problems, but the associations and interactions between these factors have not been fully explored. Therefore, we investigated the associations between body mass index (BMI), SDB, psychiatric and cognitive measures, and brain morphometry in 8484 children 9-11 years old using the Adolescent Brain Cognitive Development dataset. BMI was positively associated with SDB, and both were negatively correlated with cortical thickness in lingual gyrus and lateral orbitofrontal cortex, and cortical volumes in postcentral gyrus, precentral gyrus, precuneus, superior parietal lobule, and insula. Mediation analysis showed that SDB partially mediated the effect of overweight/obesity on these brain regions. Dimensional psychopathology (including aggressive behavior and externalizing problem) and cognitive function were correlated with BMI and SDB. SDB and cortical volumes in precentral gyrus and insula mediated the correlations between BMI and externalizing problem and matrix reasoning ability. Comparisons by sex showed that obesity and SDB had a greater impact on brain measures, cognitive function, and mental health in girls than in boys. These findings suggest that preventing childhood obesity will help decrease SDB symptom burden, abnormal neurological and cognitive development, and psychiatric problems.


Assuntos
Obesidade Infantil , Síndromes da Apneia do Sono , Masculino , Feminino , Adolescente , Humanos , Criança , Índice de Massa Corporal , Sobrepeso , Polissonografia/métodos , Síndromes da Apneia do Sono/diagnóstico por imagem , Síndromes da Apneia do Sono/complicações , Encéfalo/diagnóstico por imagem
4.
Am J Drug Alcohol Abuse ; : 1-12, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551365

RESUMO

Background: Individual differences in gray-matter morphometry in the limbic system and frontal cortex have been linked to clinical features of cocaine use disorder (CUD). Self-administration paradigms can provide more direct measurements of the relationship between the regulation of cocaine use and gray-matter morphometry when compared to self-report assessments.Objectives: Our goal was to investigate associations with self-administration behavior in subcortical and cortical brain regions. We hypothesized the number of cocaine infusions self-administered would be correlated with gray-matter volumes (GMVs) in the striatum, amygdala, and hippocampus. Due to scarcity in human studies, we did not hypothesize subcortical directionality. In the frontal cortex, we hypothesized thickness would be negatively correlated with self-administered cocaine.Methods: We conducted an analysis of cocaine self-administration and structural MRI data from 33 (nFemales = 10) individuals with moderate-to-severe CUD. Self-administration lasted 60-minutes and cocaine (8, 16, or 32 mg/70 kg) was delivered on an FR1 schedule (5-minute lockout). Subcortical and cortical regression analyses were performed that included combined bilateral regions and age, experimental variables and use history as confounders.Results: Self-administered cocaine infusions were positively associated with caudal GMV (b = 0.18, p = 0.030) and negatively with putamenal GMV (b = -0.10, p = 0.041). In the cortical model, infusions were positively associated with insular thickness (b = 0.39, p = 0.008) and women appeared to self-administer cocaine more frequently (b = 0.23, p = 0.019).Conclusions: Brain morphometry features in the striatum and insula may contribute to cocaine consumption in CUD. These differences in morphometry may reflect consequences of prolonged use, predisposed vulnerability, or other possibilities.Clinical Trial Numbers: NCT01978431; NCT03471182.

5.
J Neuroradiol ; 51(1): 5-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37116782

RESUMO

Volumetric assessment based on structural MRI is increasingly recognized as an auxiliary tool to visual reading, also in examinations acquired in the clinical routine. However, MRI acquisition parameters can significantly influence these measures, which must be considered when interpreting the results on an individual patient level. This Technical Note shall demonstrate the problem. Using data from a dedicated experiment, we show the influence of two crucial sequence parameters on the GM/WM contrast and their impact on the measured volumes. A simulated contrast derived from acquisition parameters TI/TR may serve as surrogate and is highly correlated (r=0.96) with the measured contrast.


Assuntos
Encéfalo , Esclerose Múltipla , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
6.
Hum Brain Mapp ; 44(3): 970-979, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36250711

RESUMO

Brain morphometry is usually based on non-enhanced (pre-contrast) T1-weighted MRI. However, such dedicated protocols are sometimes missing in clinical examinations. Instead, an image with a contrast agent is often available. Existing tools such as FreeSurfer yield unreliable results when applied to contrast-enhanced (CE) images. Consequently, these acquisitions are excluded from retrospective morphometry studies, which reduces the sample size. We hypothesize that deep learning (DL)-based morphometry methods can extract morphometric measures also from contrast-enhanced MRI. We have extended DL+DiReCT to cope with contrast-enhanced MRI. Training data for our DL-based model were enriched with non-enhanced and CE image pairs from the same session. The segmentations were derived with FreeSurfer from the non-enhanced image and used as ground truth for the coregistered CE image. A longitudinal dataset of patients with multiple sclerosis (MS), comprising relapsing remitting (RRMS) and primary progressive (PPMS) subgroups, was used for the evaluation. Global and regional cortical thickness derived from non-enhanced and CE images were contrasted to results from FreeSurfer. Correlation coefficients of global mean cortical thickness between non-enhanced and CE images were significantly larger with DL+DiReCT (r = 0.92) than with FreeSurfer (r = 0.75). When comparing the longitudinal atrophy rates between the two MS subgroups, the effect sizes between PPMS and RRMS were higher with DL+DiReCT both for non-enhanced (d = -0.304) and CE images (d = -0.169) than for FreeSurfer (non-enhanced d = -0.111, CE d = 0.085). In conclusion, brain morphometry can be derived reliably from contrast-enhanced MRI using DL-based morphometry tools, making additional cases available for analysis and potential future diagnostic morphometry tools.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Esclerose Múltipla Recidivante-Remitente/patologia
7.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570244

RESUMO

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Corpo Estriado/anatomia & histologia , Hipocampo/anatomia & histologia , Desenvolvimento Humano/fisiologia , Neuroimagem , Tálamo/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Tonsila do Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Corpo Estriado/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Tálamo/diagnóstico por imagem , Adulto Jovem
8.
Hum Brain Mapp ; 43(15): 4620-4639, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35708198

RESUMO

Intracranial volume (ICV) is frequently used in volumetric magnetic resonance imaging (MRI) studies, both as a covariate and as a variable of interest. Findings of associations between ICV and age have varied, potentially due to differences in ICV estimation methods. Here, we compared five commonly used ICV estimation methods and their associations with age. T1-weighted cross-sectional MRI data was included for 651 healthy individuals recruited through the NORMENT Centre (mean age = 46.1 years, range = 12.0-85.8 years) and 2410 healthy individuals recruited through the UK Biobank study (UKB, mean age = 63.2 years, range = 47.0-80.3 years), where longitudinal data was also available. ICV was estimated with FreeSurfer (eTIV and sbTIV), SPM12, CAT12, and FSL. We found overall high correlations across ICV estimation method, with the lowest observed correlations between FSL and eTIV (r = .87) and between FSL and CAT12 (r = .89). Widespread proportional bias was found, indicating that the agreement between methods varied as a function of head size. Body weight, age, sex, and mean ICV across methods explained the most variance in the differences between ICV estimation methods, indicating possible confounding for some estimation methods. We found both positive and negative cross-sectional associations with age, depending on dataset and ICV estimation method. Longitudinal ICV reductions were found for all ICV estimation methods, with annual percentage change ranging from -0.293% to -0.416%. This convergence of longitudinal results across ICV estimation methods offers strong evidence for age-related ICV reductions in mid- to late adulthood.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Criança , Estudos Transversais , Humanos , Pessoa de Meia-Idade , Adulto Jovem
9.
Brain Topogr ; 35(5-6): 572-582, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208399

RESUMO

Several approaches have emerged to measure the cortical thickness (CT), which can be broadly divided into surface-based and voxel-based algorithms. We aimed to compare parcel-based CT estimation of the widely used FreeSurfer (FS) software and CAT12 software, which is a widely used voxel-based approach, and evaluate the test-retest (TRT) reliability of both methods. MRI images of 417 healthy individuals were analyzed. TRT reliability was performed on 60 participants. The mean CT of the parcels of the Desikan-Killiany atlas were calculated both in FS and CAT12. Linear mixed model was performed to compare the two methods and the TRT reliability, and paired-sample t-test for post-hoc analyses. Linear regression analyses were utilized to examine the regressions between the two methods and between different sessions with each method. CT values calculated using the two methods were significantly correlated (R2adj = 0.67). The significant interaction effect between the method and the parcels were due to larger CT values of FS in 32 of 68 parcels, whereas CT values of CAT12 were higher in 31 of 68 parcels. The TRT reliabilities of both approaches were excellent (FS R2adj = 0.95, CAT12 R2adj = 0.93). We conclude that both techniques can provide equally valid results for groups comparisons or follow-up studies as long as they are not mixed with each other.


Assuntos
Imageamento por Ressonância Magnética , Software , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Algoritmos , Modelos Lineares
10.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298428

RESUMO

Brain structural morphology varies over the aging trajectory, and the prediction of a person's age using brain morphological features can help the detection of an abnormal aging process. Neuroimaging-based brain age is widely used to quantify an individual's brain health as deviation from a normative brain aging trajectory. Machine learning approaches are expanding the potential for accurate brain age prediction but are challenging due to the great variety of machine learning algorithms. Here, we aimed to compare the performance of the machine learning models used to estimate brain age using brain morphological measures derived from structural magnetic resonance imaging scans. We evaluated 27 machine learning models, applied to three independent datasets from the Human Connectome Project (HCP, n = 1113, age range 22-37), the Cambridge Centre for Ageing and Neuroscience (Cam-CAN, n = 601, age range 18-88), and the Information eXtraction from Images (IXI, n = 567, age range 19-86). Performance was assessed within each sample using cross-validation and an unseen test set. The models achieved mean absolute errors of 2.75-3.12, 7.08-10.50, and 8.04-9.86 years, as well as Pearson's correlation coefficients of 0.11-0.42, 0.64-0.85, and 0.63-0.79 between predicted brain age and chronological age for the HCP, Cam-CAN, and IXI samples, respectively. We found a substantial difference in performance between models trained on the same data type, indicating that the choice of model yields considerable variation in brain-predicted age. Furthermore, in three datasets, regularized linear regression algorithms achieved similar performance to nonlinear and ensemble algorithms. Our results suggest that regularized linear algorithms are as effective as nonlinear and ensemble algorithms for brain age prediction, while significantly reducing computational costs. Our findings can serve as a starting point and quantitative reference for future efforts at improving brain age prediction using machine learning models applied to brain morphometric data.


Assuntos
Conectoma , Aprendizado de Máquina , Humanos , Adulto Jovem , Adulto , Adolescente , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos
11.
J Pak Med Assoc ; 72(10): 2086-2089, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36661003

RESUMO

The aim of this study was to determine whether there is a decrease or an increase in the volume of different regions of the brain by comparing brain morphometry ofpatients diagnosed with Fibromyalgia Syndrome and healthy control subjects. The study included 23 female patients who were diagnosed with fibromyalgia, and 18 females, age-matched healthy subjects. Structural Mitral Regurgitation data was processed using Surface-Based Morphometry (SBM) on the Freesurfer 6.0 programme (http://surfer.nmr.mgh.harvard.edu). As a result of the surface-based analyses, a statistically significant reduction was determined in the Fibromyalgia Syndrome patient group in some brain region. A statistically signficant increase was determined in the FMS patient group with respect to the left anterior occipital sulcus volume, left inferior temporal gyrus thickness and left anterior occipital sulcus area. The results of this study showed that FMS affected brain morphometry through the brain central pain mechanisms and the normal brain morphology was changed because of atrophy in some areas and hypertrophy in some areas.


Assuntos
Fibromialgia , Humanos , Feminino , Fibromialgia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
12.
Neuroimage ; 224: 117373, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949709

RESUMO

Most neuroanatomical studies are based on T1-weighted MR images, whose intensity profiles are not solely determined by the tissue's longitudinal relaxation times (T1), but also affected by varying non-T1 contributions, hampering data reproducibility. In contrast, quantitative imaging using the MP2RAGE sequence, for example, allows direct characterization of the brain based on the tissue property of interest. Combined with 7 Tesla (7T) MRI, this offers unique opportunities to obtain robust high-resolution brain data characterized by a high reproducibility, sensitivity and specificity. However, specific MP2RAGE parameter choices - e.g., to emphasize intracortical myelin-dependent contrast variations - can substantially impact image quality and cortical analyses through remnants of B1+-related intensity variations, as illustrated in our previous work. To follow up on this: we (1) validate this protocol effect using a dataset acquired with a particularly B1+ insensitive set of MP2RAGE parameters combined with parallel transmission excitation; and (2) extend our analyses to evaluate the effects on hippocampal morphometry. The latter remained unexplored initially, but can provide important insights related to generalizability and reproducibility of neurodegenerative research using 7T MRI. We confirm that B1+ inhomogeneities have a considerably variable effect on cortical T1 estimates, as well as on hippocampal morphometry depending on the MP2RAGE setup. While T1 differed substantially across datasets initially, we show the inter-site T1 comparability improves after correcting for the spatially varying B1+ field using a separately acquired Sa2RAGE B1+ map. Finally, removal of B1+ residuals affects hippocampal volumetry and boundary definitions, particularly near structures characterized by strong intensity changes (e.g. cerebral spinal fluid). Taken together, we show that the choice of MP2RAGE parameters can impact T1 comparability across sites and present evidence that hippocampal segmentation results are modulated by B1+ inhomogeneities. This calls for careful (1) consideration of sequence parameters when setting acquisition protocols, as well as (2) acquisition of a B1+ map to correct MP2RAGE data for potential B1+ variations to allow comparison across datasets.


Assuntos
Encéfalo/fisiologia , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Hum Brain Mapp ; 42(6): 1879-1887, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33400306

RESUMO

Real-time fMRI guided neurofeedback training has gained increasing interest as a noninvasive brain regulation technique with the potential to modulate functional brain alterations in therapeutic contexts. Individual variations in learning success and treatment response have been observed, yet the neural substrates underlying the learning of self-regulation remain unclear. Against this background, we explored potential brain structural predictors for learning success with pooled data from three real-time fMRI data sets. Our analysis revealed that gray matter volume of the right putamen could predict neurofeedback learning success across the three data sets (n = 66 in total). Importantly, the original studies employed different neurofeedback paradigms during which different brain regions were trained pointing to a general association with learning success independent of specific aspects of the experimental design. Given the role of the putamen in associative learning this finding may reflect an important role of instrumental learning processes and brain structural variations in associated brain regions for successful acquisition of fMRI neurofeedback-guided self-regulation.


Assuntos
Conectoma , Aprendizagem/fisiologia , Rede Nervosa/fisiologia , Neurorretroalimentação/fisiologia , Putamen/anatomia & histologia , Putamen/fisiologia , Autocontrole , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Conjuntos de Dados como Assunto , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Putamen/diagnóstico por imagem , Adulto Jovem
14.
Hum Brain Mapp ; 42(11): 3470-3480, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33939221

RESUMO

Working memory is a basic human cognitive function. However, the genetic signatures and their biological pathway remain poorly understood. In the present study, we tried to clarify this issue by exploring the potential associations and pathways among genetic variants, brain morphometry and working memory performance. We first carried out association analyses between 2-back accuracy and 212 image-derived phenotypes from 1141 Human Connectome Project (HCP) subjects using a linear mixed model (LMM). We found a significantly positive correlation between the left cuneus volume and 2-back accuracy (T = 3.615, p = 3.150e-4, Cohen's d = 0.226, corrected using family-wise error [FWE] method). Based on the LMM-based genome-wide association study (GWAS) on the HCP dataset and UK Biobank 33 k GWAS summary statistics, we identified eight independent single nucleotide polymorphisms (SNPs) that were reliably associated with left cuneus volume in both UKB and HCP dataset. Within the eight SNPs, we found a negative correlation between the rs76119478 polymorphism and 2-back accuracy accuracy (T = -2.045, p = .041, Cohen's d = -0.129). Finally, an LMM-based mediation analysis elucidated a significant effect of left cuneus volume in mediating rs76119478 polymorphism on the 2-back accuracy (indirect effect = -0.007, 95% BCa CI = [-0.045, -0.003]). These results were also replicated in a subgroup of Caucasians in the HCP population. Further fine mapping demonstrated that rs76119478 maps on intergene CTD-2315A10.2 adjacent to protein-encoding gene DAAM1, and is significantly associated with L3HYPDH mRNA expression. Our study suggested this new variant rs76119478 may regulate the working memory through exerting influence on the left cuneus volume.


Assuntos
Estudo de Associação Genômica Ampla , Memória de Curto Prazo/fisiologia , Lobo Occipital/anatomia & histologia , Adulto , Conjuntos de Dados como Assunto , Feminino , Regulação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único , Adulto Jovem
15.
Cereb Cortex ; 30(4): 2057-2069, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31711132

RESUMO

Maternal nutrition is an important factor for infant neurodevelopment. However, prior magnetic resonance imaging (MRI) studies on maternal nutrients and infant brain have focused mostly on preterm infants or on few specific nutrients and few specific brain regions. We present a first study in term-born infants, comprehensively correlating 73 maternal nutrients with infant brain morphometry at the regional (61 regions) and voxel (over 300 000 voxel) levels. Both maternal nutrition intake diaries and infant MRI were collected at 1 month of life (0.9 ± 0.5 months) for 92 term-born infants (among them, 54 infants were purely breastfed and 19 were breastfed most of the time). Intake of nutrients was assessed via standardized food frequency questionnaire. No nutrient was significantly correlated with any of the volumes of the 61 autosegmented brain regions. However, increased volumes within subregions of the frontal cortex and corpus callosum at the voxel level were positively correlated with maternal intake of omega-3 fatty acids, retinol (vitamin A) and vitamin B12, both with and without correction for postmenstrual age and sex (P < 0.05, q < 0.05 after false discovery rate correction). Omega-3 fatty acids remained significantly correlated with infant brain volumes after subsetting to the 54 infants who were exclusively breastfed, but retinol and vitamin B12 did not. This provides an impetus for future larger studies to better characterize the effect size of dietary variation and correlation with neurodevelopmental outcomes, which can lead to improved nutritional guidance during pregnancy and lactation.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Aleitamento Materno/tendências , Desenvolvimento Infantil/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Adulto , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Tamanho do Órgão/fisiologia , Gravidez , Estudos Prospectivos
16.
Somatosens Mot Res ; 38(4): 277-286, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34472386

RESUMO

PURPOSE: Recent studies have revealed structural changes after motor rehabilitation, but its morphological changes related to upper limb motor behaviours have not been studied exhaustively. Therefore, we aimed to map the grey matter (GM) changes associated with motor rehabilitation after stroke using voxel-based morphometry (VBM), deformation-based morphometry (DBM), and surface-based morphometry (SBM). METHODS: Forty-one patients with chronic stroke received twelve sessions of low-frequency repetitive transcranial magnetic stimulation plus intensive occupational therapy. MRI data were obtained before and after the intervention. Fugl-Meyer Assessment and Wolf Motor Function Test-Functional Ability Scale were assessed at the two-time points. We performed VBM, DBM, and SBM analyses using T1-weighted images. A correlation analysis was performed between cortical thickness in motor areas and clinical outcomes. RESULTS: Clinical outcomes significantly improved after the intervention. VBM showed significant GM volume changes in ipsilesional and contralesional primary motor regions. DBM results demonstrated GM changes contralesionally and ipsilesionally after the intervention. SBM results showed significant cortical thickness changes in posterior visuomotor coordination, precentral, postcentral gyri of the ipsilesional hemisphere and contralesional visuomotor area after the intervention. A combination of threshold p < .05, False Discovery Rate and p < .001 (uncorrected) were considered significant. In addition, cortical thickness changes of the ipsilesional motor areas were significantly correlated with the clinical outcome changes. CONCLUSIONS: We found GM structural changes in areas involved in motor, visuomotor and somatosensory functions after the intervention. Furthermore, our findings suggest that structural plasticity changes in chronic stroke could occur in the ipsilesional and contralesional hemispheres after motor rehabilitation.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Humanos , Recuperação de Função Fisiológica , Estimulação Magnética Transcraniana
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(2): 300-305, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33829706

RESUMO

OBJECTIVE: A predictive model of Alzheimer's disease (AD) was established based on brain surface meshes and geometric deep learning, and its performance was evaluated. METHODS: Seventy-six clinically diagnosed AD patients and 83 healthy older adults were enrolled and randomly assigned to the training set and the test set according to a 4-to-1 ratio. Brain surface mesh was constructed from 3-D T1-weighted high-resolution structural MR volumes of each participant. After applying a series of simplification to the surface meshes, the training set was fed into the geometric deep neural network for training. The performance of the prediction model was evaluated with the test set, and the evaluation metrics included accuracy, sensitivity and specificity. RESULTS: The prediction model trained on the right brain surface meshes with 6 000 faces achieved the best performance, with accuracy reaching 93.8%, sensitivity, 91.7%, and specificity, 94.1%. The evolution of the brain surface meshes during convolution and pooling revealed that AD patients had diffuse brain tissue loss compared with healthy older adults. CONCLUSION: Morphological brain analysis based on mesh data and geometric deep learning has great potential in the differential diagnosis of AD.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Idoso , Doença de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
18.
Neuroimage ; 207: 116343, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31734431

RESUMO

A voxel-based method for measuring sulcal width was developed, validated and applied to a database. This method (EDT-based LM) employs the 3D Euclidean Distance Transform (EDT) of the pial surface and a Local Maxima labeling algorithm. A computational phantom was designed to test method performance; results revealed the method's inaccuracy δ, to range between 0.1 and 0.5 voxels, for a width that varied between 1 and 7 voxels. Two morphological descriptors were computed to characterize each defined sulcus: mean sulcal width (MSW) and mean absolute deviation (MAD). The former is the average width for all available width measurements within the sulcus, and the latter is the deviation of these measurements. The EDT-based LM method was applied to the Minimal Interval Resonance Imaging in the Alzheimer's Disease (MIRIAD) database, for a set of high-resolution Magnetic Resonance (MR) images of 66 subjects: 43 patients with Alzheimer Disease (AD) and 23 control subjects. AD causes significant gray matter loss; hence, some sulci were expected to broaden. Methodological results concurred with this hypothesis. After a Wilcoxon test, MSW was grater in the case of all sulci pertaining to AD patients, (p < 0.05, FDR corrected), whereas MAD showed significant differences in 8 sulci (p < 0.05, FDR corrected). This work presents a novel voxel-based method for measuring sulcal width and extracting descriptors to characterize and compare the sulci within and across subjects.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Processamento de Imagem Assistida por Computador , Algoritmos , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino
19.
Neuroimage ; 218: 116921, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32438051

RESUMO

Nearly everyone has the ability for creative thought. Yet, certain individuals create works that propel their fields, challenge paradigms, and advance the world. What are the neurobiological factors that might underlie such prominent creative achievement? In this study, we focus on morphometric differences in brain structure between high creative achievers from diverse fields of expertise and a 'smart' comparison group of age-, intelligence-, and education-matched average creative achievers. Participants underwent a high-resolution structural brain imaging scan and completed a series of intelligence, creative thinking, personality, and creative achievement measures. We examined whether high and average creative achievers could be distinguished based on the relationship between morphometric brain measures (cortical area and thickness) and behavioral measures. Although participants' performance on the behavioral measures did not differ between the two groups aside from creative achievement, the relationship between posterior parietal cortex morphometry and creativity, intelligence, and personality measures depended on group membership. These results suggest that extraordinary creativity may be associated with measurable structural brain differences, especially within parietal cortex.


Assuntos
Encéfalo/anatomia & histologia , Criatividade , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
20.
Hum Brain Mapp ; 41(17): 4804-4814, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786059

RESUMO

Accurate and reliable measures of cortical thickness from magnetic resonance imaging are an important biomarker to study neurodegenerative and neurological disorders. Diffeomorphic registration-based cortical thickness (DiReCT) is a known technique to derive such measures from non-surface-based volumetric tissue maps. ANTs provides an open-source method for estimating cortical thickness, derived by applying DiReCT to an atlas-based segmentation. In this paper, we propose DL+DiReCT, a method using high-quality deep learning-based neuroanatomy segmentations followed by DiReCT, yielding accurate and reliable cortical thickness measures in a short time. We evaluate the methods on two independent datasets and compare the results against surface-based measures from FreeSurfer. Good correlation of DL+DiReCT with FreeSurfer was observed (r = .887) for global mean cortical thickness compared to ANTs versus FreeSurfer (r = .608). Experiments suggest that both DiReCT-based methods had higher sensitivity to changes in cortical thickness than Freesurfer. However, while ANTs showed low scan-rescan robustness, DL+DiReCT showed similar robustness to Freesurfer. Effect-sizes for group-wise differences of healthy controls compared to individuals with dementia were highest with the deep learning-based segmentation. DL+DiReCT is a promising combination of a deep learning-based method with a traditional registration technique to detect subtle changes in cortical thickness.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Idoso , Conjuntos de Dados como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa