Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.016
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923138

RESUMO

Analysis of salinity tolerance processes in wheat has focused on salt exclusion from shoots while root phenotypes have received limited attention. Here, we consider the varying phenotypic response of four bread wheat varieties that differ in their type and degree of salt tolerance and assess their molecular responses to salinity and changes in root cell wall lignification. These varieties were Westonia introgressed with Nax1 and Nax2 root sodium transporters (HKT1;4-A and HKT1;5-A) that reduce Na+ accumulation in leaves, as well as the 'tissue tolerant' Portuguese landrace Mocho de Espiga Branca that has a mutation in the homologous gene HKT1;5-D and has high Na+ concentration in leaves. These three varieties were compared with the relatively more salt-sensitive cultivar Gladius. Through the use of root histochemical analysis, ion concentrations, as well as differential proteomics and targeted metabolomics, we provide an integrated view of the wheat root response to salinity. We show different metabolic re-arrangements in energy conversion, primary metabolic machinery and phenylpropanoid pathway leading to monolignol production in a genotype and genotype by treatment-dependent manner that alters the extent and localisation of root lignification which correlated with an improved capacity of wheat roots to cope better under salinity stress.

2.
Plant J ; 116(5): 1385-1400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713270

RESUMO

Bread wheat, one of the keystone crops for global food security, is challenged by climate change and resource shortage. The root system plays a vital role in water and nutrient absorption, making it essential for meeting the growing global demand. Here, using an association-mapping population composed of 406 accessions, we identified QTrl.Rs-5B modulating seminal root development with a genome-wide association study and validated its genetic effects with two F5 segregation populations. Transcriptome-wide association study prioritized TaFMO1-5B, a gene encoding the flavin-containing monooxygenases, as the causal gene for QTrl.Rs-5B, whose expression levels correlate negatively with the phenotyping variations among our population. The lines silenced for TaFMO1-5B consistently showed significantly larger seminal roots in different genetic backgrounds. Additionally, the agriculture traits measured in multiple environments showed that QTrl.Rs-5B also affects yield component traits and plant architecture-related traits, and its favorable haplotype modulates these traits toward that of modern cultivars, suggesting the application potential of QTrl.Rs-5B for wheat breeding. Consistently, the frequency of the favorable haplotype of QTrl.Rs-5B increased with habitat expansion and breeding improvement of bread wheat. In conclusion, our findings identified and demonstrated the effects of QTrl.Rs-5B on seminal root development and illustrated that it is a valuable genetic locus for wheat root improvement.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Triticum/genética , Transcriptoma/genética , Pão , Melhoramento Vegetal , Fenótipo , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética
3.
New Phytol ; 241(1): 180-196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691304

RESUMO

Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.


Assuntos
Infertilidade , Triticum , Triticum/genética , Pão , Temperatura Alta , Melhoramento Vegetal , Alelos , Cromossomos , Infertilidade/genética
4.
Mol Biol Rep ; 51(1): 706, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824203

RESUMO

BACKGROUND: Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS: Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS: This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Microinjeções , Mutação , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Microinjeções/métodos , Mutação/genética , Pólen/genética
5.
Appl Microbiol Biotechnol ; 108(1): 175, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38276993

RESUMO

Honeybee (Apis mellifera) is an important agricultural pollinator and a model for sociality. In this study, a deep knowledge on yeast community characterizing the honeybees' environmental was carried out. For this, a total of 93 samples were collected: flowers as food sources, bee gut mycobiota, and bee products (bee pollen, bee bread, propolis), and processed using culture-dependent techniques and a molecular approach for identification. The occurrence of yeast populations was quantitatively similar among flowers, bee gut mycobiota, and bee products. Overall, 27 genera and 51 species were identified. Basidiomycetes genera were predominant in the flowers while the yeast genera detected in all environments were Aureobasidium, Filobasidium, Meyerozyma, and Metschnikowia. Fermenting species belonging to the genera Debaryomyces, Saccharomyces, Starmerella, Pichia, and Lachancea occurred mainly in the gut, while most of the identified species of bee products were not found in the gut mycobiota. Five yeast species, Meyerozyma guilliermondii, Debaryomyces hansenii, Hanseniaspora uvarum, Hanseniaspora guilliermondii, and Starmerella roseus, were present in both summer and winter, thus indicating them as stable components of bee mycobiota. These findings can help understand the yeast community as a component of the bee gut microbiota and its relationship with related environments, since mycobiota characterization was still less unexplored. In addition, the gut microbiota, affecting the nutrition, endocrine signaling, immune function, and pathogen resistance of honeybees, represents a useful tool for its health evaluation and could be a possible source of functional yeasts. KEY POINTS: • The stable yeast populations are represented by M. guilliermondii, D. hansenii, H. uvarum, H. guilliermondii, and S. roseus. • A. pullulans was the most abondance yeast detective in the flowers and honeybee guts. • Aureobasidium, Meyerozyma, Pichia, and Hanseniaspora are the main genera resident in gut tract.


Assuntos
Ascomicetos , Microbioma Gastrointestinal , Abelhas , Animais , Leveduras/genética , Pichia , Flores
6.
BMC Public Health ; 24(1): 1538, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849795

RESUMO

Bread is one of the most consumed foods all over the world. Several contaminants are identified in bread. Polycyclic aromatic hydrocarbons (PAHs) is one of these contaminants. This systematic study evaluates the amount of four carcinogenic PAHs (PAH4) in various types of breads. To conduct this study, a comprehensive search was carried out using keywords of polycyclic aromatic hydrocarbons, PAHs, PAH4, and bread, with no time limitations. 17 articles were selected and fully evaluated. The observed range of PAH4 concentrations in bread varied from non-detected (ND) to 20.66 µg/kg. In the sample preparation process for analysis, an ultrasonic bath was predominantly utilized. Most chromatographic methods are able to measure PAHs in food, but the GC-MS method has been used more. To mitigate PAH levels in bread, it is suggested to incorporate antioxidants during the bread-making process. Furthermore, the type of bread, the type of fuel used to bake the bread, the temperature and the cooking time were some of the factors affecting the amount of PAH. Restricting these factors could significantly reduce PAH content. Regarding the risk assessment conducted in the manuscript, it was determined that industrial breads are usually considered safe. However, some traditional breads may pose risks in terms of their potential PAH content.


Assuntos
Pão , Carcinógenos , Contaminação de Alimentos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pão/análise , Carcinógenos/análise , Contaminação de Alimentos/análise , Humanos , Medição de Risco , Culinária/métodos
7.
Chem Biodivers ; 21(3): e202301497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38303545

RESUMO

Bee bread, a valuable bee product that has recently attracted significant public interest as a nutritional supplement. The aim of this study was to evaluate the presence of phenolic compounds in bee bread samples from the Aegean Region and assess their bioaccessibility using a simulated human digestion model. Various extraction techniques, such as maceration, ultrasound-assisted extraction, and supercritical fluid extraction were employed to obtain extracts of bee bread. The antioxidant capabilities of these extracts were carried out using assays like DPPH⋅, ABTS⋅+ , CUPRAC, and ß-carotene linoleic acid bleaching, and their effectiveness was quantified through IC50 values. The bioaccessibility of phenolic compounds was analysed by using LC-HRMS in a simulated human digestive system using ethanol extracts obtained from bee bread samples of each season by ultrasound-assisted extraction, which has the highest antioxidant activity. In the Aegean bee bread, a total of 25 phenolic compounds which were major phenolics including quercetin, ascorbic acid, isorhamnetin, kaempferol, and hyperoside were identified and quantified. Also, ascorbic acid was the one of the most bioaccessible compounds with the bioaccessibility index 35.38 % for 2021, 16.79 % for 2022. These findings underscore the substantial transformation of the phenolic profile of bee bread as it traverses the human digestive system.


Assuntos
Própole , Humanos , Abelhas , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Fenóis/análise , Ácido Ascórbico , Sistema Digestório/química
8.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203838

RESUMO

Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.


Assuntos
Bacillus , Própole , Abelhas , Polônia , Bacillus/genética , Bacillus subtilis , Pólen/genética
9.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396706

RESUMO

NAC transcription factors (TFs) are one of the largest TF families in plants, and TaNACs have been known to participate in the regulation of the transcription of many yield-regulating genes in bread wheat. The TaCKX gene family members (GFMs) have already been shown to regulate yield-related traits, including grain mass and number, leaf senescence, and root growth. The genes encode cytokinin (CK) degrading enzymes (CKXs) and are specifically expressed in different parts of developing wheat plants. The aim of the study was to identify and characterize TaNACs involved in the cis-regulation of TaCKX GFMs. After analysis of the initial transcription factor data in 1.5 Kb cis-regulatory sequences of a total of 35 homologues of TaCKX GFMs, we selected five of them, namely TaCKX1-3A, TaCKX22.1-3B, TaCKX5-3D, TaCKX9-1B, and TaCKX10, and identified five TaNAC genes: TaNACJ-1, TaNAC13a, TaNAC94, TaNACBr-1, and TaNAC6D, which are potentially involved in the cis-regulation of selected TaCKX genes, respectively. Protein feature analysis revealed that all of the selected TaNACs have a conserved NAC domain and showed a stable tertiary structure model. The expression profile of the selected TaNACs was studied in 5 day-old seedling roots, 5-6 cm inflorescences, 0, 4, 7, and 14 days-after-pollination (DAP) spikes, and the accompanying flag leaves. The expression pattern showed that all of the selected TaNACs were preferentially expressed in seedling roots, 7 and 14 DAP spikes, and flag leaves compared to 5-6 cm inflorescence and 0 and 4 DAP spikes and flag leaves in Kontesa and Ostka spring wheat cultivars (cvs.). In conclusion, the results of this study highlight the potential role of the selected TaNACs in the regulation of grain productivity, leaf senescence, root growth, and response to various stresses.


Assuntos
Propiofenonas , Fatores de Transcrição , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Família Multigênica , Fenótipo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338970

RESUMO

The obligate biotrophic fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) is the causal agent of wheat powdery mildew disease. The TOPLESS-related 1 (TPR1) corepressor regulates plant immunity, but its role in regulating wheat resistance against powdery mildew remains to be disclosed. Herein, TaTPR1 was identified as a positive regulator of wheat post-penetration resistance against powdery mildew disease. The transient overexpression of TaTPR1.1 or TaTPR1.2 confers wheat post-penetration resistance powdery mildew, while the silencing of TaTPR1.1 and TaTPR1.2 results in an enhanced wheat susceptibility to B.g. tritici. Furthermore, Defense no Death 1 (TaDND1) and Defense no Death 2 (TaDND2) were identified as wheat susceptibility (S) genes facilitating a B.g. tritici infection. The overexpression of TaDND1 and TaDND2 leads to an enhanced wheat susceptibility to B.g. tritici, while the silencing of wheat TaDND1 and TaDND2 leads to a compromised susceptibility to powdery mildew. In addition, we demonstrated that the expression of TaDND1 and TaDND2 is negatively regulated by the wheat transcriptional corepressor TaTPR1. Collectively, these results implicate that TaTPR1 positively regulates wheat post-penetration resistance against powdery mildew probably via suppressing the S genes TaDND1 and TaDND2.


Assuntos
Ascomicetos , Triticum , Triticum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ascomicetos/genética , Erysiphe , Doenças das Plantas/microbiologia , Resistência à Doença/genética
11.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673857

RESUMO

Honey bees are commonly used to study metabolic processes, yet the molecular mechanisms underlying nutrient transformation, particularly proteins and their effects on development, health, and diseases, still evoke varying opinions among researchers. To address this gap, we investigated the digestibility and transformation of water-soluble proteins from four artificial diets in long-lived honey bee populations (Apis mellifera ligustica), alongside their impact on metabolism and DWV relative expression ratio, using transcriptomic and protein quantification methods. Diet 2, characterized by its high protein content and digestibility, was selected for further analysis from the other studied diets. Subsequently, machine learning was employed to identify six diet-related molecular markers: SOD1, Trxr1, defensin2, JHAMT, TOR1, and vg. The expression levels of these markers were found to resemble those of honey bees who were fed with Diet 2 and bee bread, renowned as the best natural food. Notably, honey bees exhibiting chalkbrood symptoms (Control-N) responded differently to the diet, underscoring the unique nutritional effects on health-deficient bees. Additionally, we proposed a molecular model to elucidate the transition of long-lived honey bees from diapause to development, induced by nutrition. These findings carry implications for nutritional research and beekeeping, underscoring the vital role of honey bees in agriculture.


Assuntos
Dieta , Abelhas/genética , Abelhas/metabolismo , Animais , Dieta/veterinária , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ração Animal/análise , Biomarcadores , Transcriptoma , Regulação da Expressão Gênica/efeitos dos fármacos
12.
Molecules ; 29(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398654

RESUMO

Bread is a basic element of the human diet. To counteract the process of its going stale, semi-finished bakery products are subjected to cooling or freezing. This process is called postponed baking. The aim of this work was to investigate the effect of the molar mass of rye arabinoxylans (AXs) on the properties of wheat breads baked using the postponed baking method. Breads were produced using the postponed baking method from wheat flour without and with 1 or 2% share of rye AXs clearly differing in molar masses-non-modified or modified AXs by means of partial hydrolysis and cross-linking. The molar mass of non-modified AXs was 413,800 g/mol, that of AXs after partial hydrolysis was 192,320 g/mol, and that of AXs after cross-linking was 535,630 g/mol. The findings showed that the addition of all AX preparations significantly increased the water absorption of the baking mixture, and the increase was proportional to the molar mass of AXs used as well as the share of AX preparation. Moreover, for the first time, it was shown that 1% share of partly hydrolyzed AXs, of a low molar mass, in the baking mixture had the highest effect on increasing the volume of bread and reducing the hardness of the bread crumb of bread baked using postponed baking method. It was also shown that the AXs had a low and inconclusive effect on the baking loss and moisture content of the bread crumb.


Assuntos
Pão , Triticum , Humanos , Farinha , Xilanos
13.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398615

RESUMO

Wheat-dependent, exercise-induced anaphylaxis has no fundamental cure and requires patients to refrain from wheat consumption or to rest after eating. Although hypoallergenic wheat production by enzymatic degradation or thioredoxin treatment has been investigated, challenges still exist in terms of labor and efficacy. We investigated a hypoallergenic wheat product manufacturing technology that takes advantage of the property of tannins to bind tightly to proteins. Commercially available bread wheat (BW) and hypoallergenic wheat (1BS-18 "Minaminokaori", 1BS-18M) were used. Chestnut inner skin (CIS) was selected as a tannin material based on the screening of breads with added unused parts of persimmon and chestnut. Hypoallergenicity was evaluated using Western blotting. The effect of CIS addition on the antioxidative properties of bread was also measured. For both BW and 1BS-18M, CIS addition reduced the immunoreactivity of wheat allergens. Antioxidant activities increased with increasing CIS substitution. However, 10% CIS-substituted breads were substantially less puffy. Five percent CIS substitution was optimal for achieving low allergenicity, while maintaining bread quality. The strategy investigated herein can reduce allergies related to wheat bread consumption. In this study, the evaluation of hypoallergenicity was limited to instrumental analysis. In the future, we will evaluate hypoallergenicity through clinical trials in humans.


Assuntos
Antioxidantes , Pão , Humanos , Alérgenos , Farinha
14.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338455

RESUMO

The house cricket (Acheta domesticus L.) is one of four edible insect species introduced to the EU market as a novel food and alternative protein source. Innovative products, such as cricket flour, are increasingly appearing on supermarket shelves and can offer an alternative to traditional cereals, while providing the body with many valuable nutrients of comparable quality to those found in meat and fish. The aim of this study was to investigate the possibility of using cricket powder as a substitute for wheat flour in the production of bread. The physicochemical properties of cricket powder were evaluated in comparison to wheat flour. As a result of technological studies, bread compositions with 5%, 10% and 15% replacements of wheat flour by cricket powder were designed and their quality characteristics (physicochemical, sensory and microbiological) were evaluated. Cricket powder was characterised by a higher protein (63% vs. 13.5%) and fat (16.3% vs. 1.16%) content and a lower carbohydrate (9.8% vs. 66%) and fibre (7.8% vs. 9.5%) content as compared to wheat flour. The tested preparations had a similar pH (6.9 and 6.8, respectively, for cricket powder and flour) and fat absorption capacity (0.14 vs. 0.27 g oil/g powder, respectively, for cricket powder and flour) but different water holding capacities and completely different colour parameters. All breads had good microbiological quality after baking and during 7 days of storage. In instrumental tests, the 10 and 15% replacements of wheat flour by cricket powder affected the darker colour of the breads and caused a significant increase in the hardness of the breads. The research has shown that the optimal level of replacement, which does not significantly affect the physiochemical and sensory characteristics, is 5% cricket powder in the bread recipe. Considering the results obtained and the fact that insects provide a sufficient supply of energy and protein in the human diet, are a source of fibre, vitamins and micronutrients, and have a high content of monounsaturated and polyunsaturated fatty acids, the suitability of cricket powder for protein enrichment of bakery products is confirmed.


Assuntos
Críquete , Gryllidae , Animais , Humanos , Pão , Triticum/química , Pós , Farinha
15.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675714

RESUMO

Xylanase is an essential component used to hydrolyze the xylan in wheat flour to enhance the quality of bread. Presently, cold-activated xylanase is popularly utilized to aid in the development of dough. In this study, ancestral sequence reconstruction and molecular docking of xylanase and wheat xylan were used to enhance the activity and stability of a thermophilic xylanase. The results indicated that the ancestral enzyme TmxN3 exhibited significantly improved activity and thermal stability. The Vmax increased by 2.7 times, and the catalytic efficiency (Kcat/Km) increased by 1.7 times in comparison to TmxB. After being incubated at 100 °C for 120 min, it still retained 87.3% of its activity, and the half-life in 100 °C was 330 min, while the wild type xylanase was only 55 min. This resulted in an improved shelf life of bread, while adding TmxN3 considerably enhanced its quality with excellent volume and reduced hardness, chewiness, and gumminess. The results showed that the hardness was reduced by 55.2%, the chewiness was reduced by 40.11%, and the gumminess was reduced by 53.52%. To facilitate its industrial application, we further optimized the production conditions in a 5L bioreactor, and the xylanase activity reached 1.52 × 106 U/mL culture.


Assuntos
Pão , Endo-1,4-beta-Xilanases , Estabilidade Enzimática , Farinha , Simulação de Acoplamento Molecular , Triticum , Pão/análise , Farinha/análise , Triticum/química , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo
16.
J Sci Food Agric ; 104(10): 6149-6156, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445560

RESUMO

BACKGROUND: Whole wheat steamed bread has been recommended for its potential nutritional benefits to human health. Given the positive role of both organic acid and alkali in improving dough development and product quality, the present study investigated the effects of neutralization by addition of alkali (Na2CO3) after dough acidification with traditional Jiaozi starter on the properties of whole wheat dough. RESULTS: The population of yeast and lactic acid bacteria and the acidification level of the dough increased significantly after fermentation with Jiaozi. Incorporation of alkali greatly improved the leavening capacity of the remixed dough and the quality of steamed bread. Jiaozi fermentation and alkali addition changed the water distribution patterns (T2) and affected the secondary structures of gluten protein, starch crystallinity and pasting properties. The storage modulus (G') of the dough increased significantly with the alkali addition, which could be attributed to the promoted cross-linking of the gluten structure and the altered hydration state of the macromolecules. CONCLUSION: The results of the present study indicate that a combination of Jiaozi fermentation and alkali addition could improve the technological properties of whole wheat dough and the quality of steamed bread. The results will help us to further explore the potential application of moderate acidification and alkali addition in the production of leavened whole wheat products. © 2024 Society of Chemical Industry.


Assuntos
Pão , Fermentação , Farinha , Glutens , Triticum , Triticum/química , Pão/análise , Farinha/análise , Concentração de Íons de Hidrogênio , Glutens/química , Manipulação de Alimentos/métodos , Lactobacillales/metabolismo , Lactobacillales/química , Álcalis/química , Leveduras/química , Leveduras/metabolismo , Carbonatos
17.
J Sci Food Agric ; 104(4): 1920-1927, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37884466

RESUMO

BACKGROUND: Butter has been widely used in bakery products and it contains high level of saturated fats. However, excessive consumption of saturated fats would increase the risk of chronic disease. This study was to fabricate water-in-oil (W/O) type bigels as butter replacers to improve the quality attributes of breads. RESULTS: A stable water-in-oil (W/O) type bigel system was fabricated based on mixed oleogelators (rice bran wax and glycerol monostearate) and sodium alginate hydrogel. The ratios of oleogel to hydrogel could significantly affect the stability, microstructure and rheological properties of bigels. All of the bigels exhibited solid-like properties, with increased oleogel fractions, and the network structure of bigel became more compact and orderly with smaller sodium alginate gel particles. Meanwhile, the viscoelastic modulus and firmness of bigel increased, contributing to a higher stability. The bigel dough exhibited lower gel strength and relatively higher extensibility compared to the butter dough. Regardless of oleogel fractions, all the bigel produced bread with a higher specific volume and softer texture than the butter bread. When the oleogel fractions was less than 80%, increasing the oleogel fractions was more beneficial for improving the specific volume, softness and fluffy structure of bread. CONCLUSION: W/O type bigel as butter replacers showed great potential in improving the appearance, structure and textural properties of bread. © 2023 Society of Chemical Industry.


Assuntos
Pão , Manteiga , Hidrogéis/química , Alginatos , Água , Compostos Orgânicos
18.
J Sci Food Agric ; 104(3): 1732-1740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851761

RESUMO

BACKGROUND: Mealworm (Tenebrio molitor) larvae are nutritious edible insects and exhibit the potential to act as protein substitutes in food products. In this study, we added mealworm powder as a substitute to medium-gluten wheat and whole wheat flours to enhance the quality of baked products. We compared the pasting, farinograph and extensograph properties of medium-gluten wheat and whole wheat flours replaced with different concentrations of mealworm powder to explore the interactions between flour and mealworm powder. RESULTS: Mealworm powder changed the pasting characteristics of medium-gluten wheat and whole wheat flours. After adding 20% mealworm powder, the pasting temperature of the medium-gluten wheat flour remained unchanged (approximately 89.9 °C), while the pasting temperature of whole wheat flour increased from 88.83 to 90.27 °C. Water absorption of medium-gluten and whole wheat flours exhibited a decreasing trend with increasing mealworm powder concentrations. Mealworm powder substitution resulted in stronger medium-gluten dough but exerted an opposite effect on the farinograph properties of whole wheat dough. Mealworm powder substitution decreased the stretching resistance of medium-gluten dough but increased that of whole wheat dough. With an increase in the concentration of mealworm powder, the specific volume of medium-gluten wheat steamed bread significantly increased from 1.69 mL g-1 (M0) to 3.31 mL g-1 (M10) whereas that of whole wheat steamed bread increased from 1.64 mL g-1 (M0) to 2.34 mL g-1 (M15). The addition of mealworm powder increased the protein, dietary fiber, lipid and sodium contents of steamed bread samples. CONCLUSIONS: This study provides a reference for the rheological properties of medium-gluten wheat and whole wheat flours substituted with mealworm powder and supports the addition of insects as a protein source in food products. © 2023 Society of Chemical Industry.


Assuntos
Glutens , Tenebrio , Animais , Glutens/química , Farinha/análise , Triticum/química , Pós , Pão/análise , Vapor , China
19.
J Sci Food Agric ; 104(4): 1928-1941, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37932850

RESUMO

BACKGROUND: The increased demand for healthy and standardized bread has led to a demand for an efficient and promising dough improver, of natural origin, to reduce the deterioration of whole wheat bread baked from frozen dough caused by the high levels of dietary fiber and by freezing treatment. In this study, the combined effects of xylanase (XYL), lipase (LIP), and xanthan gum (XAN) on the quality attributes and functional properties of whole wheat bread baked from frozen dough were evaluated. RESULTS: The optimal combination, which contained XYL (0.12 g kg-1 ), LIP (0.25 g kg-1 ), and XAN (3.1 g kg-1 ), was obtained using response surface methodology (RSM). The addition of the optimal combination endowed frozen dough bread with a higher specific volume, softer texture, better brown crumb color, and greater overall acceptability. The optimal combination had no adverse impact on the volatile organic compounds (VOCs) of frozen dough bread. In terms of the functional properties of bread, the water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SWC) of dietary fiber in frozen dough bread decreased in the presence of the optimal combination, whereas the glucose adsorption capacity (GAC) did not affect them. Correspondingly, the in vitro digestive glucose release was not significantly different between the control group and the optimal combination group after frozen storage. CONCLUSION: The optimal combination could improve the quality attributes and functional properties of whole wheat bread baked from frozen dough effectively, thereby increasing consumption. © 2023 Society of Chemical Industry.


Assuntos
Pão , Triticum , Triticum/química , Congelamento , Fibras na Dieta , Coloides , Glucose , Farinha
20.
Compr Rev Food Sci Food Saf ; 23(3): e13353, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38660747

RESUMO

Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.


Assuntos
Pão , Dextranos , Glutens , Amido , Triticum , Pão/análise , Pão/normas , Amido/química , Glutens/química , Dextranos/química , Triticum/química , Fermentação , Manipulação de Alimentos/métodos , Qualidade dos Alimentos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa