Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Environ Sci Technol ; 58(20): 8946-8954, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38736287

RESUMO

Molecular diffusion of chemical species in subsurface environments─rock formations, soil sediments, marine, river, and lake sediments─plays a critical role in a variety of dynamic processes, many of which affect water chemistry. We investigate and demonstrate the occurrence of anomalous (non-Fickian) diffusion behavior, distinct from classically assumed Fickian diffusion. We measured molecular diffusion through a series of five chalk and dolomite rock samples over a period of about two months. We demonstrate that in all cases, diffusion behavior is significantly different than Fickian. We then analyze the results using a continuous time random walk framework that can describe anomalous diffusion in heterogeneous porous materials such as rock. This methodology shows extreme long-time tailing of tracer advance as compared to conventional Fickian diffusion processes. The finding that distinct anomalous diffusion occurs ubiquitously implies that diffusion-driven processes in subsurface zones should be analyzed using tools that account for non-Fickian diffusion.


Assuntos
Sedimentos Geológicos , Difusão , Porosidade
2.
Environ Res ; 261: 119696, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068970

RESUMO

The widespread use of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a weedkiller has resulted in its persistence in the environment, leading to surface and groundwater pollution. In this study, the fixed bed column experiments were performed to remove 2,4-D from aqueous solutions using magnetic activated carbon derived from Peltophorum pterocarpum tree pods. The evaluation was done on effects of operating parameters such as bed depth (2-4 cm), influent flow rate (4.6-11.4 mL/min), and 2,4-D concentration (25-100 mg/L) on the breakthrough curves. The data fit well with the Yoon-Nelson and Thomas models, exhibiting high R2 values. Results indicated that lower flow rates, lower 2,4-D concentrations, and greater bed depths enhanced adsorption capacity, achieving up to 196.31 mg/g. Reusability studies demonstrated the material's potential for repeated use, while toxicity studies with Vigna radiata seeds confirmed the effectiveness of Fe3O4-CPAC in removing 2,4-D. This investigation highlights the promising application of Fe3O4-CPAC in fixed bed adsorption systems for efficient 2,4-D removal.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Carvão Vegetal , Herbicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Purificação da Água/métodos , Vigna/química
3.
Molecules ; 29(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39275066

RESUMO

In porous water filters, the transport and entrapment of contaminants can be modeled as a classic mass transport problem, which employs the conventional convection-dispersion equation to predict the transport of species existing in trace amounts. Using the volume-averaging method (VAM), the upscaling has revealed two possible macroscopic equations for predicting contaminant concentrations in the filters. The first equation is the classical convection-dispersion equation, which incorporates a total dispersion tensor. The second equation involves an additional transport coefficient, identified as the adsorption-induced vector. In this study, the aforementioned equations were solved in 1D for column tests using 3D unit cells. The simulated breakthrough curves (BTCs), using the proposed micro-macro-coupling-based VAM model, are compared with the direct numerical simulation (DNS) results based on BCC-type unit cells arranged one-after-another in a daisy chain manner, as well as with three previously reported experimental works, in which the functionalized zeolite and zero-valent iron fillings were used as an adsorbent to remove phosphorous and arsenic from water, respectively. The disagreement of VAM BTC predictions with DNS and experimental results reveals the need for an alternative closure formulation in VAM. Detailed investigations reveal time constraint violations in all the three cases, suggesting this as the main cause of VAM's failure.

4.
Environ Res ; 238(Pt 1): 117133, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729960

RESUMO

Removal of methyl iodide (CH3I) from the air present within nuclear facilities is a critical issue. In case of any nuclear accident, there is a great need to mitigate the radioactive organic iodide immediately as it accumulates in human bodies, causing severe consequences. Current research focuses on removing organic iodides, for which the surface of activated carbon (AC) was modified by impregnating it with different metals individually, i.e. Ag, Ni, Zn, Cu and with the novel combination of these four metals (AZNC). After the impregnation of metals, triethylenediamine (TEDA) was coated on metal impregnated activated carbon (IAC) surface. The adsorption capacity of the combination of four metals IAC was found to be 276 mg/g as the maximum for the trapping of CH3I. Whereas TEDA-metal impregnation on ACs enhanced the removal efficiency of CH3I up to 352 mg/g. After impregnation, adsorption capacity of AZNC and AZNCT is significantly higher as compared to AC. According to the finding, t5% of AZNCT IAC is 46 min, which is considerably higher than the t5% of other tested adsorbents. According to isotherm fitting data, Langmuir isotherm was found superior for describing CH3I sorption onto AC and IACs. Kinetics study shows that pseudo second order model represented the sorption of CH3I more accurately than the pseudo first order. Thermodynamic studies gave negative value of ΔG which shows that the reaction is spontaneous in nature. Based on the findings, AZNCT IAC appears to have a great potential for air purification applications in order to obtain clean environment.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Humanos , Metais , Piperazinas , Adsorção , Cinética , Concentração de Íons de Hidrogênio
5.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838602

RESUMO

The excessive use of ammonium fertilizer and its associated leakage threatens aquatic environments around the world. With a focus on the treatment of drinking water, the scope of this study was to evaluate and model the breakthrough curves for NH4+ in zeolite-filled, fixed-bed columns. Breakthrough experiments were performed in single- and multi-sorbate systems with the initial K+ and NH4+ concentrations set to 0.7 mmol/L. Breakthrough curves were successfully modeled by applying the linear driving force (LDF) and Thomas models. Batch experiments revealed that a good description of NH4+ sorption was provided by the Freundlich sorption model (R2 = 0.99), while unfavorable sorption was determined for K+ (nF = 2.19). Intraparticle diffusion was identified as the rate limiting step for NH4+ and K+ during breakthrough. Compared to ultrapure water, the use of tap, river, and groundwater matrices decreased the treated bed volumes by between 25% and 69%-as measured at a NH4+ breakthrough level of 50%. The concentrations of K+ and of dissolved organic carbon (DOC) were identified as the main parameters that determine NH4+ sorption in zeolite-filled, fixed-bed columns. Based on our results, the LDF and Thomas models are promising tools to predict the breakthrough curves of NH4+ in zeolite-filled, fixed-bed columns.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Adsorção , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
6.
Chem Zvesti ; : 1-14, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37362788

RESUMO

The present study is aimed to assess the adsorptive potential of carbonaceous material for the acyclovir (ACVR) removal from the aquatic environment using batch and fixed-bed processes. In batch mode, the impact of various process conditions (contact time, pH, adsorbent dose, initial ACVR concentration, and temperature) on ACVR adsorption was investigated. Experimental results revealed that Langmuir isotherm and the pseudo-second-order kinetic model adequately represent the ACVR adsorption mechanism, indicating homogeneous adsorption. The process was found exothermic and spontaneous. Thermodynamic studies concluded that adsorption is a result of both physisorption and chemisorption. To understand the dynamic regime for the design of large-scale column studies, experimental data obtained from breakthrough curve were fitted to various analytical kinetic models. Yan model followed by Thomas model demonstrated a greater correlation of breakthrough data, confirming that the results are significant and are in line with Langmuir isotherm and pseudo-second-order kinetic. G-AC exhibits sufficient adsorption capacity for ACVR. Hence, it is concluded that it can be used in a fixed-bed column in continuous mode for the treatment of ACVR-contaminated wastewater. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-02810-7.

7.
Environ Res ; 211: 112916, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35231457

RESUMO

Radionuclides of 60Co often encountered in the fields of radiation therapy, medical preparation, and equipment sterilization, which have been considered fatal. Therefore, developing efficient and irradiation-stable adsorbents for the removal of 60Co in wastewater is urgently needed. An irradiation-stable fibrous adsorbent was fabricated through the surface functionalization of collagen fibers (CFs) by polyethyleneimine (PEI) and hydrated titanium oxide (TiO) (PEI-TiO-CFs). PEI-TiO-CFs, including their adsorption performance and irradiation stability, were systematically investigated. Results showed that PEI-TiO-CFs exhibit a maximum adsorption capacity of 0.5575 mmol g-1. In addition, the adsorption capacity of PEI-TiO-CFs only demonstrated a slight decrease in the selectivity investigation of Co2+ mixed with another coexisting ion, such as Na+, K+, and NO3-, Cl-. Furthermore, breakthrough point of PEI-TiO-CFs in column is high at 80 BV (bed volume) and the PEI-TiO-CF column can be mostly regenerated using 12 BV of Na2EDTA solution. Excellent irradiation stability of PEI-TiO-CFs was confirmed by the maintained morphology and adsorption capacity after irradiation at 350 kGy of 60Co γ-ray. Results indicated that PEI-TiO-CFs are an effective adsorbent for radioactive cobalt removal from aqueous solutions.


Assuntos
Poluentes Químicos da Água , Adsorção , Cobalto , Humanos , Íons , Cinética , Polietilenoimina , Titânio , Poluentes Químicos da Água/análise
8.
Environ Res ; 192: 110218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980308

RESUMO

Adsorption has been used widely to remove indoor volatile organic compounds (VOCs). However, the large diffusion resistance inside traditional granular adsorbents renders a low VOC adsorption rate. This study proposes a modified method to achieve the rapid diffusion into the adsorbent during the initial adsorption period. A thin and flexible adsorption board with a layer of adsorbent coated on a heating film was prepared for in-situ adsorption and regeneration. Then, regular, vertical macro-channels through the adsorption board were fabricated by laser drilling to enhance mass transfer inside the board. Experimental results demonstrated that after modification, the penetration times for formaldehyde and xylene extended from 3.8 to 6.2 h, and from 62 to 99 h, respectively. The effective adsorption capacity of the modified board had increased by a multiple of two for formaldehyde and 1.8 for xylene. A mathematical model was developed and experimentally validated to evaluate the modification effect for more adsorbent-pollutant pairs. The results showed that the amplification of effective adsorption capacity was positively correlated with the Da/(K·De) parameter; this is the diffusion resistance ratio prior to and following the modification. A spectrogram of adsorbent-pollutant pairs was plotted to guide the modification. This simple macro-channel modification of the adsorption board may be used as an alternative design for adsorption applications in indoor air purification.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Adsorção , Formaldeído , Compostos Orgânicos Voláteis/análise
9.
Ecotoxicol Environ Saf ; 213: 112003, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588188

RESUMO

A green rust-coated expanded perlite (GR-coated Exp-p) microelectrode was synthesized and incorporated into a column-mode three-dimensional electrokinetic (3D-EK) platform to effectively pursue a continuous Cr(VI) removal from the aqueous solution. Brucite-like layers of GR were decorated onto the Exp-p material. The molar ratio of Fe(II) to Fe(III) played a most vital role among the three synthesis factors in influencing the performance of the particle electrode. For the equilibrium adsorption experiments, the target maximum adsorption capacity of 122 mg/g was predicted by a target optimizer and desirability function at the conditions following the pH of 4.7, the initial concentration of 172.4 mg/L, the dosage of 0.28 g/L, and the temperature of 28.96 °C, respectively. SO42-, Cl-, and NO3- fiercely competed with Cr(VI) anions in the acidic conditions for the locally positive sites. A low concentration and a slow flow were favored in the column-mode 3D-EK platform. The pseudo-first-order and Langmuir models were suitable for describing the kinetics and isotherms of the adsorption process, respectively. Cr(VI) anions were electrostatically attracted to the silanol groups and GR surface of the adsorbent, subsequently reduced in both heterogeneity and homogeneity, and finally immobilized by coordinating with silanediol groups and silanetriol groups.


Assuntos
Cromo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Óxido de Alumínio , Ânions , Eletrodos , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética , Dióxido de Silício , Temperatura , Água , Poluentes Químicos da Água/análise
10.
J Environ Manage ; 278(Pt 1): 111419, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33126193

RESUMO

There is a paucity of information regarding the interaction between GONPs and natural aquifer sediments. Therefore, batch and column experiments were carried out to determine the transport, retention and attachment behavior of GONPs with the surfaces of native aquifer sediments. The experiments were performed with sediments comprising contrasting mineralogical features (sand grains, quartz and limestone sediments), at different temperatures, ionic strength and compositions. Uniquely, this research also investigated the effect of natural biofilm on the retention behavior of nanoparticles in porous media. The retention rate of GONPs at 22 °C was higher than at 4 °C. Moreover, there was greater retention of GONPs onto the surfaces of collectors at higher ionic strengths and cation valence. The retention profiles (RPs) of GONPs in pristine porous media at low ionic strength were linear, which contrasted with hyper-exponential shape of RPs at high ionic strength. The size-distribution analysis of retained GONPs showed decreasing particle diameter with increasing distance from the column inlet at high ionic strength and equal diameter at low ionic strengths. The GONP retention rate was higher for natural porous media than for sand, due to the presence of metal oxides heterogeneities. The presence of biofilm on porous media increased the retention rate of GONPs when compared to the porous media in the absence of biofilm.


Assuntos
Água Subterrânea , Nanopartículas , Biofilmes , Grafite , Concentração Osmolar , Porosidade , Areia , Dióxido de Silício
11.
J Environ Manage ; 281: 111797, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387737

RESUMO

A low cost polyvinyl alcohol-glutaraldehyde cross-linked hydrogel beads were prepared and used for color removal from model industrial effluent containing Congo Red dye, using adsorption technique. The adsorption studies were performed using batch and fixed-bed reactor. Developed adsorbent, achieved adsorption capacity as high as ~34 mg of dye per gram of bead (condition: pH 6 and 45 °C). These beads were re-used for 7 times (many more runs possible) to remove the color from model dye effluent, without much loss in removal efficiency. Batch studies revealed a multi-layer adsorption governed by Harkins Jura model. Whereas the adsorption kinetics followed fractal like pseudo second order model, controlled by intraparticle diffusion phenomena. The fixed bed studies revealed steeper break through curves during adsorption operation when high dye influent rates and low bed height were used. This behaviour by the fixed bed reactor was best explained by the Thomas mathematical model. Studies further demonstrated that an external and internal mass diffusion become no more rate limiting during these experiments.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Difusão , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Álcool de Polivinil
12.
J Environ Manage ; 283: 112001, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497887

RESUMO

Developing efficient adsorbents with radiation stability for uranium removal from nuclear wastewater is greatly important for resource sustainability and environmental safety in manufacturing nuclear fuel. A novel adsorbent of hydrous titanium oxide-immobilized collagen fibers (HTO/CFs) with good radiation stability for UO22+ removal was developed. Results showed that the adsorption capacity of HTO/CFs for UO22+ was 1.379 mmol g-1 at 303 K and pH 5.0 when the initial concentration of UO22+ was 2.5 mmol L-1. Moreover, HTO/CFs showed high selectivity for U(VI) in bilateral mixed solution including UO22+ with another coexisting ion, such as Cl-, NO3-, Zn2+, and Mg2+. The adsorption behavior of UO22+ from radioactive wastewater on HTO/CF column was also investigated, and the breakthrough point was approximately 250 BV (bed volume). Notably, the HTO/CFs column can be rapidly regenerated by using only 4.0 BV of 0.1 mol L-1 HNO3 solution. The regenerated HTO/CFs column exhibited slight change in the breakthrough curve, suggesting its excellent reapplication ability. Furthermore, after irradiation under 60Co γ-ray at total doses of 10-350 kGy, HTO/CFs still preserved fibrous morphology and adsorption capacity, indicating significant radiation stability. These results demonstrate that HTO/CFs are industrial scalable adsorbents for the adsorptive recovery of uranium.


Assuntos
Urânio , Adsorção , Colágeno , Titânio , Águas Residuárias
13.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641456

RESUMO

The provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people's lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this technique missed sustainability and the new concept of using renewable energy. Permeable reactive barriers (PRBs) have been implemented as an alternative to conventional pump-and-treat systems for remediating polluted groundwater because of their effectiveness and ease of implementation. In this paper, a review of the importance of groundwater, contamination and biological, physical as well as chemical remediation techniques have been discussed. In this review, the principles of the permeable reactive barrier's use as a remediation technique have been introduced along with commonly used reactive materials and the recent applications of the permeable reactive barrier in the remediation of different contaminants, such as heavy metals, chlorinated solvents and pesticides. This paper also discusses the characteristics of reactive media and contaminants' uptake mechanisms. Finally, remediation isotherms, the breakthrough curves and kinetic sorption models are also being presented. It has been found that groundwater could be contaminated by different pollutants and must be remediated to fit human, agricultural and industrial needs. The PRB technique is an efficient treatment process that is an inexpensive alternative for the pump-and-treat procedure and represents a promising technique to treat groundwater pollution.

14.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673208

RESUMO

Consumption of drinking water with a high concentration of fluoride (>1.5 mg/L) causes detrimental health problems and is a challenging issue in various regions around the globe. In this study, a continuous fixed-bed column adsorption system was employed for defluoridation of water using volcanic rocks, virgin pumice (VPum) and virgin scoria (VSco), as adsorbents. The XRD, SEM, FTIR, BET, XRF, ICP-OES, and pH Point of Zero Charges (pHPZC) analysis were performed for both adsorbents to elucidate the adsorption mechanisms and the suitability for fluoride removal. The effects of particle size of adsorbents, solution pH, and flow rate on the adsorption performance of the column were assessed at room temperature, constant initial concentration, and bed depth. The maximum removal capacity of 110 mg/kg for VPum and 22 mg/kg for VSco were achieved at particle sizes of 0.075-0.425 mm and <0.075 mm, respectively, at a low solution pH (2.00) and flow rate (1.25 mL/min). The fluoride breakthrough occurred late and the treated water volume was higher at a low pH and flow rate for both adsorbents. The Thomas and Adams-Bohart models were utilized and fitted well with the experimental kinetic data and the entire breakthrough curves for both adsorbents. Overall, the results revealed that the developed column is effective in handling water containing excess fluoride. Additional testing of the adsorbents including regeneration options is, however, required to confirm that the defluoridation of groundwater employing volcanic rocks is a safe and sustainable method.


Assuntos
Água Subterrânea/química , Poluentes Químicos da Água/química , Purificação da Água , Água/química , Adsorção/efeitos dos fármacos , Fluoretos/química , Cinética , Tamanho da Partícula , Erupções Vulcânicas
15.
Environ Monit Assess ; 193(7): 381, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34085125

RESUMO

Cadmium (Cd) can be leached from soil into the groundwater and exhibit its adverse effect on the health of animals and humans. While previous studies have studied the process of Cd transport in water-saturated sand columns, literature regarding Cd transport in soil is scarce. The aim of this experiment was to investigate the transport of Cd in soil columns and biochar application rate effects on the mobility and distribution of Cd in soil. The red paddy soil was collected from the paddy of Changsha County, Hunan Province in southern China. Batch sorption and column experiments were conducted to study the adsorption isotherms of Cd2+ and its mobility at different biochar application rate treatments (0, 0.5, 1, 1.5, and 2%) referenced here as A0, A10, A20, A30, and A40, respectively. The Cd concentration of in effluent samples and digestion solutions was measured by inductively coupled plasma optical emission spectrometer (ICP-OES, Thermo Fisher Scientific, USA). After finishing the column experiment, columns were dissected into five layers (1-cm segments), the Cd fractions in soil were performed by the European Community Bureau of Reference (BCR). The amount of Cd sorption among treatments decreased in the order of A40 > A30 > A20 > A10 > A0, and the Langmuir model was more suitable to study the Cd2+ adsorption on biochar-amended soil than Freundlich model. Breakthrough curves showed that increasing biochar application rate increased the initial breakthrough time, whereas the pore-water velocity and dispersion coefficient were 81.0 and 99.8% lower in the A40 treatments than in the A0 treatments, respectively. Increasing biochar application rate enhanced the pH but reduced redox potential (Eh) in the most of effluents. Compared with A0, the concentration of Cd retained in soil columns increased by 86.6% in the A40 treatments. However, BCR sequential extractions showed that biochar addition in A40 treatments increased the acid soluble fraction but reduced the reducible fraction. In A40 treatments, compared with the 0-1-cm soil layer, the relative Cd concentration (N/Ni) in the 1-2-, 2-3-, 3-4-, and 4-5-cm soil layers increased by 5.4, 10.9, 14.3, and 21.9%, respectively. Biochar application in A40 treatments showed strong capacity for retarding Cd transport in soil, while the potential mobility of Cd in soil should be considered.


Assuntos
Poluentes do Solo , Solo , Animais , Cádmio/análise , Carvão Vegetal , China , Monitoramento Ambiental , Humanos , Poluentes do Solo/análise , Triticum
16.
J UOEH ; 43(3): 335-340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483192

RESUMO

We investigated the adsorbed amount of organic solvent vapors and adsorption rate of a new porous carbon material made from rice husk (rice husk activated carbon) in comparison with those of coconut shell activated carbon by the breakthrough curve. The adsorbed amount on the rice husk activated carbon and that on the coconut shell activated carbon were 81.3 ±â€¯3.3 mg/g and 71.7 ±â€¯5.0 mg/g for acetone, 8.0 ±â€¯1.7 mg/g and 6.3 ±â€¯0.2 mg/g for methanol, 196.8 ±â€¯8.8 mg/g and 262.8 ±â€¯10.4 mg/g for ethyl acetate, 234.8 ±â€¯11.9 mg/g, and 364.6 ±â€¯43.8 mg/g for toluene, respectively. These results suggest that the amount of organic solvent vapors adsorbed per unit weight of rice husk activated carbon is slightly larger for high polar compounds and is smaller for low polar compounds than that of coconut shell activated carbon. We compared the adsorption rate of the two materials by using the slope of the breakthrough curves. Even though there are some limitations to the characteristics of the new porous carbon material, it may be possible to use rice husk activated carbon as an alternative to coconut shell activated carbon in occupational and environmental measures.


Assuntos
Oryza , Adsorção , Cocos , Porosidade , Solventes
17.
Int J Phytoremediation ; 22(12): 1233-1241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574076

RESUMO

The present study evaluates the feasibility of using natural Lagerstroemia speciosa bark (NLSB) and chemically modified Lagerstroemia speciosa bark (CLSB) in removing Cr(VI) from aqueous solution in fixed bed column process. The effect of influent flow rate, bed depth and inlet Cr(VI) ion concentration on the Cr(VI) removal capacity of NLSB and CLSB was investigated. The column exhaustion time increased with increase in bed depth and reverse trend was obtained with increase in flow rate and influent Cr(VI) ion concentration. The Bohart-Adams, Thomas and Yoon-Nelson dynamic models were applied at various studied experimental conditions to predict the breakthrough curve behavior and to determine the characteristics fixed bed column parameters that are very crucial in scale up of the column process for its industrial scale application. Both Thomas and Yoon-Nelson models showed very good agreement with the column data and explained the mechanism of Cr(VI) adsorption by NLSB and CLSB in column process. The high Cr(VI) adsorption capacity and regeneration efficiency of NLSB and CLSB in column suggest its applicability in removal of Cr(VI) present in industrial effluents.


Assuntos
Lagerstroemia , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Biodegradação Ambiental , Cromo , Íons , Casca de Planta/química
18.
Int J Environ Health Res ; 30(5): 558-583, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31064216

RESUMO

This study examined the performance of natural clinoptilolite (NC) modified with two surfactants of Triton X-100 (NC-Triton) and Tween 80 (NC-Tween) on apramycin (APR) adsorption from wastewater in batch and continues systems. The optimum pH, contact time, adsorbent dosage, and temperature were achieved. The findings revealed that the sorption was best described using the Langmuir isotherm compared to other isotherms. The maximum adsorption capacity of NC-Triton was greater than NC and NC-Tween. The lumped method was applied to solve the fixed-bed equations; predict breakthrough curve; determine axial dispersion coefficient and overall mass transfer coefficient parameters; and compare theoretical results with experimental results. Good fitness of experimental data with kinetic models of intra-particle diffusion, pseudo-first-order/liquid film diffusion and pseudo-second-order for NC, NC-Tween and NC-Triton, respectively, indicated that they were more suitable than the other models. Endothermic and spontaneous processes were resulted from positive enthalpy and negative Gibbs free energy changes, respectively.


Assuntos
Antibacterianos/análise , Nebramicina/análogos & derivados , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/instrumentação , Zeolitas/química , Adsorção , Modelos Teóricos , Nebramicina/análise
19.
Ecotoxicol Environ Saf ; 169: 722-729, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30502522

RESUMO

In this study, Auricularia Matrix Waste (AMW) was modified by sodium hydroxide and immobilized into granular adsorbent with sodium alginate to remove lead ions from aqueous solution through a fixed-bed column. The results of Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) and Fourier Transform Infrared Spectroscopy (FTIR) illuminated that immobilization greatly changed the structure, elements, polarity and functional groups of the adsorbent. Amino, hydroxyl, carboxyl groups on the adsorbent actively participated lead(II) adsorption and cation exchange also played an important role in adsorption process. The effects of bed length, flow rate and lead ions concentration determined the breakthrough characteristics and remarkably impacted lead(II) adsorption. The maximum adsorption capacity of lead(II) was 151.7 mg/g, when the influent bed, bed height and initial concentration were 15 mL/min, 25 mL/min and 150 mg/L, respectively. Thomas model was more suitable than the Bohart-Adams model to describe the performance of lead(II) adsorption onto IMAMW.


Assuntos
Basidiomycota/química , Chumbo/análise , Resíduos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Modelos Teóricos , Hidróxido de Sódio/química , Soluções
20.
J UOEH ; 41(4): 417-424, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31866659

RESUMO

We investigated the adsorption characteristics of volatile organic compounds (VOCs) on the surface of coffee beans after extraction (coffee grounds). Temperature-controllable adsorption equipment of VOC vapor was manufactured, and nitrogen gas containing about 100 ppm of VOC vapor was introduced into a coffee extraction residue. The air in the downstream was analyzed with a gas chromatograph equipped with a flame ionization detector over a period of time. A breakthrough curve was obtained from the analysis of values and time, and the adsorbed amount of each volatile organic compound on the coffee grounds was calculated from a graphical integration of the breakthrough curve. Fourteen VOCs were tested, and the adsorbed amount tended to increase with increases in the boiling point of the VOCs. It was also found that the adsorbed amount of methanol and toluene was affected by the water content in the coffee grounds used in the experiment.


Assuntos
Café/química , Compostos Orgânicos Voláteis/química , Adsorção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa