Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
EMBO Rep ; 22(7): e51289, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34056831

RESUMO

The recruitment of thermogenic brite adipocytes within white adipose tissue attenuates obesity and metabolic comorbidities, arousing interest in understanding the underlying regulatory mechanisms. The molecular network of brite adipogenesis, however, remains largely unresolved. In this light, long noncoding RNAs (lncRNAs) emerged as a versatile class of modulators that control many steps within the differentiation machinery. Leveraging the naturally varying propensities of different inbred mouse strains for white adipose tissue browning, we identify the nuclear lncRNA Ctcflos as a pivotal orchestrator of thermogenic gene expression during brite adipocyte differentiation. Mechanistically, Ctcflos acts as a pleiotropic regulator, being essential for the transcriptional recruitment of the early core thermogenic regulatory program and the modulation of alternative splicing to drive brite adipogenesis. This is showcased by Ctcflos-regulated gene transcription and splicing of the key browning factor Prdm16 toward the isoform that is specific for the thermogenic gene program. Conclusively, our findings emphasize the mechanistic versatility of lncRNAs acting at several independent levels of gene expression for effective regulation of key differentiation factors to direct cell fate and function.


Assuntos
Adipogenia , RNA Longo não Codificante , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Processamento Alternativo , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Termogênese
2.
Mol Cell Biochem ; 477(4): 1053-1063, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997885

RESUMO

Ear mesenchymal stem cells (EMSCs) have been investigated to differentiate into adipocytes, chondrocytes, and muscle cells in vitro. However, the factors controlling adipogenesis of this stem cell population in vitro, function, and type of adipocytes raised from them are still unclear. Here we found that genetics have a modest effect on adipogenic capacity of EMSCs. Adipocytes differentiated from EMSCs have a potential function in lipid metabolism as indicated by expression of lipogenic genes and this function of EMSC adipocytes is regulated by genetics. EMSCs failed to be differentiated into brite/brown adipocytes due to their lack of a thermogenic program, but adipocytes raised from EMSCs showed a fate of white adipocytes. Overall, our data suggest that EMSCs differentiate into functional white adipocytes in vitro and this is genetic-dependent.


Assuntos
Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia/genética , Antígenos de Diferenciação , Orelha , Variação Genética , Células-Tronco Mesenquimais/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Camundongos , Camundongos Transgênicos
3.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502532

RESUMO

Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.


Assuntos
Adaptação Fisiológica/fisiologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Cães Guaxinins/metabolismo , Estações do Ano , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Bege/diagnóstico por imagem , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Branco/diagnóstico por imagem , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Fluordesoxiglucose F18/metabolismo , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Termogênese , Proteína Desacopladora 1/metabolismo
4.
Handb Exp Pharmacol ; 251: 183-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30141101

RESUMO

Fatty acids are essential contributors to adipocyte-based non-shivering thermogenesis by acting as activators of uncoupling protein 1 and serving as fuel for mitochondrial heat production. Novel evidence suggests a contribution to this thermogenic mechanism by their conversion to bioactive compounds. Mammalian cells produce a plethora of oxylipins and endocannabinoids, some of which have been identified to affect the abundance or thermogenic activity of brown and brite adipocytes. These effectors are produced locally or at distant sites and signal toward thermogenic adipocytes via a direct interaction with these cells or indirectly via secondary mechanisms. These interactions are evoked by the activation of receptor-mediated pathways. The endogenous production of these compounds is prone to modulation by the dietary intake of the respective precursor fatty acids. The effect of nutritional interventions on uncoupling protein 1-derived thermogenesis may thus at least in part be conferred by the production of a supportive oxylipin and endocannabinoid profile. The manipulation of this system in future studies will help to elucidate the physiological potential of these compounds as novel, endogenous regulators of non-shivering thermogenesis.


Assuntos
Adipócitos , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Animais , Mitocôndrias/fisiologia , Proteína Desacopladora 1/genética
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2972-2982, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29902549

RESUMO

Transformation of white adipose tissue (WAT) to a brown adipose tissue-like (BAT-like) phenotype has emerged as an attractive approach against obesity e.g. using g ß3 adrenergic receptor agonists. These could however, produce side-effects following systemic exposure. The present study explored the possibility of local use of CL-316,243 - a selective ß3 agonist - to circumvent this problem. Rats treated s.c. for 2 weeks (0.3 and 1 mg/kg) showed decreased inguinal fat pad (IFP) weight/volume, increased UCP-1 staining and expressed BAT-like features in H&E stained micrographs. Interscapular BAT increased in weight/volume. In contrast, local treatment into the IFP was not efficacious in terms of weight/volume, despite slight increases in UCP-1 staining and changes in histological features. After local treatment, the exposure of the IFP was lower than after systemic treatment. In turn higher local doses (0.5 and 5 mg/ml) were then tested which produced a strong trend for decreased volume of the IFP, a significant increase in UCP-1 staining, and also a decrease in adipocytes size but increased number. However, after this treatment the systemic exposure was in the same range as following systemic treatment. In conclusion, we saw no evidence for the possibility of converting inguinal WAT to a BAT-phenotype solely through local activation of ß3 receptors. This is in concert with our in vitro experiments which detected direct effects of PPARγ agonists at the gene/protein expression and functional level, but were unable to detect any effect of CL-316,243.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/administração & dosagem , Obesidade/tratamento farmacológico , Receptores Adrenérgicos beta 3/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Agonistas de Receptores Adrenérgicos beta 3/efeitos adversos , Adulto , Animais , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dioxóis/administração & dosagem , Dioxóis/efeitos adversos , Feminino , Humanos , Injeções Subcutâneas , Masculino , Obesidade/patologia , Ratos , Ratos Sprague-Dawley , Adulto Jovem
6.
EMBO Rep ; 15(10): 1069-76, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135951

RESUMO

Thermogenesis in brown adipocytes, conferred by mitochondrial uncoupling protein 1 (UCP1), is receiving great attention because metabolically active brown adipose tissue may protect humans from metabolic diseases. In particular, the thermogenic function of brown-like adipocytes in white adipose tissue, known as brite (or beige) adipocytes, is currently of prime interest. A valid procedure to quantify the specific contribution of UCP1 to thermogenesis is thus of vital importance. Adrenergic stimulation of lipolysis is a common way to activate UCP1. We here report, however, that in this frequently applied setup, taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured brown and brite adipocytes. By the application of these findings, we demonstrate that UCP1 is functionally thermogenic in intact brite adipocytes and adrenergic UCP1 activation is largely dependent on adipose triglyceride lipase (ATGL) rather than hormone sensitive lipase (HSL).


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Termogênese/genética , Linhagem Celular , Ácidos Graxos/metabolismo , Humanos , Lipase/metabolismo , Lipólise/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Esterol Esterase/metabolismo , Proteína Desacopladora 1
7.
Stem Cells ; 32(5): 1323-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24449206

RESUMO

Thermogenic (beige and brown) adipocytes protect animals against obesity and metabolic disease. However, little is known about the mechanisms that commit stem cells toward different adipocyte lineages. We show here that p107 is a master regulator of adipocyte lineage fates, its suppression required for commitment of stem cells to the brown-type fate. p107 is strictly expressed in the stem cell compartment of white adipose tissue depots and completely absent in brown adipose tissue. Remarkably, p107-deficient stem cells uniformly give rise to brown-type adipocytes in vitro and in vivo. Furthermore, brown fat programming of mesenchymal stem cells by PRDM-BF1-RIZ1 homologous domain containing 16 (Prdm16) was associated with a dramatic reduction of p107 levels. Indeed, Prdm16 directly suppressed p107 transcription via promoter binding. Notably, the sustained expression of p107 blocked the ability of Prdm16 to induce brown fat genes. These findings demonstrate that p107 expression in stem cells commits cells to the white versus brown adipose lineage.


Assuntos
Adipócitos/metabolismo , Linhagem da Célula/genética , Proteína p107 Retinoblastoma-Like/genética , Células-Tronco/metabolismo , Adipócitos/citologia , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Knockout , Proteína p107 Retinoblastoma-Like/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Am J Physiol Cell Physiol ; 306(5): C431-40, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24284793

RESUMO

While white adipose tissue (AT) is an energy storage depot, brown AT is specialized in energy dissipation. Uncoupling protein 1 (UCP1)-expressing adipocytes with a different origin than classical brown adipocytes have been found in white AT. These "brite" (brown-in-white) adipocytes may represent a therapeutic target to counteract obesity. Bone morphogenetic proteins (BMPs) play a role in the regulation of adipogenesis. Based on studies with murine cells, BMP4 is assumed to induce stem cell commitment to the white adipocyte lineage, whereas BMP7 promotes brown adipogenesis. There is evidence for discrepancies between mouse and human AT. Therefore, we compared the effect of BMP4 and BMP7 on white-to-brown transition in primary human adipose stem cells (hASCs) from subcutaneous AT. Long-term exposure of hASCs to recombinant BMP4 or BMP7 during differentiation increased adipogenesis, as determined by lipid accumulation and peroxisome proliferator-activated receptor-γ (PPARγ) expression. Not only BMP7, but also BMP4, increased UCP1 expression in hASCs and decreased expression of the white-specific marker TCF21. The ability of hASCs to induce UCP1 in response to BMP4 and BMP7 markedly differed between donors and could be related to the expression of the brite marker CD137. However, mitochondrial content and oxygen consumption were not increased in hASCs challenged with BMP4 and BMP7. In conclusion, we showed for the first time that BMP4 has similar effects on white-to-brown transition as BMP7 in our human cell model. Thus the roles of BMP4 and BMP7 in adipogenesis cannot always be extrapolated from murine to human cell models.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Transdiferenciação Celular , Células-Tronco/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Adulto , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Consumo de Oxigênio , PPAR gama/genética , PPAR gama/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Tempo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Proteína Desacopladora 1
9.
J Physiol Biochem ; 76(2): 269-278, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170654

RESUMO

The main function of brown adipose tissue (BAT) is thermogenesis, a process mediated by uncoupling protein 1 (UCP1), which is located in the inner mitochondrial membrane and acts uncoupling oxidative phosphorylation from ATP production, thereby dissipating energy as heat. White adipose tissue can also express UCP1 positive cells due to a process known as browning. This phenomenon could also increase the thermogenic effect in the classical brown adipose depots. BAT thermogenesis depends, among other factors on both, nutritional conditions and food availability. Indeed, some studies have found that BAT recruitment and function are enhanced by some food components. The present study focuses on the effects of resveratrol and pterostilbene, two phenolic compounds belonging to the stilbene group, on BAT thermogenic activation and white adipose tissue browning process. The reported studies, carried out in cell cultures and animal models, show that both resveratrol and pterostilbene induce thermogenic capacity in interscapular BAT by increasing mitochondriogenesis, as well as enhancing fatty acid oxidation and glucose disposal. In addition, resveratrol seems to promote browning by activating peroxisome proliferator-activated receptor (PPAR), while the lack of changes in mitochondrial biogenesis suggests that probably the browning process occurs by direct resveratrol-mediated upregulation of ucp1 mRNA expression.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Resveratrol/farmacologia , Estilbenos/farmacologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Humanos , Biogênese de Organelas , Fosforilação Oxidativa
10.
Front Mol Biosci ; 7: 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457917

RESUMO

Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis - it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.

11.
Mol Cell Endocrinol ; 518: 110970, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738443

RESUMO

White adipose tissue (WAT) browning is a potential strategy to treat obesity, and is characterized by the formation of brown adipocytes induced by cold or ß-3 adrenergic receptor (ß-3AR) agonist treatment. The hedgehog (Hh) signaling at the primary cilium is closely related to obesity, and plays a key role in the differentiation and adipogenesis of adipocytes. However, little is known about its effects on WAT browning. In this study, browning models were used to evaluate the activity and effect of Hh signaling on WAT browning using Hh antagonists, agonist, and small-interfering RNAs (siRNAs) specific for glioma-associated oncogene homologue 1 (Gli1), smoothened (Smo), and suppressor of fused (Sufu). We observed that Hh signaling activity was inhibited during the browning process both in vivo and in vitro. Further, Hh signaling inhibition enhanced WAT browning, while its activation attenuated norepinephrine-induced browning. Thus, the inhibition of Hh signaling promotes WAT browning and therefore, Hh signaling may be a therapeutic target against obesity and associated comorbidities.


Assuntos
Adipócitos/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dioxóis/farmacologia , Proteínas Hedgehog/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia , Animais , Diferenciação Celular , Temperatura Baixa , Metabolismo Energético , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Camundongos , Norepinefrina/farmacologia , Cultura Primária de Células , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/genética , Termogênese , Proteína GLI1 em Dedos de Zinco/genética
12.
Cell Rep ; 26(10): 2720-2737.e5, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30840893

RESUMO

The relation between gut microbiota and the host has been suggested to benefit metabolic homeostasis. Brown adipose tissue (BAT) and beige adipocytes facilitate thermogenesis to maintain host core body temperature during cold exposure. However, the potential impact of gut microbiota on the thermogenic process is confused. Here, we evaluated how BAT and white adipose tissue (WAT) responded to temperature challenges in mice lacking gut microbiota. We found that microbiota depletion via treatment with different cocktails of antibiotics (ABX) or in germ-free (GF) mice impaired the thermogenic capacity of BAT by blunting the increase in the expression of uncoupling protein 1 (UCP1) and reducing the browning process of WAT. Gavage of the bacterial metabolite butyrate increased the thermogenic capacity of ABX-treated mice, reversing the deficit. Our results indicate that gut microbiota contributes to upregulated thermogenesis in the cold environment and that this may be partially mediated via butyrate.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Microbiota/fisiologia , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Animais , Temperatura Baixa , Humanos , Masculino , Camundongos
13.
Front Physiol ; 9: 1908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687123

RESUMO

Prebiotics are non-digestible food components able to modify host microbiota toward a healthy profile, concomitantly conferring general beneficial health effects. Numerous research works have provided wide evidence regarding the effects of prebiotics on the protection against different detrimental phenotypes related to cancer, immunity, and features of the metabolic syndrome, among others. Nonetheless, one topic less studied so far, but relevant, relates to the connection between prebiotics and energy metabolism regulation (and the prevention or treatment of obesity), especially by means of their impact on adaptive (non-shivering) thermogenesis in brown adipose tissue (BAT) and in the browning of white adipose tissue (WAT). In the present review, a key link between prebiotics and the regulation of adaptive thermogenesis and lipid metabolism (in both BAT and WAT) is proposed, thus connecting prebiotic consumption, microbiota selection (especially gut microbiota), production of microbiota metabolites, and the regulation of energy metabolism in adipose tissue, particularly regarding the effects on browning promotion, or on BAT recruitment. In this sense, various types of prebiotics, from complex carbohydrates to phenolic compounds, have been studied regarding their microbiota-modulating role and their effects on crucial tissues for energy metabolism, including adipose tissue. Other studies have analyzed the effects of the main metabolites produced by selected microbiota on the improvement of metabolism, such as short chain fatty acids and secondary bile acids. Here, we focus on state-of-the-art evidence to demonstrate that different prebiotics can have an impact on energy metabolism and the prevention or treatment of obesity (and its associated disorders) by inducing or regulating adaptive thermogenic capacity in WAT and/or BAT, through modulation of microbiota and their derived metabolites.

14.
Biochimie ; 138: 102-105, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28467890

RESUMO

Inducing brown adipocytes in white adipose tissues is a promising target to combat obesity and its related disorders in human beings. This goal has been especially encouraged by new important discoveries of human brown adipose tissues. The accumulating evidence confirms the presence of active brown adipocytes, not only in newborns, but also in adult humans. In rodents, there are two populations of the Ucp1-expressing adipocytes with well characterized-thermogenic functions, classical interscapular brown adipocytes and brite/beige adipocytes (brown adipocytes that are induced in white adipose tissues). Importantly, the anatomical localization, gene expression profiling and functional characterization of Ucp1-expressing fat cells indicates brite and brown adipocytes coexist in human beings. Therefore, the research directions of brown and brite adipogenesis provide lead to potential new therapies to fight obesity and its related metabolic diseases in human being. The objectives of this review are (1) to discuss the fate of primary adipocytes based on tissue origins, and (2) to discuss mechanisms of brown and brite adipogenesis which could lead to their different responses to browning reagents.


Assuntos
Adipócitos Bege/patologia , Adipócitos Marrons/fisiologia , Adipogenia , Obesidade/terapia , Termogênese , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adulto , Animais , Humanos , Recém-Nascido , Proteína Desacopladora 1
15.
Arch Med Res ; 48(5): 401-413, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29102386

RESUMO

Obesity is characterized by an excess of white adipose tissue (WAT). Recent evidence has demonstrated that WAT can change its phenotype to a brown-like adipose tissue known as beige/brite adipose tissue. This transition is characterized by an increase in thermogenic capacity mediated by uncoupling protein 1 (UCP1). This browning process is a potential new target for treating obesity. The aim of this review is to integrate the different mechanisms by which beige/brite adipocytes are formed and to describe the physiological, pharmacological and nutritional inducers that can promote browning. An additional aim is to show evidence of how some of these inducers can be used as potential therapeutic agents against obesity and its comorbidities. This review shows the importance of brown and beige/brite adipose tissue and the mechanisms of their formation. Particularly, the two theories of beige/brite adipocyte origin are discussed: de novo differentiation and transdifferentiation. The gene markers that identify these types of adipocytes and the involvement of microRNAs in the epigenetic regulation of the browning process is also discussed. Additionally, we describe the transcriptional control of UCP1 expression by some of the inducers of browning. Furthermore, we describe in detail how some bioactive dietary compounds can induce browning and their subsequent beneficial health effects. The evidence suggests that browning is a new potential strategy for the treatment of obesity and obesity-associated metabolic disorders.


Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Obesidade/patologia , Termogênese , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Transdiferenciação Celular , Dieta , Epigênese Genética , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/fisiopatologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Med Hypotheses ; 103: 26-28, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28571802

RESUMO

Obesity and overweight have become a leading health problem in the world. But we have not yet had any optimal therapy to prevent this health issue. Accumulating evidence suggests that there is existence of functional brown/brite adipocytes in both infants and adult humans, and the activated brown/brite can burn energy by generating heat. These adipocytes can be differentiated from stem cells and transplantation of pre-activated human thermogenic adipocytes in vitro benefits to glucose homeostasis, insulin sensitivity and reduces body fat in normal or obese immunodeficient mice. These investigations lead us to hypothesize a homologous stem cell therapy to treat obesity and its related disorders. The therapy bases on functional brown/brite adipocytes which are differentiated from homologous stem cells isolated from fat depot of an obese person, and those adipocytes are activated to have a full thermogenic program before being transplanted back to that patient to improve glucose homeostasis and reduce fat content.


Assuntos
Adipócitos Marrons/citologia , Doenças Metabólicas/terapia , Obesidade/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Animais , Peso Corporal , Diferenciação Celular , Modelos Animais de Doenças , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos SCID , Obesidade/patologia , Ratos , Termogênese
17.
Horm Mol Biol Clin Investig ; 31(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28099124

RESUMO

Beige or brite (brown-in-white) adipocytes are present in white adipose tissue (WAT) and have a white fat-like phenotype that when stimulated acquires a brown fat-like phenotype, leading to increased thermogenesis. This phenomenon is known as browning and is more likely to occur in subcutaneous fat depots. Browning involves the expression of many transcription factors, such as PR domain containing 16 (PRDM16) and peroxisome proliferator-activated receptor (PPAR)-γ, and of uncoupling protein (UCP)-1, which is the hallmark of thermogenesis. Recent papers pointed that browning can occur in the WAT of humans, with beneficial metabolic effects. This fact indicates that these cells can be targeted to treat a range of diseases, with both pharmacological and nutritional activators. Pharmacological approaches to induce browning include the use of PPAR-α agonist, adrenergic receptor stimulation, thyroid hormone administration, irisin and FGF21 induction. Most of them act through the induction of PPAR-γ coactivator (PGC) 1-α and the consequent mitochondrial biogenesis and UCP1 induction. About the nutritional inducers, several compounds have been described with multiple mechanisms of action. Some of these activators include specific amino acids restriction, capsaicin, bile acids, Resveratrol, and retinoic acid. Besides that, some classes of lipids, as well as many plant extracts, have also been implicated in the browning of WAT. In conclusion, the discovery of browning in human WAT opens the possibility to target the adipose tissue to fight a range of diseases. Studies have arisen showing promising results and bringing new opportunities in thermogenesis and obesity control.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Adaptação Biológica , Adipócitos/citologia , Adipócitos Bege/fisiologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Temperatura Baixa , Metabolismo Energético , Regulação da Expressão Gênica , Humanos , Modelos Animais , Fenômenos Fisiológicos da Nutrição , Transdução de Sinais , Termogênese
18.
Mol Metab ; 6(10): 1198-1211, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031720

RESUMO

OBJECTIVE: Previous work has suggested that white adipocytes may also show a mammary luminal secretory cell phenotype during lactation. The capacity of brown and beige/brite adipocytes to display a mammary cell phenotype and the levels at which they demonstrate such phenotypes in vivo is currently unknown. METHODS: To investigate the putative adipocyte origin of mammary gland cells, we performed genetic lineage-labeling experiments in BAT and the mammary glands. RESULTS: These studies indicated that the classic brown adipocytes (Ucp1+) and subcutaneous beige/brite adipocytes (Ucp1-/+) were found in the mammary gland during lactation, when they exhibited a mammary myoepithelial phenotype. Up to 2.5% of the anterior dorsal interscapular mammary myoepithelial cell population had a brown adipocyte origin with an adipose and myoepithelial gene signature during lactation. Eliminating these cells, along with all the brown adipocytes, significantly slowed offspring growth, potentially demonstrating their functional importance. Additionally, we showed mammary epithelial lineage Mmtv+ and Krt14+ cells expressed brown adipocyte markers after weaning, demonstrating that mammary gland cells can display an adipose phenotype. CONCLUSIONS: The identification of a brown adipocyte origin of mammary myoepithelial cells provides a novel perspective on the interrelationships between adipocytes and mammary cells with implications for our understanding of obesity and breast cancer.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Adipogenia , Animais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Camundongos , Camundongos Transgênicos , Obesidade/metabolismo , Obesidade/patologia , Fenótipo , Termogênese , Proteína Desacopladora 1/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28469599

RESUMO

Evidence from clinical and experimental data suggests that thyrotropin receptor (TSHR) signaling is involved in energy expenditure through its impact on white adipose tissue (WAT) and brown adipose tissue (BAT). TSHR expression increases during mesenchymal stem cell (MSC) differentiation into fat. We hypothesize that TSHR activation [TSHR*, elevated thyroid-stimulating hormone, thyroid-stimulating antibodies (TSAB), or activating mutation] influences MSC differentiation, which contributes to body composition changes seen in hypothyroidism or Graves' disease (GD). The role of TSHR activation on adipogenesis was first investigated using ex vivo samples. Neck fat (all euthyroid at surgery) was obtained from GD (n = 11, TSAB positive), toxic multinodular goiter (TMNG, TSAB negative) (n = 6), and control patients with benign euthyroid disease (n = 11, TSAB negative). The effect of TSHR activation was then analyzed using human primary abdominal subcutaneous preadipocytes (n = 16). Cells were cultured in complete medium (CM) or adipogenic medium [ADM, containing thiazolidinedione (TZD), PPARγ agonist, which is able to induce BAT formation] with or without TSHR activation (gain-of-function mutant) for 3 weeks. Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, qPCR measurement of terminal differentiation marker (LPL). BAT [PGC-1α, uncoupling protein 1 (UCP1), and ZIC1], pre-BAT (PRDM16), BRITE- (CITED1), or WAT (LEPTIN) markers were analyzed by semiquantitative PCR or qPCR. In ex vivo analysis, there were no differences in the expression of UCP1, PGC-1α, and ZIC1. BRITE marker CITED1 levels were highest in GD followed by TMNG and control (p for trend = 0.009). This was associated with higher WAT marker LEPTIN level in GD than the other two groups (p < 0.001). In primary cell culture, TSHR activation substantially enhanced adipogenesis with 1.4 ± 0.07 (ORO), 8.6 ± 1.8 (foci), and 5.5 ± 1.6 (LPL) fold increases compared with controls. Surprisingly, TSHR activation in CM also significantly increased pre-BAT marker PRDM16; furthermore, TZD-ADM induced adipogenesis showed substantially increased BAT markers, PGC-1α and UCP1. Our study revealed that TSHR activation plays an important role in the adipogenesis process and BRITE/pre-BAT formation, which leads to WAT or BAT phenotype. It may contribute to weight loss as heat during hyperthyroidism and later transforms into WAT posttreatment of GD when patients gain excess weight.

20.
Trends Endocrinol Metab ; 27(8): 574-585, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27262681

RESUMO

Stem or progenitor cells are an essential component for the development, homeostasis, expansion, and regeneration of many tissues. Within white adipose tissue (WAT) reside vascular-resident adipose progenitor cells (APCs) that can proliferate and differentiate into either white or beige/brite adipocytes, which may control adiposity. Recent studies have begun to show that APCs can be manipulated to control adiposity and counteract 'diabesity'. However, much remains unknown about the identity of APCs and how they may control adiposity in response to homeostatic and external cues. Here, we discuss recent advances in our understanding of adipose progenitors and cover a range of topics, including the stem cell/progenitor lineage, their niche, their developmental and adult roles, and their role in cold-induced beige/brite adipocyte formation.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/citologia , Animais , Homeostase/genética , Homeostase/fisiologia , Humanos , Termogênese/genética , Termogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa