Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int Microbiol ; 26(2): 295-308, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36484913

RESUMO

Bacillus thuringiensis (Bt) is a Gram-positive bacterium that accumulates pesticidal proteins (Cry and Cyt) in parasporal crystals. Proteins from the Cry5, App6 (formerly Cry6), Cry12, Cry13, Cry14, Cry21, and Xpp55 (formerly Cry55) families have been identified as toxic to nematodes. In this study, a total of 846 Bt strains belonging to four collections were analyzed to determine the diversity and distribution of the Bt Cry nematicidal protein genes. We analyzed their presence by PCR, and positives were confirmed by sequencing. As a result, 164 Bt isolates (20%) contained at least one gene coding for nematicidal Cry proteins. The cry5 and cry21 genes were enriched in collection 1 and were often found together in the same strain. Differently, in collection 4, obtained from similar habitats but after 10 years, cry14 was the gene most frequently found. In collection 2, cry5 and app6 were the most abundant genes, and collection 3 had a low incidence of any of these genes. The results point to high variability in the frequencies of the studied genes depending on the timing, geographical origins, and sources. The occurrence of cry1A, cry2, and cry3 genes was also analyzed and showed that the nematicidal Cry protein genes were frequently accompanied by cry1A + cry2. The expression of the genes was assessed by mass spectrometry showing that only 14% of the positive strains produced nematicidal proteins. To our knowledge, this is the first comprehensive screening that examines the presence and expression of genes from the seven known Bt Cry nematicidal families.


Assuntos
Bacillus thuringiensis , Humanos , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/genética , Endotoxinas/química , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores/métodos , Ecossistema , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo
2.
Appl Environ Microbiol ; 88(20): e0119422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36200769

RESUMO

The Cry proteins from Bacillus thuringiensis (Bt) are major insecticidal toxins in formulated Bt sprays and are expressed in genetically engineered Bt crops for insect pest control. However, the widespread application of Bt toxins in the field imposes strong selection pressure on target insects, leading to the evolution of insect resistance to the Bt toxins. Identification and understanding of mechanisms of insect resistance to Bt toxins are an important approach for dissecting the modes of action of Bt toxins and providing knowledge necessary for the development of resistance management technologies. In this study, cabbage looper (Trichoplusia ni) strains resistant to the transgenic dual-Bt toxin WideStrike cotton plants, which express Bt toxins Cry1Ac and Cry1F, were selected from T. ni strains resistant to the Bt formulation Bt-DiPel. The WideStrike-resistant T. ni larvae were confirmed to be resistant to both Bt toxins Cry1Ac and Cry1F. From the WideStrike-resistant T. ni, the Cry1F resistance trait was further isolated to establish a T. ni strain resistant to Cry1F only. The levels of Cry1F resistance in the WideStrike-resistant and the Cry1F-resistant strains were determined, and the inheritance of the Cry1F-resistant trait in the two strains was characterized. Genetic association analysis of the Cry1F resistance trait indicated that the Cry1F resistance in T. ni isolated in this study is not shared with the Cry1Ac resistance mechanism nor is it associated with a mutation in the ABCC2 gene, as has so far been reported in Cry1F-resistant insects. IMPORTANCE Insecticidal toxins from Bacillus thuringiensis (Bt) are highly effective for insect control in agriculture. However, the widespread application of Bt toxins exerts strong selection for Bt resistance in insect populations. The continuing success of Bt biotechnology for pest control requires the identification of resistance and understanding of the mechanisms of resistance to Bt toxins. Cry1F is an important Bt toxin used in transgenic cotton, maize, and soybean varieties adopted widely for insect control. To understand the mode of action of Cry1F and mechanisms of Cry1F resistance in insects, it is important to identify Cry1F-specific resistance and the resistance mechanisms. In this study, Trichoplusia ni strains resistant to commercial "WideStrike" cotton plants that express Bt toxins Cry1Ac and Cry1F were selected, and a Cry1F-specific resistant strain was isolated. The isolation of the novel Cry1F-specific resistance in the T. ni provided an invaluable biological system to discover a Cry1F-specific novel resistance mechanism.


Assuntos
Bacillus thuringiensis , Brassica , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Brassica/metabolismo , Mariposas/genética , Mariposas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Larva/genética , Larva/metabolismo , Insetos , Resistência a Inseticidas/genética
3.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213547

RESUMO

Laboratory selection with Vip3Aa of a field-derived population of Heliothis virescens produced >2,040-fold resistance in 12 generations of selection. The Vip3Aa-selected (Vip-Sel)-resistant population showed little cross-resistance to Cry1Ab and no cross-resistance to Cry1Ac. Resistance was unstable after 15 generations without exposure to the toxin. F1 reciprocal crosses between Vip3Aa-unselected (Vip-Unsel) and Vip-Sel insects indicated a strong paternal influence on the inheritance of resistance. Resistance ranged from almost completely recessive (mean degree of dominance [h] = 0.04 if the resistant parent was female) to incompletely dominant (mean h = 0.53 if the resistant parent was male). Results from bioassays on the offspring from backcrosses of the F1 progeny with Vip-Sel insects indicated that resistance was due to more than one locus. The results described in this article provide useful information for the insecticide resistance management strategies designed to overcome the evolution of resistance to Vip3Aa in insect pests.IMPORTANCEHeliothis virescens is an important pest that has the ability to feed on many plant species. The extensive use of Bacillus thuringiensis (Bt) crops or spray has already led to the evolution of insect resistance in the field for some species of Lepidoptera and Coleoptera. The development of resistance in insect pests is the main threat to Bt crops. The effective resistance management strategies are very important to prolong the life of Bt plants. Lab selection is the key step to test the assumption and predictions of management strategies prior to field evaluation. Resistant insects offer useful information to determine the inheritance of resistance and the frequency of resistance alleles and to study the mechanism of resistance to insecticides.


Assuntos
Proteínas de Bactérias/toxicidade , Resistência a Inseticidas , Lepidópteros/efeitos dos fármacos , Lepidópteros/fisiologia , Animais , Toxinas de Bacillus thuringiensis , Bioensaio , Cruzamentos Genéticos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Herança Multifatorial , Herança Paterna , Seleção Genética , Análise de Sobrevida
4.
J Agric Food Chem ; 72(36): 19689-19698, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39189874

RESUMO

Synergistic factors can enhance the toxicity of Bt toxins and delay the development of Bt resistance. Previous research has demonstrated that a Helicoverpa armigera cadherin fragment (HaCad-TBR) increased the toxicity of Cry1Ac in Plutella xylostella larvae but did not have a synergistic effect on Cry1B, Cry1C, and Cry1F toxins. In this study, a fusion protein (HaCad-TBR-2D3 VL) derived from HaCad-TBR and a Bt Cry1-specific antibody peptide was expressed in Escherichia coli. The HaCad-TBR-2D3 VL enhanced Cry1Ac toxicity more efficiently in insects and Sf9 cells than HaCad-TBR and also significantly increased the toxicity of Cry1B, Cry1C, and Cry1F toxins in insects. Further investigation indicated that the improved stability in insect midguts and higher binding capacity with Bt toxins contributed to the enhanced synergism of HaCad-TBR-2D3 VL over HaCad-TBR. This study suggested that Bt antibody fragments can potentially broaden the synergistic range of Bt receptor fragments, providing a theoretical foundation for developing broad-spectrum synergists for other biopesticides.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Caderinas , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insetos , Larva , Mariposas , Proteínas Recombinantes de Fusão , Animais , Caderinas/genética , Caderinas/metabolismo , Caderinas/imunologia , Caderinas/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/genética , Endotoxinas/imunologia , Endotoxinas/química , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Endotoxinas/genética , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/farmacologia , Mariposas/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Insetos/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Peptídeos/química , Peptídeos/imunologia , Peptídeos/farmacologia , Anticorpos/imunologia , Anticorpos/química , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/química , Inseticidas/farmacologia , Controle Biológico de Vetores
5.
Toxins (Basel) ; 15(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36828451

RESUMO

Resistance monitoring in the Asian corn borer, Ostrinia furnacalis, is necessary to accommodate the commercial introduction and stewardship of Bt maize in China. The susceptibility of 56 O. furnacalis field populations, collected between 2015 and 2021 from the corn belt regions of China, to Cry1Ab and Cry1F toxins was determined. Neonate larvae (within 12 h after hatching) were placed on the surface of semi-artificial agar-free diet incorporating a series of concentrations of purified toxins, and mortality was evaluated after 7d. The median lethal concentration (LC50) values of Cry1Ab and Cry1F were 0.05 to 0.37 µg/g (protein/diet) and 0.10 to 1.22 µg/g, respectively. Although interpopulation variation in susceptibility to the toxins was observed, the magnitude of the differences was 5.8-fold and 8.3-fold for Cry1Ab and Cry1F, respectively. These results suggested that the observed susceptibility differences reflect natural geographical variation in response and not variation caused by prior exposure to selection pressures. Therefore, the O. furnacalis populations were apparently still susceptible to Cry1Ab and Cry1F across their range within China. The monitoring data established here will serve as a comparative reference for early warning signs of field-evolved resistance after the cultivation of Bt maize in China.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Humanos , Recém-Nascido , Zea mays/genética , Endotoxinas , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Mariposas/genética , Larva , Resistência a Inseticidas , Bacillus thuringiensis/genética
6.
J Hazard Mater ; 448: 130904, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860032

RESUMO

The accumulation and persistence of Bt toxins in soils from Bt plants and Bt biopesticides may result in environmental hazards such as adverse impacts on soil microorganisms. However, the dynamic relationships among exogenous Bt toxins, soil characteristics, and soil microorganisms are not well understood. Cry1Ab is one of the most commonly used Bt toxins and was added to soils in this study to evaluate subsequent changes in soil physiochemical properties, microbial taxa, microbial functional genes, and metabolites profiles via 16S rRNA gene pyrosequencing, high-throughput qPCR, metagenomic shotgun sequencing, and untargeted metabolomics. Higher additions of Bt toxins led to higher concentrations of soil organic matter (SOM), ammonium (NH+4-N), and nitrite (NO2--N) compared against controls without addition after 100 days of soil incubation. High-throughput qPCR analysis and shotgun metagenomic sequencing analysis revealed that the 500 ng/g Bt toxin addition significantly affected profiles of soil microbial functional genes involved in soil carbon (C), nitrogen (N), and phosphorus (P) cycling after 100 days of incubation. Furthermore, combined metagenomic and metabolomic analyses indicated that the 500 ng/g Bt toxin addition significantly altered low molecular weight metabolite profiles of soils. Importantly, some of these altered metabolites are involved in soil nutrient cycling, and robust associations were identified among differentially abundant metabolites and microorganisms due to Bt toxin addition treatments. Taken together, these results suggest that higher levels of Bt toxin addition can alter soil nutrients, probably by affecting the activities of Bt toxin-degrading microorganisms. These dynamics would then activate other microorganisms involved in nutrient cycling, finally leading to broad changes in metabolite profiles. Notably, the addition of Bt toxins did not cause the accumulation of potential microbial pathogens in soils, nor did it adversely affect the diversity and stability of microbial communities. This study provides new insights into the putative mechanistic associations among Bt toxins, soil characteristics, and microorganisms, providing new understanding into the ecological impacts of Bt toxins on soil ecosystems.


Assuntos
Microbiota , Solo , Toxinas de Bacillus thuringiensis , RNA Ribossômico 16S , Metaboloma
7.
Artigo em Inglês | MEDLINE | ID: mdl-36813018

RESUMO

The Leucaena leucocephala trypsin inhibitor (LTI) + Bacillus thuringiensis (Bt) protoxins mix has been proposed as a novel larvicide agent in order to control the vector mosquito of dengue virus, Aedes aegypti, in their aquatic breeding sites. However, use of this insecticide formulation has raised concerns about its impacts on aquatic biota. In this context, this work aimed to assess the effects of LTI and Bt protoxins, separately or in combination, in zebrafish, in regard to the evaluation of toxicity at early life stages and to the presence of LTI inhibitory effects on intestinal proteases of this fish. Results showed that LTI and Bt concentrations (250 mg/L, and 0.13 mg/L, respectively), and LTI + Bt mix (250 mg/L + 0.13 mg/L) - 10 times superior to those with insecticidal action - did not cause death nor did it induce morphological changes during embryonic and larval development (3 to 144 h post-fertilization) of zebrafish. Molecular docking analyses highlighted a possible interaction between LTI and zebrafish trypsin, especially through hydrophobic interactions. In concentrations near to those with larvicidal action, LTI (0.1 mg/mL) was able to inhibit in vitro intestinal extracts of trypsin in female and male fish by 83 % and 85 %, respectively, while LTI + Bt mix promoted trypsin inhibition of 69 % in female and 65 % in male ones. These data show that the larvicidal mix can potentially promote deleterious effects to nutrition and survival in non-target aquatic organisms, especially those with trypsin-like dependent protein digestion.


Assuntos
Inseticidas , Animais , Inseticidas/toxicidade , Peixe-Zebra , Inibidores de Proteases/farmacologia , Tripsina , Larva , Simulação de Acoplamento Molecular , Mosquitos Vetores , Inibidores da Tripsina/farmacologia , Antivirais/farmacologia , Proteínas de Bactérias/toxicidade
8.
Life (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36362985

RESUMO

Populus is a genus of globally significant plantation trees used widely in industrial and agricultural production. Poplars are easily damaged by Micromelalopha troglodyta and Hyphantria cunea, resulting in decreasing quality. Bt toxin-encoded by the Cry gene has been widely adopted in poplar breeding because of its strong insect resistance. There is still no comprehensive and sufficient information about the effects of Cry1Ah1-modified (CM) poplars on the ecological environment. Here, we sampled the rhizosphere soils of field-grown CM and non-transgenic (NT) poplars and applied 16S rRNA and internal transcribed spacer amplicon Illumina MiSeq sequencing to determine the bacterial community associated with the CM and NT poplars. Based on the high-throughput sequencing of samples, we found that the predominant taxa included Proteobacteria (about 40% of the total bacteria), Acidobacteria (about 20% of the total bacteria), and Actinobacteria (about 20% of the total bacteria) collected from the natural rhizosphere of NT and CM poplars. In addition, studies on the microbial diversity of poplar showed that Cry1Ah1 expression has no significant influence on rhizosphere soil alkaline nitrogen, but significantly affects soil phosphorus, soil microbial biomass nitrogen, and carbon. The results exhibited a similar bacterial community structure between CM varieties affected by the expression of Cry1Ah1 and non-transgenic poplars. In addition, Cry1Ah1 expression revealed no significant influence on the composition of rhizosphere microbiomes. These results broadly reflect the effect of the Bt toxin-encoded by Cry1Ah1 on the ecology and environment and provide a clear path for researchers to continue research in this field in the future.

9.
Insects ; 13(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35206711

RESUMO

ATP-binding cassette transporter B1 (ABCB1, or P-glycoprotein) is known to be an important participant in multidrug resistance in mammals, and it also has been proved as a transporter for some insecticides in several lepidopteran insects, yet the precise function of this transporter in Spodoptera frugiperda is unknown. Here, we generated a SfABCB1 knockout strain of the S. frugiperda using the CRISPR/Cas9 system to explore its potential roles in determining susceptibility to chemical insecticides or Bt toxins. Bioassay results showed that the susceptibility of SfABCB1 knockout strain to beta-cypermethrin, chlorantraniliprole and emamectin benzoate were significantly increased compared with the wild-type strain DH19, whereas there were no changes to Bt toxins for Cry1Ab, Cry1Fa and Vip3Aa. Our results revealed that SfABCB1 plays important roles in the susceptibility of S. frugiperda to beta-cypermethrin, chlorantraniliprole and emamectin benzoate, and imply that overexpression of ABCB1 may contribute to beta-cypermethrin, chlorantraniliprole and emamectin benzoate resistance in S. frugiperda.

10.
Toxins (Basel) ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065247

RESUMO

Laboratory selection for resistance of field populations is a well-known and useful tool to understand the potential of insect populations to evolve resistance to insecticides. It provides us with estimates of the frequency of resistance alleles and allows us to study the mechanisms by which insects developed resistance to shed light on the mode of action and optimize resistance management strategies. Here, a field population of Mythimna separata was subjected to laboratory selection with either Vip3Aa, Cry1Ab, or Cry1F insecticidal proteins from Bacillus thuringiensis. The population rapidly evolved resistance to Vip3Aa reaching, after eight generations, a level of >3061-fold resistance, compared with the unselected insects. In contrast, the same population did not respond to selection with Cry1Ab or Cry1F. The Vip3Aa resistant population did not show cross resistance to either Cry1Ab or Cry1F. Radiolabeled Vip3Aa was tested for binding to brush border membrane vesicles from larvae from the susceptible and resistant insects. The results did not show any qualitative or quantitative difference between both insect samples. Our data, along with previous results obtained with other Vip3Aa-resistant populations from other insect species, suggest that altered binding to midgut membrane receptors is not the main mechanism of resistance to Vip3Aa.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/farmacologia , Inseticidas/farmacologia , Mariposas/fisiologia , Animais , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Inseticidas/isolamento & purificação , Larva , Ligação Proteica
11.
Pest Manag Sci ; 77(1): 335-342, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32729162

RESUMO

BACKGROUND: The widespread adoption of genetically modified crops, including Bacillius thuringensis (Bt) crops that target chewing insects, has transformed agricultural pest management. This increased use of Bt has raised concerns about the onset of resistance amongst target pests. Recent studies have shown that for some caterpillars, nutritional foraging (e.g. the ratio of proteins and carbohydrates consumed) can affect the insect susceptibility to the Bt toxin Cry1Ac. However, studies on both nutritional foraging and Bt susceptibility tend to rely on laboratory colonies without specifically addressing physiological differences that may occur between populations of the same species. Here, we used choice assays, no choice assays and dose response assays to address two overarching questions: Do populations of Spodoptera frugiperda (J.E. Smith) vary in their protein-carbohydrate foraging behavior? and Does protein-carbohydrate intake impact S. frugiperda's susceptibility to the Bt toxin Cry1F? RESULTS: All three of our S. frugiperda populations actively regulated their protein-carbohydrate intake, but we observed significant differences between populations with respect to their self-selected protein-carbohydrate intake. We also found that feeding at the protein-carbohydrate intake target slightly increased Cry1F susceptibility for one S. frugiperda population, but had no effect on the other two populations. CONCLUSIONS: Our findings indicate that inherent differences exist in the nutritional physiology of three S. frugiperda populations, possibly related to the time spent in culture. This suggests that population-level differences are an important consideration when drawing parallels between field-collected and laboratory-reared insects.


Assuntos
Bacillus thuringiensis , Proteínas Hemolisinas , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Carboidratos , Produtos Agrícolas , Endotoxinas , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Plantas Geneticamente Modificadas/genética , Spodoptera , Zea mays/genética
12.
Toxins (Basel) ; 11(6)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234444

RESUMO

Vip3 proteins are increasingly used in insect control in transgenic crops. To shed light on the structure of these proteins, we used the approach of the trypsin fragmentation of mutants altering the conformation of the Vip3Af protein. From an alanine scanning of Vip3Af, we selected mutants with an altered proteolytic pattern. Based on protease digestion patterns, their effect on oligomer formation, and theoretical cleavage sites, we generated a map of the Vip3Af protein with five domains which match some of the domains proposed independently by two in silico models. Domain I ranges amino acids (aa) 12-198, domain II aa199-313, domain III aa314-526, domain IV aa527-668, and domain V aa669-788. The effect of some mutations on the ability to form a tetrameric molecule revealed that domains I-II are required for tetramerization, while domain V is not. The involvement of domain IV in the tetramer formation is not clear. Some mutations distributed from near the end of domain I up to the end of domain II affect the stability of the first three domains of the protein and destroy the tetrameric form upon trypsin treatment. Because of the high sequence similarity among Vip3 proteins, we propose that our domain map can be extended to the Vip3 family of proteins.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Controle Biológico de Vetores , Alanina/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mutação , Spodoptera/efeitos dos fármacos , Tripsina/química
13.
J Agric Food Chem ; 67(48): 13237-13246, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31671945

RESUMO

The midgut cadherin has been described as one of the main functional receptors for Bacillus thuringiensis (Bt) toxins. Plutella xylostella (P. xylostella) and Helicoverpa armigera (H. armigera) are two major target pests of Bt toxins in China, and the roles of their cadherins in the action of Bt toxins have been only partially studied. Here, we expressed the two cadherins in Sf9 cells and their partial extracellular domains in Escherichia coli and tested them for Bt toxin binding, cellular toxicity, and synergism with toxins. Our results suggested that PxCad might function as a Cry1Ac receptor, although it showed lower binding levels to Cry1Ac and reduced cytotoxicity compared with HaCad. PxCad and HaCad are not receptors for Cry2A, Cry1B, Cry1C, and Cry1F toxins, although some of them can bind to the cadherins. The PxCad-TBR exhibits higher enhancement of Cry1Ac and weak enhancement of Cry1F toxicity in P. xylostella larvae, although it is not the receptor of Cry1F.


Assuntos
Proteínas de Bactérias/metabolismo , Caderinas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Caderinas/genética , Endotoxinas/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/genética
14.
Int. microbiol ; 26(2): 295-308, May. 2023. tab, ilus
Artigo em Inglês | IBECS (Espanha) | ID: ibc-220223

RESUMO

Bacillus thuringiensis (Bt) is a Gram-positive bacterium that accumulates pesticidal proteins (Cry and Cyt) in parasporal crystals. Proteins from the Cry5, App6 (formerly Cry6), Cry12, Cry13, Cry14, Cry21, and Xpp55 (formerly Cry55) families have been identified as toxic to nematodes. In this study, a total of 846 Bt strains belonging to four collections were analyzed to determine the diversity and distribution of the Bt Cry nematicidal protein genes. We analyzed their presence by PCR, and positives were confirmed by sequencing. As a result, 164 Bt isolates (20%) contained at least one gene coding for nematicidal Cry proteins. The cry5 and cry21 genes were enriched in collection 1 and were often found together in the same strain. Differently, in collection 4, obtained from similar habitats but after 10 years, cry14 was the gene most frequently found. In collection 2, cry5 and app6 were the most abundant genes, and collection 3 had a low incidence of any of these genes. The results point to high variability in the frequencies of the studied genes depending on the timing, geographical origins, and sources. The occurrence of cry1A, cry2, and cry3 genes was also analyzed and showed that the nematicidal Cry protein genes were frequently accompanied by cry1A + cry2. The expression of the genes was assessed by mass spectrometry showing that only 14% of the positive strains produced nematicidal proteins. To our knowledge, this is the first comprehensive screening that examines the presence and expression of genes from the seven known Bt Cry nematicidal families.(AU)


Assuntos
Humanos , Bacillus thuringiensis , Nematoides , Toxinas Bacterianas , Proteômica , Microbiologia , Técnicas Microbiológicas
15.
Insect Biochem Mol Biol ; 102: 59-66, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30278206

RESUMO

Adoption of biotech crops engineered to express insecticidal toxins from Bacillus thuringiensis (Bt) has revolutionized insect pest control in agriculture. For continuing effective application and development of the environmentally friendly Bt biotechnology, it is fundamental to understand pathways of toxicity of Bt toxins in insects. In this study, mutations were introduced in the midgut cadherin gene in the cabbage looper, Trichoplusia ni, by CRISPR/Cas9 mutagenesis. T. ni strains with mutations in the genes of two major receptors for Bt toxins, the midgut cadherin and ABCC2, and three Cry1A toxins with shared and differential midgut binding sites were used as an experimental system to dissect the roles of the cadherin and ABCC2 in the pathways of toxicity of Bt toxins. Results from assays of responses of the T. ni strains to different Bt toxins revealed that the cadherin and ABCC2 play independent roles in the mode of action of Cry1A toxins and that Bt toxins exert insecticidal activity through multiple redundant pathways of toxicity in insects. Besides the cadherin and ABCC2 pathways, there exists an additional major pathway of toxicity to be identified for Cry1Aa. The results also confirmed that the toxicity of Cry2Ab involves neither the cadherin nor the ABCC2 protein. The multiple pathway model for Bt toxins clarified from this study provided new insights into the molecular modes of action of Bt toxins and mechanisms of insect resistance to Bt toxins.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/metabolismo , Modelos Biológicos , Mariposas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Caderinas/genética , Caderinas/metabolismo , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas de Insetos/genética , Mariposas/genética , Proteína 2 Associada à Farmacorresistência Múltipla
16.
Rev. bras. entomol ; Rev. bras. entomol;66(2): e20210121, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1387822

RESUMO

ABSTRACT A 6-year field monitoring study was designed to compare the presence of fall armyworm Spodoptera frugiperda (J. E. Smith), leaf injury, its parasitoids, 100 seed weight, and seed yield of Bt maize hybrids approved for commercialization in the Brazilian market. Field trials were planted in two municipalities, divided into two periods, from 2011 to 2014 (period I), and due to the approval of different Bt hybrids, from 2015 to 2016 (period II). Treatments were Bt, non-Bt maize and all non-Bt maize sprayed with insecticide methomyl. Six Bt-maize hybrids were planted, expressing the following proteins: Cry1Ab, Cry1F, Cry1A.105 (Cry1Ab +Cry1Ac +Cry1F), Cry2Ab2a and Vip3. In 2015 and 2016 Bt Powercore was planted due to its commercial approval. The number of S. frugiperda larvae for most Bt hybrids was lower than on non-Bt hybrids, except for Fórmula TL and Herculex in period II, in both municipalities. In period I, Bt hybrids VT, VT 2 and Viptera showed almost no injury on their leaves, despite the high number of fall armyworm larvae found in plants. Different parasitoids emerged from larvae from Bt and non Bt hybrids: Archytas sp., Campoletis sp., Chelonus sp., Eiphosoma sp. and Ophion luteus. The average 100 seed weight was higher in municipality from Sete Lagoas for all Bt hybrids, non-Bt hybrids and non-Bt hybrids sprayed with methomyl, when compared to Nova Porteirinha during period I. Fórmula TL, non-Bt Fórmula TL sprayed with methomyl, and non-Bt Fórmula TL showed the lowest seed yield in both municipalities and periods.

17.
Environ Sci Eur ; 29(1): 1, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133586

RESUMO

BACKGROUND: MON89788 was the first genetically engineered soybean worldwide to express a Bt toxin. Under the brand name Intacta, Monsanto subsequently engineered a stacked trait soybean using MON89788 and MON87701-this stacked soybean expresses an insecticidal toxin and is, in addition, tolerant to glyphosate. After undergoing risk assessment by the European Food Safety Authority (EFSA), the stacked event was authorised for import into the EU in June 2012, including for use in food and feed. This review discusses the health risks associated with Bt toxins present in these genetically engineered plants and the residues left from spraying with the complementary herbicide. RESULTS: We have compared the opinion published by EFSA [1] with findings from other publications in the scientific literature. It is evident that there are several issues that EFSA did not consider in detail and which will need further assessment: (1) There are potential combinatorial effects between plant components and other impact factors that might enhance toxicity. (2) It is known that Bt toxins have immunogenic properties; since soybeans naturally contain many allergens, these immunogenic properties raise specific questions. (3) Fully evaluated and reliable protocols for measuring the Bt concentration in the plants are needed, in addition to a comprehensive set of data on gene expression under varying environmental conditions. (4) Specific attention should be paid to the herbicide residues and their interaction with Bt toxins. CONCLUSIONS: The case of the Intacta soybeans highlights several regulatory problems with Bt soybean plants in the EU. Moreover, many of the issues raised also concern other genetically engineered plants that express insecticidal proteins, or are engineered to be resistant to herbicides, or have those two types of traits combined in stacked events. It remains a matter of debate whether the standards currently applied by the risk assessor, EFSA, and the risk manager, the EU Commission, meet the standards for risk analysis defined in EU regulations such as 1829/2003 and Directive 2001/18. While this publication cannot provide a final conclusion, it allows the development of some robust hypotheses that should be investigated further before such plants can be considered to be safe for health and the environment. In general, the concept of comparative risk assessment needs some major revision. Priority should be given to developing more targeted approaches. As shown in the case of Intacta, these approaches should include: (i) systematic investigation of interactions between the plant genome and environmental stressors as well as their impact on gene expression and plant composition; (ii) detailed investigations of the toxicity of Bt toxins; (iii) assessment of combinatorial effects taking into account long-term effects and the residues from spraying with complementary herbicides; (iv) investigation into the impact on the immune and hormonal systems and (v) investigation of the impact on the intestinal microbiome after consumption. Further and in general, stacked events displaying a high degree of complexity due to possible interactions should not undergo a lower level of risk assessment than the parental plants.

18.
ACS Synth Biol ; 5(3): 241-9, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26692340

RESUMO

Synthetic biology holds promise to engineer systems to treat diseases. One critical, yet underexplored, facet of designing such systems is the interplay between the system and the pathogen. Understanding this interplay may be critical to increasing efficacy and overcoming resistance against the system. Using the principles of synthetic biology, we engineer a strain of Escherichia coli to attract and intoxicate the nematode Caenorhabditis elegans. Our bacteria are engineered with a toxin module, which intoxicates the nematode upon ingestion, and an attraction module, which serves to attract and increase the feeding rate of the nematodes. When independently implemented, these modules successfully intoxicate and attract the worms, respectively. However, in combination, the efficacy of our bacteria is significantly reduced due to aversive associative learning in C. elegans. Guided by mathematical modeling, we dynamically regulate module induction to increase intoxication by circumventing learning. Our results detail the creation of a novel nematicidal bacterium that may have application against nematodes, unravel unique constraints on circuit dynamics that are governed by C. elegans physiology, and add to the growing list of design and implementation considerations associated with synthetic biology.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Escherichia coli/metabolismo , Toxinas Biológicas/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Animais , Bacillus thuringiensis/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Escherichia coli/genética , Modelos Teóricos , Percepção de Quorum , Toxinas Biológicas/genética
19.
Toxicon ; 109: 1-3, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26548713

RESUMO

As biological control agents take an expanding share of the pesticides market and the production of insect-resistant crops increases, it is essential to understand the structure and function of the active agents, the invertebrate-active toxins that are the fundamental ingredients of these control systems. The potential for these agents in industry, agriculture and medicine necessitates a thorough investigation of their activity.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidade , Controle Biológico de Vetores , Modelos Moleculares , Relação Estrutura-Atividade
20.
Rev. Univ. Ind. Santander, Salud ; 52(4): 440-449, Octubre 21, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1340843

RESUMO

Abstract Developments in applying biotechnology to crops have generated strong ethical and social debates about its use. This study was aimed at reviewing epidemiological evidence regarding the consumption of genetically modified foods and the possible effects on human health, particularly certain insect-resistant crops in which isolated Bacillum thurigiensis Cry protein has been introduced. An in-depth review of databases was conducted for 2007-2019. Articles not referring to human health were excluded. In total, 1,350 were obtained and 118 were reviewed. As a result, it can be concluded that most studies have focused on chemical composition and in vitro or laboratory animal trials. Furthermore, the guiding principle of substantial equivalency, generally used today to evaluate potential health effects, should not replace rigorously evaluating products with nutritional, immunological, and toxicological trials. Lastly, this review demonstrates a lack of epidemiological evidence, and therefore, the safety of these foods cannot be conclusively determined based on evidence.


Resumen El desarrollo de la biotecnología aplicada a los cultivos ha generado fuertes debates éticos y sociales sobre su uso. El presente estudio tuvo por objetivo revisar las evidencias epidemiológicas existentes relacionando el consumo de alimentos genéticamente modificados, en particular aquellos provenientes de cultivos con resistencia a algunos insectos plagas en los que se han introducido proteínas Cry aisladas de Bacillum thurigiensis con probables daños o trastornos en la salud de las personas. Se realizó una revisión en profundidad en el periodo 2007 a 2019, en bases de datos. Se excluyeron aquellos artículos que no hacían referencia a salud humana. Se obtuvieron 1 350 y finalmente se revisaron 118. La revisión permitió concluir que la mayoría de los estudios existentes se centran en información respecto a la composición química y ensayos in vitro o en laboratorio con animales. Igualmente, que el principio rector de equivalencia sustancial hoy utilizado en forma generalizada para la evaluación de potenciales efectos en salud, no debería sustituir la necesidad de una evaluación rigurosa de los productos incluyendo ensayos nutricionales, inmunológicos y toxicológicos. Por último se comprueba también que la evidencia epidemiológica incluida es insuficiente por lo que lo que no es posible concluir a partir de ella, sobre la inocuidad de estos alimentos.


Assuntos
Humanos , Alimentos Geneticamente Modificados , Toxinas de Bacillus thuringiensis , Organismos Geneticamente Modificados , Abastecimento de Alimentos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa