Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2300897120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897965

RESUMO

Recently, [Herrada, M. A. and Eggers, J. G., Proc. Natl. Acad. Sci. U.S.A. 120, e2216830120 (2023)] reported predictions for the onset of the path instability of an air bubble rising in water and put forward a physical scenario to explain this intriguing phenomenon. In this Brief Report, we review a series of previously established results, some of which were overlooked or misinterpreted by the authors. We show that this set of findings provides an accurate prediction and a consistent explanation of the phenomenon that invalidates the suggested scenario. The instability mechanism actually at play results from the hydrodynamic fluid-body coupling made possible by the unconstrained motion of the bubble which behaves essentially, in the relevant size range, as a rigid, nearly spheroidal body on the surface of which water slips freely.

2.
Proc Natl Acad Sci U S A ; 120(4): e2211509120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649434

RESUMO

Gas vesicles used as contrast agents for noninvasive ultrasound imaging must be formulated to be stable, and their mechanical properties must be assessed. We report here the formation of perfluoro-n-butane microbubbles coated with surface-active proteins that are produced by filamentous fungi (hydrophobin HFBI from Trichoderma reesei). Using pendant drop and pipette aspiration techniques, we show that these giant gas vesicles behave like glassy polymersomes, and we discover novel gas extraction regimes. We develop a model to analyze the micropipette aspiration of these compressible gas vesicles and compare them to incompressible liquid-filled vesicles. We introduce a sealing parameter to characterize the leakage of gas under aspiration through the pores of the protein coating. Utilizing this model, we can determine the elastic dilatation modulus, surface viscosity, and porosity of the membrane. These results demonstrate the engineering potential of protein-coated bubbles for echogenic and therapeutic applications and extend the use of the pipette aspiration technique to compressible and porous systems.


Assuntos
Porosidade
3.
Proc Natl Acad Sci U S A ; 120(4): e2216830120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649413

RESUMO

It has been documented since the Renaissance that an air bubble rising in water will deviate from its straight, steady path to perform a periodic zigzag or spiral motion once the bubble is above a critical size. Yet, unsteady bubble rise has resisted quantitative description, and the physical mechanism remains in dispute. Using a numerical mapping technique, we for the first time find quantitative agreement with high-precision measurements of the instability. Our linear stability analysis shows that the straight path of an air bubble in water becomes unstable to a periodic perturbation (a Hopf bifurcation) above a critical spherical radius of R = 0.926 mm, within 2% of the experimental value. While it was previously believed that the bubble's wake becomes unstable, we now demonstrate a new mechanism, based on the interplay between flow and bubble deformation.


Assuntos
Água , Movimento (Física)
4.
Dev Biol ; 506: 1-6, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995916

RESUMO

Tile patterns, in which numerous cells are arranged in a regular pattern, are found in a variety of multicellular organisms and play important functional roles. Such regular arrangements of cells are regulated by various cell adhesion molecules. On the other hand, cell shape is also known to be regulated by physical constraints similar to those of soap bubbles. In particular, circumference minimization plays an important role, and cell adhesion negatively affects this process, thereby regulating tissue morphogenesis based on physical properties. Here, we focus on the Drosophila compound eye and the mouse auditory epithelium, and summarize the mechanisms of tile pattern formation by cell adhesion molecules such as cadherins, Irre Cell Recognition Modules (IRMs), and nectins. Phenomena that cannot be explained by physical stability based on cortical tension alone have been reported in the tile pattern formation in the compound eye, suggesting that previously unexplored forces such as cellular concentric expansion force may play an important role. We would like to summarize perspectives for future research on the mechanisms of tissue morphogenesis.


Assuntos
Moléculas de Adesão Celular , Sabões , Animais , Camundongos , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Caderinas/metabolismo , Morfogênese/fisiologia , Drosophila/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(29): e2205827119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858338

RESUMO

Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.

6.
Nano Lett ; 24(26): 8208-8215, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913825

RESUMO

In the heterostructure of two-dimensional (2D) materials, many novel physics phenomena are strongly dependent on the Moiré superlattice. How to achieve the continuous manipulation of the Moiré superlattice in the same sample is very important to study the evolution of various physical properties. Here, in minimally twisted monolayer-multilayer graphene, we found that bubble-induced strain has a huge impact on the Moiré superlattice. By employing the AFM tip to dynamically and continuously move the nanobubble, we realized the modulation of the Moiré superlattice, like the evolution of regular triangular domains into long strip domain structures with single or double domain walls. We also achieved controllable modulation of the Moiré superlattice by moving multiple nanobubbles and establishing the coupling of nanobubbles. Our work presents a flexible method for continuous and controllable manipulation of Moiré superlattices, which will be widely used to study novel physical properties in 2D heterostructures.

7.
Small ; 20(25): e2308580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225699

RESUMO

The progression of self-powered micro/-nanomotors (MNMs) has rapidly evolved over the past few decades, showing applications in various fields such as nanotechnology, biomedical engineering, microfluidics, environmental science, and energy harvesting. Miniaturized MNMs transduce chemical/biochemical energies into mechanical motion for navigating through complex fluidic environments with directional control via external forces fields such as magnetic, photonic, and electric stimuli. Among various propulsion mechanisms, buoyancy-driven MNMs have received noteworthy recognition due to their simplicity, efficiency, and versatility. Buoyancy force-driven motors harness the principles of density variation-mediated force to overcome fluidic resistance to navigate through complex environments. Restricting the propulsion in one direction helps to control directional movement, making it more efficient in isotropic solutions. The changes in pH, ionic strength, chemical concentration, solute gradients, or the presence of specific molecules can influence the motion of buoyancy-driven MNMs as evidenced by earlier reports. This review aims to provide a fundamental and detailed analysis of the current state-of-the-art in buoyancy-driven MNMs, aiming to inspire further research and innovation in this promising field.

8.
Small ; 20(20): e2309012, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38178643

RESUMO

The self-healing ability of superhydrophobic surfaces in air has attracted tremendous additions in recent years. Once the superhydrophobic surface is damaged underwater, water seeps into gaps among micro/nano structures. The air film diffuses into water and eventually disappears during immersion without actively replenishing the gas, which results in the impossible of self-healing. Here, an underwater self-healing superhydrophobic coating with the synergetic effect of hydrogen bonds and self-formed bubbles via the spraying method is fabricated. The movement of hydrogen bonds of the prepared polyurethane enables microstructures to reconstruct at room temperature and self-formed bubbles of effervescent materials underwater actively replenish gas before microstructures completely self-healing, achieving the self-healing property of the superhydrophobic coating. Moreover, the hydrophilic effervescent material is sprayed along with unmodified micron-scaled particles because modified nano-scale particles are key factors for the realization of superhydrophobic coating. An underwater stable superhydrophobic surface with pressure resistance (4.9 kPa) is demonstrated. This superhydrophobic coating also shows excellent drag reduction, anti-icing, and anti-corrosion properties. This facile and scalable method offers a new route that an underwater self-healing superhydrophobic coating executes the gas film recovery.

9.
Biotechnol Bioeng ; 121(2): 524-534, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902645

RESUMO

In the biotechnology industry, ensuring the health and viability of mammalian cells, especially Chinese Hamster Ovary (CHO) cells, plays a significant role in the successful production of therapeutic agents. These cells are typically cultivated in aerated bioreactors, where they encounter fluid stressors from rapidly deforming bubbles. These stressors can disrupt essential biological processes and potentially lead to cell death. However, the impact of these transient, elevated stressors on cell viability remains elusive. In this study, we first employ /cgqamicrofluidics to expose CHO cells near to bubbles undergoing pinch-off, subsequently collecting and assaying the cells to quantify the reduction in viability. Observing a significant impact, we set out to understand this phenomenon. We leverage computational fluid dynamics and numerical particle tracking to map the stressor field history surrounding a rapidly deforming bubble. Separately, we expose CHO cells to a known stressor level in a flow constriction device, collecting and assaying the cells to quantify the reduction in viability. By integrating the numerical data and results from the flow constriction device experiments, we develop a predictive model for cell viability reduction. We validate this model by comparing its predictions to the earlier microfluidic results, observing good agreement. Our findings provide critical insights into the relationship between bubble-induced fluid stressors and mammalian cell viability, with implications for bioreactor design and cell culture protocol optimization in the biotechnology sector.


Assuntos
Biotecnologia , Microbolhas , Cricetinae , Animais , Cricetulus , Sobrevivência Celular , Células CHO , Reatores Biológicos
10.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446563

RESUMO

The dynamics of granular materials are critical to many natural and industrial processes; granular motion is often strikingly similar to flow in conventional liquids. Food, pharmaceutical, and clean energy processes utilize bubbling fluidized beds, systems in which gas is flowed upward through granular particles, suspending the particles in a liquid-like state through which gas voids or bubbles rise. Here, we demonstrate that vibrating these systems at a resonant frequency can transform the normally chaotic motion of these bubbles into a dynamically structured configuration, creating reproducible, controlled motion of particles and gas. The resonant frequency is independent of particle properties and system size, and a simple harmonic oscillator model captures this frequency. Discrete particle simulations show that bubble structuring forms because of rapid, local transitions between solid-like and fluid-like behavior in the grains induced by vibration. Existing continuum models for gas-solid flows struggle to capture these fluid-solid transitions and thus cannot predict the bubble structuring. We propose a constitutive relationship for solids stress that predicts fluid-solid transitions and hence captures the experimental structured bubbling patterns. Similar structuring has been observed by oscillating gas flow in bubbling fluidized beds. We show that vibrating bubbling fluidized beds can produce a more ordered structure, particularly as system size is increased. The scalable structure and continuum model proposed here provide the potential to address major issues with scale-up and optimal operation, which currently limit the use of bubbling fluidized beds in existing and emerging technologies.

11.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155104

RESUMO

An air embolism is induced by intravascular bubbles that block the blood flow in vessels, which causes a high risk of pulmonary hypertension and myocardial and cerebral infarction. However, it is still unclear how a moving bubble is stopped in the blood flow to form an air embolism in small vessels. In this work, microfluidic experiments, in vivo and in vitro, are performed in small vessels, where bubbles are seen to deform and stop gradually in the flow. A clot is always found to originate at the tail of a moving bubble, which is attributed to the special flow field around the bubble. As the clot grows, it breaks the lubrication film between the bubble and the channel wall; thus, the friction force is increased to stop the bubble. This study illustrates the stopping process of elongated bubbles in small vessels and brings insight into the formation of air embolism.


Assuntos
Ar , Vasos Sanguíneos/fisiopatologia , Embolia Aérea/fisiopatologia , Reologia , Animais , Agregação Celular , Fricção , Lubrificação , Coelhos
12.
Proc Natl Acad Sci U S A ; 118(23)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088844

RESUMO

The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz. We identify the competition between solutal and thermal Marangoni forces as the origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrate's side of the bubble, leading to a solutal Marangoni flow toward the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate, which sucks the bubble toward it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.

13.
Nano Lett ; 23(18): 8532-8538, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37669559

RESUMO

Realization of high-quality van der Waals (vdWs) heterostructures by stacking two-dimensional (2D) layers requires atomically clean interfaces. Because of strong adhesion between the constituent layers, the vdWs forces could drive trapped contaminants together into submicron-size "bubbles", which leaves large interfacial areas atomically clean. Here, we study the kinetics of nanobubbles in tiny-angle twisted bilayer graphene (TBG) and our results reveal a substantial influence of the moiré superlattice on the motion of nanoscale interfacial substances. Our experiments indicate that the bubbles will mainly move along the triangular network of domain boundaries in the tiny-angle TBG when the sizes of the bubbles are comparable to that of an AA-stacking region. When the size of the bubble is smaller than that of an AA-stacking region, the bubble becomes motionless and is fixed in the AA-stacking region, because of its large out-of-plane corrugation.

14.
Nano Lett ; 23(17): 8203-8210, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584336

RESUMO

There is a lack of deep understanding of hydrogen intercalation into graphite due to many challenges faced during characterization of the systems. Therefore, a suitable route to trap isolated hydrogen molecules (H2) between the perfect graphite lattices needs to be found. Here we realize the formation of hydrogen bubbles in graphite with controllable density, size, and layer number. We find that the molecular H2 cannot be diffused between nor escape from the defect-free graphene lattices, and it remains stable in the pressurized bubbles up to 400 °C. The internal pressure of H2 inside the bubbles is strongly temperature dependent, and it decreases as the temperature rises. The proton permeation rate can be estimated at a specific plasma power. The producing method of H2 bubbles offers a useful way for storing hydrogen in layered materials, and these materials provide a prospective research platform for studying nontrivial quantum effects in confined H2.

15.
Nano Lett ; 23(4): 1267-1272, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36689737

RESUMO

Hydrogen is an important building block in global strategies toward a future green energy system. To make this transition possible, intense scientific efforts are needed, also in the field of materials science. Two-dimensional crystals, such as hexagonal boron nitride (hBN), are very promising in this regard, as it has been demonstrated that micrometer-sized flakes are excellent barriers to molecular hydrogen. However, it remains an open question whether large-area layers fabricated by industrially relevant methods preserve such promising properties. In this work, we show that electron-beam-induced splitting of water creates hBN bubbles that effectively store molecular hydrogen for weeks and under extreme mechanical deformation. We demonstrate that epitaxial hBN allows direct visualization and monitoring of the process of hydrogen generation by radiolysis of interfacial water. Our findings show that hBN is not only a potential candidate for hydrogen storage but also holds promise for the development of unconventional hydrogen production schemes.

16.
Undersea Hyperb Med ; 51(1): 71-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615356

RESUMO

Purpose: Ultrasound imaging is commonly used in decompression research to assess venous gas emboli (VGE) post-dive, with higher loads associated with increased decompression sickness risk. This work examines, for the first time in humans, the performance of a novel electrical impedance spectroscopy technology (I-VED), on possible detection of post-dive bubbles presence and arterial endothelial dysfunction that may be used as markers of decompression stress. Methods: I-VED signals were recorded in scuba divers who performed standardized pool dives before and at set time points after their dives at 35-minute intervals for about two hours. Two distinct frequency components of the obtained signals, Low-Pass Frequency-LPF: 0-0.5 Hz and Band-Pass Frequency-BPF: 0.5-10 Hz, are extracted and respectively compared to VGE presence and known flow-mediated dilation trends for the same dive profile for endothelial dysfunction. Results: Subjects with VGE counts above the median for all subjects were found to have an elevated average LPF compared to subjects with lower VGE counts, although this was not statistically significant (p=0.06), as well as significantly decreased BPF standard deviation post-dive compared to pre-dive (p=0.008). Conclusions: I-VED was used for the first time in humans and operated to provide qualitative in-vivo electrical impedance measurements that may contribute to the assessment of decompression stress. Compared to ultrasound imaging, the proposed method is less expensive, not operator-dependent and compatible with continuous monitoring and application of multiple probes. This study provided preliminary insights; further calibration and validation are necessary to determine I-VED sensitivity and specificity.


Assuntos
Embolia Aérea , Doenças Vasculares , Humanos , Impedância Elétrica , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/etiologia , Artérias , Descompressão
17.
Compr Rev Food Sci Food Saf ; 23(2): e13317, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38477217

RESUMO

Over the last three decades, decontamination management of fresh fruits and vegetables (FFVs) in the packhouses and along the supply chains has been heavily dependent on chemical-based wash. This has resulted in the emergence of resistant foodborne pathogens and often the deposition of disinfectant byproducts on FFVs, rendering them unacceptable to consumers. The management of foodborne pathogens, microbial contaminants, and quality of FFVs are a major concern for the horticultural industries and public health. Activated water systems (AWS), such as electrolyzed water, plasma-activated water, and micro-nano bubbles, have gained significant attention from researchers over the last decade due to their nonthermal and nontoxic mode of action for microbial inactivation and preservation of FFVs quality. The aim of this review is to provide a comprehensive summary of recent progress on the application of AWS and their effects on quality attributes and microbial safety of FFVs. An overview of the different types of AWS and their properties is provided. Furthermore, the review highlights the chemistry behind generation of reactive species and the impact of AWS on the quality attributes of FFVs and on the inactivation/reduction of spoilage and pathogenic microbes (in vivo or in vitro). The mechanisms of action of microorganism inactivation are discussed. Finally, this work highlights challenges and limitations for commercialization and safety and regulation issues of AWS. The synergistic prospect on combining AWS for maximum microorganism inactivation effectiveness is also considered. AWS offers a potential alternative as nonchemical interventions to maintain quality attributes, inactivate spoilage and pathogenic microorganisms, and extend the shelf-life for FFVs.


Assuntos
Frutas , Verduras , Contaminação de Alimentos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Humanos
18.
Small ; 19(18): e2207565, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732889

RESUMO

Micromotors hold great promise for extensive practical applications such as those in biomedical domains and reservoir exploration. However, insufficient propulsion of the micromotor limits its application in crossing biological barriers and breaking reservoir boundaries. In this study, an ultrafast microbullet based on laser cavitation that can utilize the energy of a cavitation bubble and realize its own hurtling motion is reported. The experiments are performed using high-speed photography. A boundary integral method is adopted to reveal the motion mechanism of a polystyrene (PS)/magnetic nanoparticle (MNP) microbullet under the action of laser cavitation. Furthermore, the influence of certain factors (including laser intensity, microbullet size, and ambient temperature) on the motion of the microbullet was explored. For the PS/MNP microbullet driven by laser cavitation, the instantaneous velocity obtained can reach 5.23 m s-1 . This strategy of driving the PS/MNP microbullet provides strong penetration ability and targeted motion. It is believed that the reported propulsion mechanism opens up new possibilities for micromotors in a wide range of engineering applications.

19.
Small ; 19(49): e2302939, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496086

RESUMO

Microbubble generation and manipulation play critical roles in diverse applications such as microfluidic mixing, pumping, and microrobot propulsion. However, existing methods are typically limited to lateral movements on customized substrates or rely on specific liquids with particular properties or designed concentration gradients, thereby hindering their practical applications. To address this challenge, this paper presents a method that enables robust vertical manipulation of microbubbles. By focusing a resonant laser on hydrophilic silica-coated gold nanoparticle arrays immersed in water, plasmonic microbubbles are generated and detach from the substrates immediately upon cessation of laser irradiation. Using simple laser pulse control, it can achieve an adjustable size and frequency of bubble bouncing, which is governed by the movement of the three-phase contact line during surface wetting. Furthermore, it demonstrates that rising bubbles can be pulled back by laser irradiation induced thermal Marangoni flow, which is verified by particle image velocimetry measurements and numerical simulations. This study provides novel insights into flexible bubble manipulation and integration in microfluidics, with significant implications for various applications including mixing, drug delivery, and the development of soft actuators.

20.
J Exp Bot ; 74(18): 5840-5853, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37463327

RESUMO

Freeze-thaw-induced embolism, a key limiting factor for perennial plants results from the formation of gas bubbles during freezing and their expansion during thawing. However, the ice volumetric increase generates local pressures, which can affect the formation of bubbles. To characterize local dynamics of pressure tension and the physical state of the sap during freeze-thaw cycles, we simultaneously used ultrasonic acoustic emission analysis and synchrotron-based high-resolution computed tomography on the diffuse-porous species Betula pendula. Visualization of individual air-filled vessels and the distribution of gas bubbles in frozen xylem were performed.. Ultrasonic emissions occurred after ice formation, together with bubble formation, whereas the development of embolism took place after thawing. The pictures of frozen tissues indicated that the positive pressure induced by the volumetric increase of ice can provoke inward flow from the cell wall toward the lumen of the vessels. We found no evidence that wider vessels within a tissue were more prone to embolism, although the occurrence of gas bubbles in larger conduits would make them prone to earlier embolism. These results highlight the need to monitor local pressure as well as ice and air distribution during xylem freezing to understand the mechanism leading to frost-induced embolism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa