Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(3): 1111-1118, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32785954

RESUMO

BACKGROUND: Tea processing involves fermentation, withering, steaming or pan-firing, rolling, baking, and drying. Some of these steps are performed at a high temperatures. At such temperatures the creep of the tea leaves plays an important role in the quality of tea. In materials science, creep is the tendency of a tea leaf to move slowly or defom permanently under a constant load. There has been much research on the mechanical properties of the outmost cuticular layer of leaves but there are few reports addressing the mechanical properties of whole leaves. RESULTS: We cut tea leaf into specimen of dog-bone shape and measure the time-dependent creep deformation using a dynamic mechnical analyzer. Three different tea leaves grown in Taiwan were examined. The nonlinear Burgers model is proposed to describe the creep deformation of the tea leaves. CONCLUSIONS: The creep of the tea leaves consists of primary and steady states, and the creep deformation is accurately described by the Kelvin representation of the nonlinear Burgers model. The viscosities in the primary stages satisfied the Arrhenius equation, and the activation energies were determined. The stress exponents for the creep of the tea leaves were less than unity. The Maxwell representation of the Burgers model is mathematically equivalent to the Kelvin representation of the Burgers model and can also be used to explain the creep of tea leaves. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Folhas de Planta/química , Fenômenos Biomecânicos , Camellia sinensis/química , Produção Agrícola/métodos , Folhas de Planta/crescimento & desenvolvimento , Taiwan , Chá/química , Temperatura
2.
Philos Trans A Math Phys Eng Sci ; 378(2172): 20190278, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32389082

RESUMO

We investigate, in the distributional setting, the restrictions on the constitutive equation for a fractional Burgers model of viscoelastic fluid that follow from the weak form of the entropy inequality under isothermal conditions. The results are generalized, from the Burgers model, to an arbitrary class of linear constitutive equations with fractional derivatives. Our results show that the restrictions obtained here on the coefficients of constitutive equations are weaker when compared with the restrictions obtained by Bagley-Torvik method. We show the precise relation between restrictions derived here and those derived by Bagley-Torvik. We deal with the creep test, for the case when Bagley-Torvik conditions are violated, and new conditions obtained in this work are satisfied. The results show a qualitative difference in the form of creep function. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'.

3.
Sci Rep ; 14(1): 17287, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068223

RESUMO

During the true triaxial hydraulic fracturing experiments, the compression stress applied to the specimen surface cannot be transferred to the interior immediately, resulting in inconsistency with in-situ stress conditions. To quantitatively analyze the stress transfer process from the surface to the interior of the specimen, an experimental method for monitoring the inside stress was proposed based on Fiber Bragg Grating (FBG) sensing technique, based on which the true triaxial stress loading experiments were conducted on a concrete-like specimen of 30 cm × 30 cm × 30 cm. The results show that the stresses inside the specimen require a certain loading time to reach the uniform state. The loading time required for stress transfer from the surface to the interior of the specimen decreases with the increase of compression stresses. The stress transfer process in rock materials is determined by creep. The closure of microcracks results in stress redistribution inside the specimen during creep. Moreover, a 3-D Burgers model is modified to describe the stress transfer process. Finally, the stress transfer phenomenon during hydraulic fracturing was verified by coal fracturing experiments. This study can help to understand the stress transfer mechanism, providing guidance for standardizing the laboratory simulation of in-situ stress.

4.
Materials (Basel) ; 17(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793508

RESUMO

In the finite element analysis of asphalt concrete (AC), it is nowadays common to incorporate the information from the underlying scales to study the overall response of this material. Heterogeneity observed at the asphalt mixture scale is analyzed in this paper. Reliable finite element analysis (FEA) of asphalt concrete comprises a set of complex issues. The two main aspects of the asphalt concrete FEA discussed in this study are: (1) digital reconstruction of the asphalt pavement microstructure using processing of the high-quality images; and (2) FEA of the asphalt concrete idealized samples accounting for the viscoelastic material model. Reconstruction of the asphalt concrete microstructure is performed using a sequence of image processing operations (binarization, removing holes, filtering, segmentation and boundaries detection). Geometry of the inclusions (aggregate) are additionally simplified in a controlled mode to reduce the numerical cost of the analysis. As is demonstrated in the study, the introduced geometry simplifications are justified. Computational cost reduction exceeds of several orders of magnitude additional modeling error occurring due to the applied simplification technique. Viscoelastic finite element analysis of the AC identified microstructure is performed using the Burgers material model. The analysis algorithm is briefly described with a particular focus on the computational efficiency aspects. In order to illustrate the proposed approach, a set of 2D problems is solved. Numerical results confirm both the effectiveness of the self-developed code and the applicability of the Burgers model to the analyzed class of AC analysis problems. Further research directions are also described to highlight the potential benefits of the developed approach to numerical modeling of asphalt concrete.

5.
Polymers (Basel) ; 16(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065292

RESUMO

The primary challenge during the secondary bonding process of full-height honeycomb sandwich structures is the aramid honeycomb core's height shrinkage. This paper systematically investigated the height evolution behavior of the honeycomb core by using a creep testing machine. The results showed that the out-of-plane compression deformation curve of aramid honeycomb cores is mainly divided into three stages: the dehumidification stage, the pressurization stage and the creep stage. Under conditions of high temperature and pressure, height shrinkage was attributed to the dehydration caused by moisture infiltration, and the compression creep resulted from the slippage of polymer molecular chains. Dehydration shrinkage is stable, whereas compression creep reflects typical viscoelastic polymer characteristics. By employing the viscoelastic Burgers mechanical model and applying the nonlinear surface fitting method, the total height shrinkage deformation behavior of the aramid honeycomb core during the curing process can be accurately predicted by summing the above three stages. This research contributes valuable insights for the manufacturing process of honeycomb sandwich structures.

6.
Heliyon ; 10(4): e26189, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390082

RESUMO

Guadua angustifolia is a bamboo species that has been used in construction since it is an excellent sustainable material. However, it creeps under sustained loading, modifying the structural behavior of culms and joints. Thus, this study was aimed at describing the creep behavior of Guadua on the transverse plane. To this end, 60 Guadua rings were submitted to a diametric compression load by means of steel blocks, while the diametric displacement was measured over time. In tests conducted for up to 90 days, the displacements did not reach a stationary value. A high degree of deformation over time was measured, which was about 2-3 times that reported for bamboo creep under axial bending. The data were successfully fitted to a generalized Maxwell model and a Burgers model. Model parameters were not significantly different when being fitted at 30, 50, 60, and 90 days, suggesting that parameters of viscoelastic models to represent bamboo creep on the transverse plane can be captured with tests lasting 30 days. Eleven rings failed at a stress level of 3.64 MPa (Coefficient of variation CV = 0.22) and a strain level of 0.0373 (CV = 0.20) which are 39% lower and 78% higher than the failure stress and strain, respectively, obtained in static control tests. The substantial creep on the transverse plane indicates that the stiffness and capacity of some types of bamboo joints may be drastically reduced over time. Fitted parameters may be used in theoretical models to assess the performance of bamboo elements and joints under transverse loading over time.

7.
Materials (Basel) ; 17(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38730830

RESUMO

This study is aimed at examining the mesoscopic mechanical response and crack development characteristics of asphalt mixtures using the three-dimensional discrete element approach via particle flow code (PFC). The material is considered an assembly of three phases of aggregate, mortar, and voids, for which three types of contact are identified and described using a modified Burgers model allowing for bond failure and crack formation at contact. The laboratory splitting test is conducted to determine the contact parameters and to provide the basis for selecting three different load levels used in the indirect tensile fatigue test and simulation. The reliability of the simulation is verified by comparing the fatigue lives and dissipated energies against those from the test. Under cyclic loading, the internal tensile and compressive force chains vary dynamically as a response to the cyclic loading; both are initially concentrated beneath the top loading strip and then extend downward along the loading line. The compressive chains are oriented roughly vertically and develop an elliptic shape as damage grows, while the tensile chains are mostly horizontal and become denser. An analysis based on the histories of the numbers of different contact types indicates that damage mainly originates from bond failures among the aggregate particles and at the aggregate-mortar interfaces. In terms of location, cracking is initiated below the loading point (consistent with observations from the force chains) and propagates downward and laterally, leading to the macrocrack along the vertical diameter. The findings provide a mesoscopic understanding of the fatigue damage initiation and propagation in asphalt mixture.

8.
Foods ; 12(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761130

RESUMO

Okara, an unassuming residue, is emerging as a notable reservoir of essential nutrients, encompassing an abundant supply of protein, dietary fiber, and potent antioxidant components. Hence, the incorporation of okara as an ingredient in the production of rice flour-based rolls held a considerable interest in nutritional and functional aspects. Okara flour supplement was prepared by drying at 100 °C for 2 h and selected based on the highest antioxidant level. Gluten-free rolls were prepared containing 0, 5, and 10% okara flour dried at 100 °C for 2 h, and their physicochemical properties were analyzed. Okara flour addition reduced the deformation of gluten-free batter roll by improving solid and liquid-like behavior, as evaluated with rheological measurements. Rolls containing okara flour processed at 100 °C for 2 h had increased firmness and decreased specific volume compared to the control. However, there were no significant differences in the sensory evaluation scores, suggesting that the consumers' acceptance of the control and the Okara rolls was similar. Okara flour supplement at 10% addition led to the nutritional improvement of the gluten-free rolls (increase of 2.4% protein and 1.32 times dietary fiber, dry basis). In contrast, there were no significant differences in the antioxidant level compared to the control. Okara flour is a functional ingredient with potential use in gluten-free products and a variety of novel products where enrichment is desirable.

9.
J Mech Behav Biomed Mater ; 147: 106126, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741182

RESUMO

Acrylic bone cement materials are widely used in prosthetic implants, orthopaedics and others trauma surgery. From the mechanical constitutive behaviour viewpoint, experimental analyses have provided ample evidence that such materials exhibit time-dependent properties. In this context, this work addresses the formulation of a nonlinear viscoelastic model for the behaviour of PMMA bone cements under compressive creep loading. Relying upon experimental data available for four PMMA bone cement types, a nonlinear Burgers-like rheological model is formulated and related parameters calibrated for the mechanical description of the time-dependent behaviour of these materials under isothermal conditions and one dimensional setting. The proposed model reveals relevant in reproducing both instantaneous and delayed properties of studied PMMA bone cements.

10.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499801

RESUMO

Fiber materials as an asphalt mixture additive and stabilizer can effectively improve the performance index of asphalt pavement. In this study, lignin and carbon fiber were used as modifiers to study their effects on the road performance of asphalt mastic. Based on the frequency sweep, linear amplitude sweep (LAS) and multi-stress creep recovery (MSCR) experiments were conducted to test the high-temperature rutting and medium-temperature fatigue resistance of asphalt mastic with different fiber incorporation and low-temperature performance tests based on bending beam rheometer (BBR). The results indicate that adding fibers increased the stiffness of the asphalt mastic, and the modification effect of lignin fibers was better than that of carbon fibers. Meanwhile, the characteristic flow index of the asphalt mastic gradually increased with the increase in temperature, indicating that it gradually became a near-Newtonian fluid at higher temperatures. The addition of fibers also improved the high temperature rutting resistance of the asphalt mastic but did not have an advantageous effect on fatigue and low temperature cracking resistance. Additionally, the fitting results of the four-parameter Burgers model show that the use of fiber modification decreases the proportion of elasticity and viscous creep compliance but increases the delayed elasticity part.

11.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501670

RESUMO

There is a great need to develop biodegradable thermoplastics for a variety of applications in a wide range of temperatures. In this work, we prepare polymer blends from polylactic acid (PLA) and thermoplastic polyurethane (TPU) via a melting blend method at 200 °C and study the creep deformation of the PLA/TPU blends in a temperature range of 10 to 40 °C with the focus on transient and steady-state creep. The stress exponent for the power law description of the steady state creep of PLA/TPU blends decreases linearly with the increase of the mass fraction of TPU from 1.73 for the PLA to 1.17 for the TPU. The activation energies of the rate processes for the steady-state creep and transient creep decrease linearly with the increase of the mass fraction of TPU from 97.7 ± 3.9 kJ/mol and 59.4 ± 2.9 kJ/mol for the PLA to 26.3 ± 1.3 kJ/mol and 25.4 ± 1.7 kJ/mol for the TPU, respectively. These linearly decreasing trends can be attributed to the weak interaction between the PLA and the TPU. The creep deformation of the PLA/TPU blends consists of the contributions of individual PLA and TPU.

12.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614450

RESUMO

Polyphosphoric acid (PPA) modifier, which can effectively improve the rheological properties of asphalt, is widely used in pavement engineering. In order to accurately evaluate the low-temperature performance of PPA-modified asphalt, in this study, PPA-modified asphalt and PPA/SBR-modified asphalt were prepared. The modification mechanism was explored by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Bending Beam Rheology (BBR) test was carried out, and four indexes, including K index, viscous flow (η1), low-temperature integrated flexibility (Jc), and relaxation time (λ), were obtained by combining the Burgers model. The optimal low-temperature performance evaluation index of modified asphalt was determined by the analytic hierarchy process (AHP). The test results show that PPA addition to asphalt will produce chemical reactions, which can effectively improve the compatibility between SBR and neat asphalt. In the multi-index evaluation based on K, η1, Jc, and λ, the same optimum content of PPA was obtained. AHP analysis further demonstrates that Jc is the optimal evaluation index for laboratory research on the low-temperature performance of PPA-modified asphalt, and λ index is the ideal evaluation index for the low-temperature performance of asphalt in engineering applications.

13.
Materials (Basel) ; 15(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454403

RESUMO

In the past, most researchers have explained the three-stage creep behavior of asphalt mixture in detail. Still, there is no reasonable model to describe the creep of the consolidation effect. To accurately describe the consolidation effect of an asphalt mixture during the viscoelastic deformation process, a modified time hardening model was established by using the Malthus model and the Logistic function to change its creep strain and creep compliance. According to the characteristics of asphalt mixture creep, a single penetration creep test was conducted for high-elasticity modified asphalt mixtures at different temperatures (20 °C, 40 °C, 60 °C) and various loading levels (0.55 MPa, 0.70 MPa, 0.85 MPa, 1.00 MPa). The test results showed that the effect of stress on deformation within the normal range of variation was more significant than that of temperature. In addition, the test results were simulated by the modified time hardening model using surface fitting and compared with a time hardening model and a modified Burgers model. A fitting analysis showed that the modified time hardening model more accurately represents the asphalt mixture's consolidation effect and creep behavior. Therefore, the modified time hardening model can better show the consolidation effect in the creep process.

14.
Proc Inst Mech Eng H ; 235(6): 688-700, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33730909

RESUMO

The trans-tibial socket is an essential component of the prosthesis that connects it to the residual limb. Socket misalignments and permanent deformations reduce the comfort of the amputee. In order to forestall such issues, sufficient information about the socket lifespan needs to be acquired, which is fairly difficult given the lack of calculation methods that estimate the fatigue life in the literature. In this paper a semi-analytical model is proposed based on experimental results. It highlights the effects of the amputee average daily walking time on the socket fatigue life. A proportionality relationship is demonstrated linking the Burgers model parameters at the structural scale to those at the macroscopic scale. Hence, it becomes possible to evaluate the permanent deformation that induces a misalignment in the socket. These results are useful for the designers to predict the fatigue life of the socket, and also for clinicians to monitor the mechanical degradation of the trans-tibial socket and schedule maintenance or replacement.


Assuntos
Amputados , Membros Artificiais , Cotos de Amputação , Fadiga , Humanos , Desenho de Prótese , Tíbia/cirurgia
15.
Materials (Basel) ; 14(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300699

RESUMO

With the growing interest in bituminous construction materials, desulfurized crumb rubber (CR)/styrene-butadiene-styrene (SBS) modified asphalts have been investigated by many researchers as low-cost environmental-friendly road construction materials. This study aimed to investigate the rheological properties of desulfurized CR/SBS composite modified asphalt within various temperature ranges. Bending beam rheometer (BBR), linear amplitude sweep (LAS), and multiple stress creep recovery (MSCR) tests were performed on conventional CR/SBS composite modified asphalt and five types of desulfurized CR/SBS modified asphalts. Meanwhile, Burgers' model and the Kelvin-Voigt model were used to derive nonlinear viscoelastic parameters and analyze the viscoelastic mechanical behavior of the asphalts. The experimental results indicate that both the desulfurized CR/SBS composite modifier and force chemical reactor technique can enhance the crosslinking of CR and SBS copolymer, resulting in an improved high-, intermediate-, and low-temperature performance of desulfurized CR/SBS composite modified asphalt. Burgers' model was found to be apposite in simulating the creep stages obtained from MSCR tests for CR/SBS composite modified asphalts. The superior high-temperature performance of desulfurized CR/SBS modified asphalt prepared with 4% SBS, 20% desulfurized rubber, and a force chemical reactor time of 45 min contributes to the good high-temperature elastic properties of the asphalt. Therefore, this combination is recommended as an optimal preparation process. In summary, the desulfurization of crumb rubber and using the force chemical reactor technique are beneficial to composite asphalt performance and can provide a new way of utilizing waste tire rubber.

16.
Int J Biol Macromol ; 193(Pt B): 2260-2270, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793812

RESUMO

This study aimed to evaluate the effects of insoluble dietary fiber (IDF) and ferulic acid (FA) on the properties of rice starch (RS), including gelatinization, thermodynamic, rheological parameters, and freeze-thaw stability. Rapid viscosity analysis (RVA), differential scanning calorimetry (DSC), rheological analysis, and freeze-thaw stability analysis were performed. The results showed that the presence of IDF and FA could significantly delay the short-term retrogradation of RS, especially at high FA concentrations. Rheological tests showed that IDF was not conducive for the elasticity, viscosity enhancement, and system stability of the starch gels. However, FA could offset the deterioration of the system caused by IDF and further improve the gel properties. The presence of IDF and FA weakened the freeze-thaw stability of the starch gel, unlike their single action on the starch gel, correspondingly. The results show that FA could alleviate the degradation of RS gel performance caused by IDF in the ternary system. The findings provide potential possibilities for improvements in the quality of rice starch gel-based products.


Assuntos
Ácidos Cumáricos/química , Oryza/química , Amido/química , Varredura Diferencial de Calorimetria/métodos , Fibras na Dieta , Elasticidade , Congelamento , Gelatina/química , Géis/química , Reologia , Temperatura , Viscosidade
17.
Dent Mater ; 36(3): 366-376, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31983468

RESUMO

OBJECTIVE: To evaluate and compare the viscoelastic properties of dentine and resin-based dental materials by bulk compressive test and the Burgers model. MATERIALS AND METHODS: Sound dentine, three resin composites as well as a resin-based cement were prepared into cylindrical specimens (n = 8). A bulk compressive creep test was applied with a constant load of 300 N (23.9 MPa) for 2 h, followed by another 2 h recovery. The maximum strain, creep stain, percentage of recovery and permanent set was measured using a linear variable displacement transducer. The viscoelastic properties were characterized via the Burgers model, and the instantaneous elastic, viscous as well as elastic delayed deformation were separated from the total strain. Data were analysed via ANOVA (or Welch's Test) and Tukey (or Games-Howell Test) with a significance level of 0.05. RESULTS: Sound dentine presented the lowest maximum strain, creep strain, permanent set and the highest percentage of recovery, followed by 3 resin composites with comparable parameters, while the cement showed a significantly higher maximum strain, permanent set and lower percentage of recovery (p < 0.001). The Burgers model presented acceptable fits for characterization viscoelastic processes of both dentine and resin-based dental materials. Viscous and elastic delayed strain of dentine was significantly lower than those for tested materials (p < 0.001) with the highest instantaneous elastic strain percentage. Similar viscous and delayed strain was found among the 4 resin-based materials (p > 0.05). SIGNIFICANCE: Sound dentine exhibited superior creep stability compared to resin-based dental materials. The viscous deformation in sound dentine could be ignored when loading parallel to dentine tubules.


Assuntos
Resinas Compostas , Materiais Dentários , Análise do Estresse Dentário , Dentina , Elasticidade , Humanos , Teste de Materiais
18.
Carbohydr Polym ; 248: 116778, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919568

RESUMO

A model-based rheological characterization of four sphingans in combination with four prominent surfactants of cosmetic formulations of cationic, anionic, zwitterionic and neutral headgroup characteristics was performed. The impact of the surfactants on the rheological properties, based on changes in the mechanical models was evaluated in respect to the closely related structural differences of the polysaccharides, to give an insight on the structure-function relationship of these interactions. The side chains of the sphingans Welan, Diutan and S-88 seem to be involved in the masking of the anionic charge of the polysaccharide backbone, making them highly compatible even with cationic surfactants. The effect of a disaccharide side chain of Diutan also impacts its intermolecular interactions opposed to Welan and S-88, resulting in different surfactant interactions as well as temperature stability. The lack of a side chain in Gellan leads to large incompatibilities with zwitterionic and cationic surfactants due to high polysaccharide-surfactant interactions.

19.
Polymers (Basel) ; 12(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207716

RESUMO

Existing research tends to focus on the performance of cured rubber. This is due to a lack of suitable testing methods for the mechanical properties of uncured rubber, in particular, tensile properties. Without crosslinking by sulfur, the tensile strength of uncured rubber compounds is too low to be accurately tested by general tensile testing machines. Firstly, a new tensile stress testing method for uncured rubber was established by using dynamic thermomechanical analysis (DMA) tensile strain scanning. The strain amplitude was increased under a set frequency and constant temperature. The corresponding dynamic force needed to maintain the amplitude was then measured to obtain the dynamic force-amplitude curve observed at this temperature and frequency. Secondly, the Burgers model is usually difficult to calculate and analyze in differential form, so it was reduced to its arithmetic form under creep conditions and material relaxation. Tensile deformation at a constant strain rate was proposed, so the Burgers model could be modified to a more concise form without any strain terms, making mathematical processing and simulating much more convenient. Thirdly, the rate of the modified Burgers model under constant strain was in good agreement with the test data, demonstrating that the elastic stiffness was 1-2 orders of magnitude less than the tensile viscosity. In the end, it was concluded that large data dispersion caused by the universal tensile test can be overcome by choosing this model, and it may become an effective way to study the tensile modeling of uncured rubber compound.

20.
Materials (Basel) ; 12(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261675

RESUMO

We present two methods used in the identification of viscoelastic parameters of asphalt mixtures used in pavements. The static creep test and the dynamic test, with a frequency of 10 Hz, were carried out based on the four-point bending beam (4BP). In the method identifying viscoelastic parameters for the Brugers' model, we included the course of a creeping curve (for static creep) and fatigue hysteresis (for dynamic test). It was shown that these parameters depend significantly on the load time, method used, and temperature and asphalt content. A similar variation of parameters depending on temperature was found for the two tests, but different absolute values were obtained. Additionally, the share of viscous deformations in relation to total deformations is presented, on the basis of back calculations and finite element methods. We obtained a significant contribution of viscous deformations (about 93% for the static test and 25% for the dynamic test) for the temperature 25 °C. The received rheological parameters from both methods appeared to be sensitive to a change in asphalt content, which means that these methods can be used to design an optimal asphalt mixture composition-e.g., due to the permanent deformation of pavement. We also found that the parameters should be determined using the creep curve for the static analyses with persistent load, whereas in the case of the dynamic studies, the hysteresis is more appropriate. The 4BP static creep and dynamic tests are sufficient methods for determining the rheological parameters for materials designed for flexible pavements. In the 4BP dynamic test, we determined relationships between damping and viscosity coefficients, showing material variability depending on the test temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa