Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799453

RESUMO

Soil microorganisms determine the fate of soil organic matter (SOM), and their activities compose a major component of the global carbon (C) cycle. We employed a multisubstrate, DNA-stable isotope probing experiment to track bacterial assimilation of C derived from distinct sources that varied in bioavailability. This approach allowed us to measure microbial contributions to SOM processing by measuring the C assimilation dynamics of diverse microorganisms as they interacted within soil. We identified and tracked 1,286 bacterial taxa that assimilated 13C in an agricultural soil over a period of 48 d. Overall 13C-assimilation dynamics of bacterial taxa, defined by the source and timing of the 13C they assimilated, exhibited low phylogenetic conservation. We identified bacterial guilds composed of taxa that had similar 13C assimilation dynamics. We show that C-source bioavailability explained significant variation in both C mineralization dynamics and guild structure, and that the growth dynamics of bacterial guilds differed significantly in response to C addition. We also demonstrate that the guild structure explains significant variation in the biogeographical distribution of bacteria at continental and global scales. These results suggest that an understanding of in situ growth dynamics is essential for understanding microbial contributions to soil C cycling. We interpret these findings in the context of bacterial life history strategies and their relationship to terrestrial C cycling.


Assuntos
Bactérias/genética , Ciclo do Carbono/genética , Carbono/química , DNA/genética , Isótopos/química , Solo/química , Agricultura/métodos , Marcação por Isótopo/métodos , Filogenia , Microbiologia do Solo
2.
Proc Natl Acad Sci U S A ; 117(22): 11968-11974, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424084

RESUMO

The Central Atlantic magmatic province (CAMP), the end-Triassic mass extinction (ETE), and associated major carbon cycle perturbations occurred synchronously around the Triassic-Jurassic (T-J) boundary (201 Ma). Negative carbon isotope excursions (CIEs) recorded in marine and terrestrial sediments attest to the input of isotopically light carbon, although the carbon sources remain debated. Here, we explore the effects of mantle-derived and thermogenic carbon released from the emplacement of CAMP using the long-term ocean-atmosphere-sediment carbon cycle reservoir (LOSCAR) model. We have tested a detailed emission scenario grounded by numerous complementary boundary conditions, aiming to model the full extent of the carbon cycle perturbations around the T-J boundary. These include three negative CIEs (i.e., Marshi/Precursor, Spelae/Initial, Tilmanni/Main) with sharp positive CIEs in between. We show that a total of ∼24,000 Gt C (including ∼12,000 Gt thermogenic C) replicates the proxy data. These results indicate that thermogenic carbon generated from the contact aureoles around CAMP sills represents a credible source for the negative CIEs. An extremely isotopically depleted carbon source, such as marine methane clathrates, is therefore not required. Furthermore, we also find that significant organic carbon burial, in addition to silicate weathering, is necessary to account for the positive δ13C intervals following the negative CIEs.

3.
Proc Natl Acad Sci U S A ; 117(33): 20038-20043, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747527

RESUMO

Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain. Here we estimate global belowground net primary productivity as the difference between satellite-based total net primary productivity and field observations of aboveground net primary production and assess climatic controls among biomes. On average, belowground carbon productivity is estimated as 24.7 Pg y-1, accounting for 46% of total terrestrial carbon fixation. Across biomes, belowground productivity increases with mean annual precipitation, although the rate of increase diminishes with increasing precipitation. The fraction of total net productivity allocated belowground exceeds 50% in a large fraction of terrestrial ecosystems and decreases from arid to humid ecosystems. This work adds to our understanding of the belowground carbon productivity response to climate change and provides a comprehensive global quantification of root/belowground productivity that will aid the budgeting and modeling of the global carbon cycle.

4.
J Environ Manage ; 347: 119078, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757683

RESUMO

Grazing causes changes in microbiome metabolic pathways affecting plant growth and soil physicochemical properties. However, how grazing intensity affects microbial processes is poorly understood. In semiarid steppe grassland in northern China, shotgun metagenome sequencing was used to investigate variations in soil carbon (C) and nitrogen (N) cycling-related genes after six years of the following grazing intensities: G0, control, no grazing; G1, 170 sheep days ha-1 year-1; G2, 340 sheep days ha-1 year-1; and G3, 510 sheep days ha-1 year-1. Taxa and functions of the soil microbiome associated with the C cycle decreased with increasing grazing intensity. Abundances of genes involved in C fixation and organic matter decomposition were altered in grazed sites, which could effects on vegetation decomposition and soil dissolved organic carbon (DOC) content. Compared with the control, the abundances of nitrification genes were higher in G1, but the abundances of N reduction and denitrification genes were lower, suggesting that light grazing promoted nitrification, inhibited denitrification, and increased soil NO3- content. Q-PCR further revealed that the copies of genes responsible for carbon fixation (cbbL) and denitrification (norB) decreased with increasing grazing intensity. The highest copy numbers of the nitrification genes AOA and AOB were in G1, whereas copy numbers of the denitrification gene nirK were the lowest. A multivariate regression tree indicated that changes in C fixation genes were linked to changes in soil DOC content, whereas soil NO3- content was linked with nitrification and denitrification under grazing. Thus, genes associated with C fixation and the N cycle affected how C fixation and N storage influenced soil physicochemical properties under grazing. The findings indicate that grazing intensity affected C and N metabolism. Proper grassland management regimes (e.g., G1) are beneficial to the balances between ecological protection of grasslands and plant production in the semiarid steppe.


Assuntos
Pradaria , Solo , Animais , Ovinos , Solo/química , Metagenoma , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo
5.
New Phytol ; 234(1): 64-76, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35103312

RESUMO

Soil photoautotrophic prokaryotes and micro-eukaryotes - known as soil algae - are, together with heterotrophic microorganisms, a constitutive part of the microbiome in surface soils. Similar to plants, they fix atmospheric carbon (C) through photosynthesis for their own growth, yet their contribution to global and regional biogeochemical C cycling still remains quantitatively elusive. Here, we compiled an extensive dataset on soil algae to generate a better understanding of their distribution across biomes and predict their productivity at a global scale by means of machine learning modelling. We found that, on average, (5.5 ± 3.4) × 106 algae inhabit each gram of surface soil. Soil algal abundance especially peaked in acidic, moist and vegetated soils. We estimate that, globally, soil algae take up around 3.6 Pg C per year, which corresponds to c. 6% of the net primary production of terrestrial vegetation. We demonstrate that the C fixed by soil algae is crucial to the global C cycle and should be integrated into land-based efforts to mitigate C emissions.


Assuntos
Ciclo do Carbono , Solo , Carbono , Ecossistema , Plantas
6.
Ecol Appl ; 31(3): e02290, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33426701

RESUMO

Soil organic carbon (SOC) regulates terrestrial ecosystem functioning, provides diverse energy sources for soil microorganisms, governs soil structure, and regulates the availability of organically bound nutrients. Investigators in increasingly diverse disciplines recognize how quantifying SOC attributes can provide insight about ecological states and processes. Today, multiple research networks collect and provide SOC data, and robust, new technologies are available for managing, sharing, and analyzing large data sets. We advocate that the scientific community capitalize on these developments to augment SOC data sets via standardized protocols. We describe why such efforts are important and the breadth of disciplines for which it will be helpful, and outline a tiered approach for standardized sampling of SOC and ancillary variables that ranges from simple to more complex. We target scientists ranging from those with little to no background in soil science to those with more soil-related expertise, and offer examples of the ways in which the resulting data can be organized, shared, and discoverable.


Assuntos
Carbono , Solo , Sequestro de Carbono , Ecossistema , Nutrientes
7.
J Enzyme Inhib Med Chem ; 36(1): 1248-1257, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34107832

RESUMO

In certain cancers, such as breast, prostate and some lung and skin cancers, the gene for the enzyme catalysing the second and last step in proline synthesis, δ1-pyrroline-5-carboxylate (P5C) reductase, has been found upregulated. This leads to a higher proline content that exacerbates the effects of the so-called proline-P5C cycle, with tumour cells effectively using this method to increase cell survival. If a method of reducing or inhibiting P5C reductase could be discovered, it would provide new means of treating cancer. To address this point, the effect of some phenyl-substituted derivatives of aminomethylene-bisphosphonic acid, previously found to interfere with the catalytic activity of plant and bacterial P5C reductases, was evaluated in vitro on the human isoform 1 (PYCR1), expressed in E. coli and affinity purified. The 3.5-dibromophenyl- and 3.5-dichlorophenyl-derivatives showed a remarkable effectiveness, with IC50 values lower than 1 µM and a mechanism of competitive type against both P5C and NADPH. The actual occurrence in vivo of enzyme inhibition was assessed on myelogenous erythroleukemic K562 and epithelial breast cancer MDA-MB-231 cell lines, whose growth was progressively impaired by concentrations of the dibromo derivative ranging from 10-6 to 10-4 M. Interestingly, growth inhibition was not relieved by the exogenous supply of proline, suggesting that the effect relies on the interference with the proline-P5C cycle, and not on proline starvation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Neoplasias/metabolismo , Prolina/biossíntese , Pirrolina Carboxilato Redutases/antagonistas & inibidores , Humanos , Neoplasias/patologia , delta-1-Pirrolina-5-Carboxilato Redutase
8.
Glob Chang Biol ; 26(2): 876-887, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31686431

RESUMO

The role of plant phenology as a regulator for gross ecosystem productivity (GEP) in peatlands is empirically not well constrained. This is because proxies to track vegetation development with daily coverage at the ecosystem scale have only recently become available and the lack of such data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling the mechanisms that regulate the seasonal variation in GEP across a network of eight European peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat photography and disentangled the effects of radiation, temperature and phenology on GEP with commonality analysis and structural equation modeling. The resulting relational network could not only delineate direct effects but also accounted for possible effect combinations such as interdependencies (mediation) and interactions (moderation). We found that peatland GEP was controlled by the same mechanisms across all sites: phenology constituted a key predictor for the seasonal variation in GEP and further acted as a distinct mediator for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP was fully mediated through phenology, implying that direct temperature effects representing the thermoregulation of photosynthesis were negligible. The tight coupling between temperature, phenology and GEP applied especially to high latitude and high altitude peatlands and during phenological transition phases. Our study highlights the importance of phenological effects when evaluating the future response of peatland GEP to climate change. Climate change will affect peatland GEP especially through changing temperature patterns during plant phenologically sensitive phases in high latitude and high altitude regions.


Assuntos
Ecossistema , Fotossíntese , Mudança Climática , Estações do Ano , Temperatura
9.
Glob Chang Biol ; 23(12): 5249-5259, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28614594

RESUMO

Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N-phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N-induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed-effects models to further determine the relative contributions of various factors to the N-induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N-induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment.


Assuntos
Ciclo do Carbono , Pradaria , Nitrogênio/metabolismo , Plantas/metabolismo , Carbono/análise , Dióxido de Carbono/metabolismo , Solo , Temperatura
10.
New Phytol ; 209(4): 1540-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26452175

RESUMO

The increase in aridity predicted with climate change will have a negative impact on the multiple functions and services (multifunctionality) provided by dryland ecosystems worldwide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can buffer the negative impacts of aridity on important biogeochemical processes controlling carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown. Here, we conducted an empirical study, using samples from three continents (North America, Europe and Australia), to evaluate how the increase in aridity predicted by climate change will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes related to C, N and P cycles. Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and dry-subhumid, environments. Most importantly, we found that the relative positive effects of biocrust-forming mosses on multifunctionality compared with bare soil increased with increasing aridity. These results were mediated by plant cover and the positive effects exerted by biocrust-forming mosses on the abundance of soil bacteria and fungi. Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer negative effects of climate change on multifunctionality in global drylands.


Assuntos
Briófitas/fisiologia , Clima Desértico , Ecossistema , Bactérias/metabolismo , Fungos/fisiologia , Geografia , Modelos Biológicos , Estados Unidos
11.
Reprod Biomed Online ; 33(6): 668-683, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27742259

RESUMO

The negative effect of oxidative stress on the human reproductive process is no longer a matter for debate. Oxidative stress affects female and male gametes and the developmental capacity of embryos. Its effect can continue through late stages of pregnancy. Metabolic disorders and psychiatric problems can also be caued by DNA methylation and epigenetic errors. Age has a negative effect on oxidative stress and DNA methylation, and recent observations suggest that older men are at risk of transmitting epigenetic disorders to their offspring. Environmental endocrine disruptors can also increase oxidative stress and methylation errors. Oxidative stress and DNA methylation feature a common denominator: the one carbon cycle. This important metabolic pathway stimulates glutathione synthesis and recycles homocysteine, a molecule that interferes with the process of methylation. Glutathione plays a pivotal role during oocyte activation, protecting against reactive oxygen species. Assisted reproductive techniques may exacerbate defects in methylation and epigenesis. Antioxidant supplements are proposed to reduce the risk of potentially harmful effects, but their use has failed to prevent problems and may sometimes be detrimental. New concepts reveal a significant correlation between oxidative stress, methylation processes and epigenesis, and have led to changes in media composition with positive preliminary clinical consequences.


Assuntos
Metilação de DNA , Estresse Oxidativo , Reprodução/fisiologia , Animais , Antioxidantes/química , Blastocisto , Endometriose/fisiopatologia , Epigênese Genética , Feminino , Fertilidade , Radicais Livres/química , Humanos , Infertilidade Masculina/fisiopatologia , Masculino , Doenças Metabólicas/fisiopatologia , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Ovário/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Reprodução Assistida , Risco , Espermatozoides/metabolismo
12.
J Eukaryot Microbiol ; 63(3): 363-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26662659

RESUMO

Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 µg/g for prokaryotes.


Assuntos
Carbono/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Microbiologia do Solo , Tundra , Archaea/metabolismo , Bactérias/metabolismo , Biomassa , Ecossistema , Eucariotos/metabolismo , Fungos/classificação , Fungos/genética , Aquecimento Global , Glucose/metabolismo , Sphagnopsida
13.
Glob Chang Biol ; 20(10): 3256-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24599697

RESUMO

Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.


Assuntos
Mudança Climática , Ecossistema , Fenômenos Fisiológicos Vegetais , Estações do Ano , Tundra , Regiões Árticas , Neve , Temperatura
14.
Glob Chang Biol ; 20(7): 2356-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24273056

RESUMO

The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural (13) C labelling adding C4 -sucrose or C4 -maize straw to C3 -soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of ß-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r-strategists.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Sacarose/metabolismo , Zea mays/química
15.
Sci Total Environ ; 930: 172623, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38653414

RESUMO

Application of biochar has been demonstrated to be a successful strategy for boosting soil carbon sequestration and altering the agricultural soil carbon cycle. However, in the studies involving biochar worldwide, the effects of different types of biochar on the soil carbon component response direction and increase are not consistent. Therefore, to assess the effects of applying four types of biochar during the soil carbon cycle on carbon components on a farmland, we performed a meta-analysis of 1150 comparisons from 86 peer-reviewed publications. Generally speaking, the types of biochar raw materials have a significant impact on soil carbon cycle. The application of chaff biochar significantly inhibited (10.0 %) soil respiration, while the application of manure biochar (47.0 %), straw biochar (11.2 %) and wood biochar (8.7 %) showed a strong promotion effect on CO2 emission. In addition, although the soil organic C, microbial biomass C and dissolved organic C all had positive responses to the application of the four biochar types, the degree and increase in their response varied greatly due to the differences in biomass raw materials. Moreover, by increasing the biochar rates applied to coarse-textured soils with low average annual rainfall and an average temperature under controlled circumstances, the relative increase in SOC was encouraged. Meanwhile, applying low temperature pyrolytic biochar (≤400 °C) at a lower rate (<25 t/ha) in the long-term experiment (>3 years) is more beneficial to soil C sequestration and emission reduction. Hence, climatic conditions, agricultural management practices, and initial soil properties jointly constrained and influenced the ability of biochar to alter the soil C cycle. Based on this, our research offers a fresh viewpoint for making a profound study biochar-enhanced soil C cycle.


Assuntos
Agricultura , Ciclo do Carbono , Carvão Vegetal , Solo , Carvão Vegetal/química , Solo/química , Agricultura/métodos , Fazendas , Carbono/análise , Sequestro de Carbono
16.
Sci Total Environ ; 926: 171779, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508254

RESUMO

Peatlands play a crucial role in carbon (C) sequestration and biodiversity conservation. However, these environments are highly vulnerable, and Europe has lost >60 % of its peatland habitat in recent decades. Cattle grazing and trampling contribute to peatland degradation, which generally result in a shift from moss-dominated vegetation to vascular plants and in lower C sequestration rates. Overgrazing poses also a significant threat to habitat integrity and biodiversity, especially in the Alpine area, where close-to-pristine mires with high ecological integrity are becoming extremely rare. Thus, a more in depth understanding of how cattle grazing and trampling are threatening Alpine mires is strongly needed for a sustainable management and conservation of these habitats. The objective of this study was to examine the impact of grazing on the physical, chemical, and biological characteristics of peat, with a focus on diatoms. To answer such a question, seven 50-cm deep cores were collected from mires located in the Adamello-Brenta Nature Park (North of Italy) along a grazing-induced disturbance gradient. Results indicated that grazing primarily affected at least the upper 15 cm of the peat, resulting in increased density and reduced water content, due to compaction, and lower C-to­nitrogen ratio, possibly caused by both cow manure inputs and increased peat mineralization. Moreover, almost 200 diatom taxa were recorded across the 7 cores, with several of them falling under threat categories in the Red List for central Europe. The higher percentage of eutraphentic species in highly-grazed areas was related to the increase in nutrients caused by cattle manure. Finally, intense grazing increased the share of taxa that are more likely to survive in environments with unstable water availability (= aerial species). We showed that diatom data, supported by physical and chemical parameters, can be a refined tool to inform mire protection and rehabilitation.


Assuntos
Diatomáceas , Bovinos , Animais , Solo , Esterco , Ecossistema , Água
17.
Glob Chang Biol ; 19(12): 3872-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23897832

RESUMO

We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long-term (>10 years) field experiments across Europe (EU-FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre-incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short-term ecosystem studies thereby providing a clear evidence base to allow long-term, broad-scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying-rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil.


Assuntos
Mudança Climática , Secas , Ecossistema , Temperatura Alta , Microbiologia do Solo , Ácido Acético/metabolismo , Bactérias/crescimento & desenvolvimento , Europa (Continente) , Fungos/crescimento & desenvolvimento , Leucina/metabolismo , Estações do Ano
18.
Chemosphere ; 312(Pt 1): 137155, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372334

RESUMO

Microplastics (MPs) are persistent organic pollutants globally, with a continuous increase in MP wastes near and away from the regions of human activities. Studies to date aimed to explore the impact of MPs on ecosystems, but the area of research could not go beyond environmental pollution caused by MPs. To address the menace of MPs, scientists need to pay enough attention to the biogeochemical cycles, microbial communities, and functional microorganisms. Hence, this study aimed to evaluate the impact of adding 0.3% (mass ratio) [low-concentration (LC) group] and 1% [high-concentration (HC) group] of polyamide (PA) MP to the soil microenvironment with regard to the aforementioned parameters. PA MP decreased the soil microbial diversity (Shannon and Simpson indices, P < 0.05). At the phylum level, PA MP increased the abundance of Acidobacteria, Firmicutes, and Crenarchaeota (P < 0.05); at the genus level, it enhanced that of Geobacter, Thiobacillus, Pseudomonas, and Bradyrhizobium (P < 0.01) while decreased that of Bacillus, Flavisolibacter, Geothrix, and Pseudarthrobacter (P < 0.05). PA MP affected the carbon (C) cycle. PA MP accelerated the soil C fixation by enhancing the abundance of the genes accA and pccA. The LC PA MP accelerated organic C degradation and methane metabolism by changing the abundance of mnp, chiA, mcrA, pmoA, and mmoX genes, while the HC PA MP inhibited them with increasing the experimental time. Regarding the effects of PA on the nitrogen (N) cycle, the PA MP promoted N assimilation and ammonification by increasing the abundance of the genes gdh and ureC, the impact of PA MP on N fixation and denitrification depended on its concentration and treating time. This study showed that PA MP impacted the microbial consortium, it also affected the C and N cycles and its effect depended on its concentration and the treating time.


Assuntos
Microbiota , Microplásticos , Humanos , Solo/química , Plásticos/farmacologia , Nylons , Carbono/farmacologia , Consórcios Microbianos , Ciclo do Nitrogênio
19.
Bioresour Technol ; 371: 128615, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640823

RESUMO

The effectiveness of nano-zero-valent-iron (NZVI) addition during composting of pig manure (PM) was investigated. Different dosages of NZVI were mixed with PM substrate during a 50 days composting process. The results revealed that the higher share of NZVI addition, the higher OM degradation rate is. On contrary, it was observed that the higher share of NZVI addition, the lower the fulvic acid and the humin degradation rate is. Meanwhile, NZVI amendment increased the CO2 and CH4 emissions by 29-47 % and 53-57 %, respectively. The in-depth analysis showed that NZVI addition increased the activity of Sphaerobacter and Luteimonas, which eventually led to the degradation of hard-to-degrade OM faster. Additionally, NZVI was found to increase the filtration of microorganisms, reducing the toxicity and hygiene of compost products. No significant improvement in humic substance enhancement was observed during composting with NZVI addition but improved OM degradation.


Assuntos
Compostagem , Ferro , Animais , Suínos , Ferro/química , Solo , Esterco , Ciclo do Carbono
20.
Sci Total Environ ; 892: 164423, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37236486

RESUMO

Grazing exclusion changes soil physical-chemical characteristics, rapidly affects microbial community composition and function, and alters biogeochemical processes, e.g., carbon (C) cycle, over time. However, the temporal dynamics of CO2 emission and CH4 uptake during grassland restoration chronosequences remain poorly understood. We investigated soil CO2 emission and CH4 uptake, the genes related to CO2 and CH4 production and reduction (cbbL, cbbM, chiA, and pmoA), and associated microbial communities under different durations of grazing exclusion (0, 7, 16, 25, and 38 years) to reveal the mechanisms and potential of soil CO2 emission and CH4 uptake in a semi-arid steppe. The results showed that a proper exclusion period could significantly improve soil physical-chemical conditions, vegetation community, and soil C-cycling. The abundance of C-cycling functional genes (cbbL, cbbM, chiA and pmoA), CH4 uptake and CO2 emission rates showed a single-peak pattern with increasing duration of grazing exclusion, peaking at 16 years and then decreasing in the period between 25 and 38 years, indicating that the effect of exclusion weakened when the exclusion period was too long. The changes in C-cycling functional genes and microbial communities are primarily influenced by aboveground net primary productivity (ANPP), and are associated with CO2, CH4, soil water content (SWC), and soil organic carbon (SOC). Structural equation modeling showed that increases in SOC content and pmoA abundance caused by an increase in ANPP accelerated CO2 emission and CH4 uptake rates, respectively. Our results provide valuable insights into the critical role of grazing exclusion in promoting grassland restoration and carbon sequestration, and have potential implications for sustainable land management practices.


Assuntos
Sequestro de Carbono , Solo , Solo/química , Carbono , Dióxido de Carbono , Ciclo do Carbono , Pradaria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa