Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cytokine ; 180: 156676, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857560

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) and their secretion, C-X-C motif chemokine ligand 12 (CXCL12), play an important role in the development of lung adenocarcinoma (LUAD). Interleukin 17A (IL-17A) is also crucial in regulating tumor progression. Herein, we explored the specific relationships between these two factors and their mechanisms in the progression of LUAD. METHODS: Immunohistochemistry was utilized to assess the differential expression levels of IL-17A and CXCL12 in tumor versus normal tissues of LUAD patients, followed by gene correlation analysis. Cell counting kit-8 (CCK8), wound-healing and transwell assays were performed to investigate the effect of IL-17A on the function of LUAD cells. qPCR, immunofluorescence, immunohistochemistry and western blot analyses were conducted to elucidate the potential mechanism by which IL-17A facilitates the development of LUAD via CXCL12. Male BALB-C nude mice were used to explore the role of IL-17A in subcutaneous LUAD mouse models. RESULTS: Elevated expression levels of IL-17A and CXCL12 were observed in LUAD tissues, exhibiting a positive correlation. Further studies revealed that IL-17A could stimulate CAFs to enhance the release of CXCL12, thereby facilitating the growth, proliferation, and metastasis of LUAD. The binding of CXCL12 to its specific receptor influences the activation of the Wnt/ß-Catenin pathway, which in turn affects the progression of LUAD. In vivo experiments have demonstrated that IL-17A enhances the growth of LUAD tumors by facilitating the secretion of CXCL12. Conversely, inhibiting CXCL12 has been demonstrated to impede tumor growth. CONCLUSIONS: We discovered that IL-17A promotes the release of CAFs-derived CXCL12, which in turn facilitates the development of LUAD via the Wnt/ß-Catenin signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Quimiocina CXCL12 , Progressão da Doença , Interleucina-17 , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Via de Sinalização Wnt , Interleucina-17/metabolismo , Quimiocina CXCL12/metabolismo , Humanos , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Camundongos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , beta Catenina/metabolismo
2.
Artigo em Chinês | MEDLINE | ID: mdl-35439871

RESUMO

Pulmonary fibrosis is an irreversible interstitial lung disease characterized by lung parenchyma remodeling and collagen deposition. In recent years, the incidence and mortality of pulmonary fibrosis caused by unknown causes have risen. However, its pathogenesis is still unclear. C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor 4 (CXCR4)/CXCR7 signal axis plays a critical regulatory role in pulmonary fibrosis disease. In addition, the signal axis has been shown to regulate recruitment and migration of circulating fibrocytes, mesenchymal stem cells to the damage lung tissue, the migration of endothelial cells, the proliferation and differentiation of fibroblasts and endothelial cells, which further affects the occurrence and progression of pulmonary fibrosis. In this review, we summarized the pathogenesis and treatment research progress of CXCL12 and its receptor CXCR4/CXCR7 in the occurrence and progression of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Quimiocina CXCL12 , Células Endoteliais/patologia , Humanos , Ligantes , Pulmão/patologia , Fibrose Pulmonar/patologia , Receptores CXCR4
3.
Cell Mol Biol Lett ; 26(1): 30, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174813

RESUMO

BACKGROUND: Phenotypic and functional heterogeneity of macrophages is known to be the main reason for their ability to regulate inflammation and promote tumorigenesis. Mesenchymal stem cells (MSCs) are one of the principal cells commonly found in the tumor stromal niche, with capability of macrophage phenotypic switching. The objective of this study was to evaluate the role of C-X-C motif chemokine ligand 12 (CXCL12) produced by marrow-derived MSCs in the phenotypic and functional pattern of bone marrow-derived macrophages (BMDMs). METHODS: First, the CRISPR/Cas9 system was used for the CXCL12 gene knock-out in MSCs. Then, coculture systems were used to investigate the role of MSCsCXCL12-/- and MSCsCXCL12+/+ in determination of macrophage phenotype. To further analyze the role of the MSC-derived CXCL12 niche, cocultures of 4T1 mammary tumor cells and macrophages primed with MSCsCXCL12-/- or MSCsCXCL12+/+ as well as in-vivo limiting dilution assays were performed. RESULTS: Our results revealed that the expression of IL-4, IL-10, TGF-ß and CD206 as M2 markers was significantly increased in macrophages co-cultured with MSCsCXCL12+/+ , whereas the expression of IL-6, TNF-α and iNOS was conversely decreased. The number and size of multicellular tumor spheroids were remarkably higher when 4T1 cells were cocultured with MSCCXCL12+/+-induced M2 macrophages. We also found that the occurrence of tumors was significantly higher in coinjection of 4T1 cells with MSCCXCL12+/+-primed macrophages. Tumor initiating cells were significantly decreased after coinjection of 4T1 cells with macrophages pretreated with MSCsCXCL12-/-. CONCLUSIONS: In conclusion, our findings shed new light on the role of MSC-derived CXCL12 in macrophage phenotypic switching to M2, affecting their function in tumorigenesis.


Assuntos
Quimiocina CXCL12/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Neoplasias/imunologia , Animais , Carcinogênese/imunologia , Carcinogênese/patologia , Células Cultivadas , Feminino , Macrófagos/patologia , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos BALB C , Neoplasias/patologia
4.
Cytokine ; 109: 17-23, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29903572

RESUMO

The discovery that atypical chemokine receptors (ACKRs) can initiate alternative signaling pathways rather than classical G-protein coupled receptor (GPCR) signaling has changed the paradigm of chemokine receptors and their roles in modulating chemotactic responses. The ACKR family has grown over the years, with discovery of new functions and roles in a variety of pathophysiological conditions. However, the extent to which these receptors regulate normal physiology is still continuously expanding. In particular, atypical chemokine receptor 3 (ACKR3) has proven to be an important receptor in mediating normal biological functions, including cardiac development and migration of cortical neurons. In this review, we illustrate the versatile and intriguing role of ACKR3 in physiology.


Assuntos
Quimiocina CXCL11/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CXCR/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Quimiotaxia/imunologia , Implantação do Embrião/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Espermatogênese/fisiologia , Vasodilatação/fisiologia
5.
Methods Mol Biol ; 2308: 83-94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057716

RESUMO

Bone marrow stromal cells (BMSCs) account for an extremely small percentage of total bone marrow cells; therefore, it is technically challenging to harvest a good quantity of BMSCs with good viability using fluorescence-activated cell sorting (FACS). Here, we describe the methods to effectively isolate BMSCs for flow cytometry analyses and subsequent FACS. Use of transgenic reporter lines facilitates FACS-based isolation of BMSCs, aiding to uncover fundamental characteristics of these diverse cell populations.


Assuntos
Linhagem da Célula , Separação Celular , Citometria de Fluxo , Células-Tronco Mesenquimais/fisiologia , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , RNA-Seq , Proteína Vermelha Fluorescente
6.
Front Cell Dev Biol ; 8: 554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766239

RESUMO

Ticks secrete various anti-coagulatory, anti-vasoconstrictory, anti-inflammatory, and anti-platelet aggregation factors in their saliva at the bite site during feeding to evade host immunological surveillance and responses. For the first time, we report successful isolation of exosomes (small membrane-bound extracellular signaling vesicles) from saliva and salivary glands of partially fed or unfed ixodid ticks. Our data showed a novel role of these in vivo exosomes in the inhibition of wound healing via downregulation of C-X-C motif chemokine ligand 12 (CXCL12) and upregulation of interleukin-8 (IL-8). Cryo-electron microscopy (cryo-EM) analysis revealed that tick saliva and salivary glands are composed of heterogeneous populations of in vivo exosomes with sizes ranging from 30 to 200 nm. Enriched amounts of tick CD63 ortholog protein and heat shock protein 70 (HSP70) were evident in these exosomes. Treatment of human skin keratinocytes (HaCaT cells) with exosomes derived from tick saliva/salivary glands or ISE6 cells dramatically delayed cell migration, wound healing, and repair process. Wound healing is a highly dynamic process with several individualized processes including secretion of cytokines. Cytokine array profiling followed by immunoblotting and quantitative-PCR analysis revealed that HaCaT cells treated with exosomes derived from tick saliva/salivary glands or ISE6 cells showed enhanced IL-8 levels and reduced CXCL12 loads. Inhibition of IL-8 or CXCL12 further delayed exosome-mediated cell migration, wound healing, and repair process, suggesting a skin barrier protection role for these chemokines at the tick bite site. In contrast, exogenous treatment of CXCL12 protein completely restored this delay and enhanced the repair process. Taken together, our study provides novel insights on how tick salivary exosomes secreted in saliva can delay wound healing at the bite site to facilitate successful blood feeding.

7.
Artigo em Chinês | WPRIM | ID: wpr-935784

RESUMO

Pulmonary fibrosis is an irreversible interstitial lung disease characterized by lung parenchyma remodeling and collagen deposition. In recent years, the incidence and mortality of pulmonary fibrosis caused by unknown causes have risen. However, its pathogenesis is still unclear. C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor 4 (CXCR4)/CXCR7 signal axis plays a critical regulatory role in pulmonary fibrosis disease. In addition, the signal axis has been shown to regulate recruitment and migration of circulating fibrocytes, mesenchymal stem cells to the damage lung tissue, the migration of endothelial cells, the proliferation and differentiation of fibroblasts and endothelial cells, which further affects the occurrence and progression of pulmonary fibrosis. In this review, we summarized the pathogenesis and treatment research progress of CXCL12 and its receptor CXCR4/CXCR7 in the occurrence and progression of pulmonary fibrosis.


Assuntos
Humanos , Quimiocina CXCL12 , Células Endoteliais/patologia , Ligantes , Pulmão/patologia , Fibrose Pulmonar/patologia , Receptores CXCR4
8.
Am J Transl Res ; 9(4): 1680-1693, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469774

RESUMO

This study investigated the effects of altered CXCL12/CXCR4 axis on the bone morphogenetic protein 2 (BMP-2)/Smad/runt-related transcription factor 2 (Runx2)/Osterix (Osx) signal axis and osteogenic gene expression during osteogenic differentiation of mesenchymal stem cells (MSCs), to gain understanding of the link between migration and osteogenic differentiation signal axis and MSCs osteogenic differentiation mechanisms. The pHBAd-MCMV- CXCL12-GFP vector (Ad-CXCL12) was constructed and quantitative polymerase chain reaction (qPCR)/western blotting used to determine CXCL12 expression in Ad-CXCL12-transfected MSCs. MSCs were treated with Ad-CXCL12 and AMD3100 (CXCL12 inhibitor) to detect BMP-2/Smad/Runx2/Osterix expression, bone sialoprotein (BSP), osteocalcin (OCN) and osteopontin (OPN) mRNA expression, and alkaline phosphatase (ALP) activity. PCR and sequencing confirmed successful construction of Ad-CXCL12. qPCR and enzyme-linked immunosorbent assay indicated that Ad-CXCL12 transfection promoted CXCL12 expression in MSCs. At 72 hours, Runx2 and Osterix, and Smad1/5/8 mRNA and protein expressions were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01). At 1 and 2 weeks, ALP activity and BSP mRNA expression were significantly higher in the Ad-CXCL12 group than in the control group (P < 0.01), respectively. No significant difference in OCN and OPN mRNA expression was determined between Ad-CXCL12 and control groups (P > 0.05). At 3 weeks, no significant difference in mineralized nodule staining was observed between groups (P > 0.05). Changes in the CXCL12/CXCR4 migration axis affected the BMP-2/Smad/Runx2/Osterix axis and BSP, OCN and OPN mRNA expression in early-stage, but not mid-/latestage, MSCs osteogenic differentiation, therefore affecting the ability of MSCs to undergo osteogenic differentiation.

9.
Chin J Cancer ; 36(1): 80, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020982

RESUMO

BACKGROUND: Recent studies indicate that C-X-C motif chemokine receptor 4 (CXCR4) and its ligand, C-X-C motif chemokine ligand 12 (CXCL12), stimulate expression of the cell cycle regulatory protein Cyclin D1 in neurofibromatosis 1-associated malignant peripheral nerve sheath tumor (MPNST) cells and promote their proliferation. In this study, we measured the expression of CXCR4, CXCL12, and Cyclin D1 proteins in sporadic MPNST tissues from Chinese patients and investigated their prognostic values. METHODS: CXCR4, CXCL12, and Cyclin D1 protein expression in samples from 58 Chinese patients with sporadic MPNST was assessed with immunohistochemical staining. Their prognostic values were evaluated with Kaplan-Meier analysis and a log-rank test. Multivariate Cox regression analysis was used to identify independent prognostic factors. RESULTS: High expression of CXCR4, CXCL12, and Cyclin D1 was observed in 19 (32.8%), 32 (55.2%), and 16 (27.6%) samples, respectively. CXCR4 expression was positively correlated with CXCL12 expression (r = 0.334, P = 0.010) and Cyclin D1 expression (r = 0.309, P = 0.018). Patients with high CXCR4 expression showed longer overall survival than those with low CXCR4 expression (χ2 = 4.642, P = 0.031). CONCLUSION: High CXCR4 expression may define a specific subtype of sporadic MPNST with favorable prognosis.


Assuntos
Neurilemoma/metabolismo , Receptores CXCR4/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CXCL12/metabolismo , Criança , Ciclina D1/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa