Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402382, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118549

RESUMO

Developing high-performance porous materials to separate ethane from ethylene is an important but challenging task in the chemical industry, given their similar sizes and physicochemical properties. Herein, a new type of ultra-strong C2H6 nano-trap, CuIn(3-ain)4 is presented, which utilizes multiple guest-host interactions to efficiently capture C2H6 molecules and separate mixtures of C2H6 and C2H4. The ultra-strong C2H6 nano-trap exhibits the high C2H6 (2.38 mmol g-1) uptake at 6.25 kPa and 298 K and demonstrates a remarkable selectivity of 3.42 for C2H6/C2H4 (10:90). Additionally, equimolar C2H6/C2H4 exhibited a superior high separation potential ∆Q (2286 mmol L-1) at 298 K. Kinetic adsorption tests demonstrated that CuIn(3-ain)4 has a high adsorption rate for C2H6, establishing it as a new benchmark material for the capture of C2H6 and the separation of C2H6/C2H4. Notably, this exceptional performance is maintained even at a higher temperature of 333 K, a phenomenon not observed before. Theoretical simulations and single-crystal X-ray diffraction provide critical insights into how selective adsorption properties can be tuned by manipulating pore dimensions and geometry. The excellent separation performance of CuIn(3-ain)4 has been confirmed through breakthrough experiments for C2H6/C2H4 gas mixtures.

2.
Angew Chem Int Ed Engl ; 62(21): e202302564, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940231

RESUMO

Developing adsorptive separation processes based on C2 H6 -selective sorbents to replace energy-intensive cryogenic distillation is a promising alternative for C2 H4 purification from C2 H4 /C2 H6 mixtures, which however remains challenging. During our studies on two isostructural metal-organic frameworks (Ni-MOF 1 and Ni-MOF 2), we found that Ni-MOF 2 exhibited significantly higher performance for C2 H6 /C2 H4 separation than Ni-MOF-1, as clearly established by gas sorption isotherms and breakthrough experiments. Density-Functional Theory (DFT) studies showed that the unblocked unique aromatic pore surfaces within Ni-MOF 2 induce more and stronger C-H⋅⋅⋅π with C2 H6 over C2 H4 while the suitable pore spaces enforce its high C2 H6 uptake capacity, featuring Ni-MOF 2 as one of the best porous materials for this very important gas separation. It generates 12 L kg-1 of polymer-grade C2 H4 product from equimolar C2 H6 /C2 H4 mixtures at ambient conditions.

3.
Angew Chem Int Ed Engl ; 62(25): e202305041, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37101344

RESUMO

Hydrogen-bonded organic frameworks (HOFs) show great potential in energy-saving C2 H6 /C2 H4 separation, but there are few examples of one-step acquisition of C2 H4 from C2 H6 /C2 H4 because it is still difficult to achieve the reverse-order adsorption of C2 H6 and C2 H4 . In this work, we boost the C2 H6 /C2 H4 separation performance in two graphene-sheet-like HOFs by tuning pore polarization. Upon heating, an in situ solid phase transformation can be observed from HOF-NBDA(DMA) (DMA=dimethylamine cation) to HOF-NBDA, accompanied with transformation of the electronegative skeleton into neutral one. As a result, the pore surface of HOF-NBDA has become nonpolar, which is beneficial to selectively adsorbing C2 H6 . The difference in the capacities for C2 H6 and C2 H4 is 23.4 cm3 g-1 for HOF-NBDA, and the C2 H6 /C2 H4 uptake ratio is 136 %, which are much higher than those for HOF-NBDA(DMA) (5.0 cm3 g-1 and 108 % respectively). Practical breakthrough experiments demonstrate HOF-NBDA could produce polymer-grade C2 H4 from C2 H6 /C2 H4 (1/99, v/v) mixture with a high productivity of 29.2 L kg-1 at 298 K, which is about five times as high as HOF-NBDA(DMA) (5.4 L kg-1 ). In addition, in situ breakthrough experiments and theoretical calculations indicate the pore surface of HOF-NBDA is beneficial to preferentially capture C2 H6 and thus boosts selective separation of C2 H6 /C2 H4 .


Assuntos
Etano , Etilenos , Adsorção , Hidrogênio
4.
Angew Chem Int Ed Engl ; 61(25): e202204046, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404504

RESUMO

Metal-organic frameworks have been widely studied in the separation of C2 hydrocarbons, which usually preferentially bind unsaturated hydrocarbons with the order of acetylene (C2 H2 )>ethylene (C2 H4 )>ethane (C2 H6 ). Herein, we report an ultramicroporous fluorinated metal-organic framework Zn-FBA (H2 FBA=4,4'-(hexafluoroisopropylidene)bis(benzoic acid)), shows a reversed adsorption order characteristic for C2 hydrocarbons, that the uptake for C2 hydrocarbons of the framework and the binding affinity between the guest molecule and the framework follows the order C2 H6 >C2 H4 >C2 H2 . Density-functional theory calculations confirm that the completely reversed adsorption order behavior is attributed to the close van der Waals interactions and multiple cooperative C-H⋅⋅⋅F hydrogen bonds between the framework and C2 H6 . Moreover, Zn-FBA exhibits a high selectivity of about 2.9 for C2 H6 over C2 H4 at 298 K and 1 bar. The experimental breakthrough studies show that the high-purity C2 H4 can be obtained from C2 H6 and C2 H4 mixtures in one step.

5.
Angew Chem Int Ed Engl ; 61(48): e202213015, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36202779

RESUMO

Adsorption technology based on ethane-selective materials is a promising alternative to energy-intensive cryogenic distillation for separating ethane (C2 H6 ) and ethylene (C2 H4 ). We employed a pore engineering strategy to tune the pore environment of a metal-organic framework (MOF) through organic functional groups and boosted the C2 H6 /C2 H4 separation of the MOF. Introduction of amino (-NH2 ) groups into Tb-MOF-76 not only decreased pore sizes but also facilitated multiple guest-host interactions in confined pores. The NH2 -functionalized Tb-MOF-76(NH2 ) has increased C2 H6 and C2 H4 uptakes and C2 H6 /C2 H4 selectivity. The results of experimental and simulated transient breakthroughs reveal that Tb-MOF-76(NH2 ) has significantly improved one-step separation performance for C2 H6 /C2 H4 mixtures with a high C2 H4 (>99.95 %) productivity of 17.66 L kg-1 compared to 7.53 L kg-1 by Tb-MOF-76, resulting from the suitable pore confinement and accessible -NH2 groups on pore surfaces.

6.
Angew Chem Int Ed Engl ; 60(17): 9680-9685, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33529471

RESUMO

Herein, a dynamic spacer installation (DSI) strategy has been implemented to construct a series of multifunctional metal-organic frameworks (MOFs), LIFM-61/31/62/63, with optimized pore space and pore environment for ethane/ethylene separation. In this respect, a series of linear dicarboxylic acids were deliberately installed in the prototype MOF, LIFM-28, leading to a dramatically increased pore volume (from 0.41 to 0.82 cm3 g-1 ) and reduced pore size (from 11.1×11.1 Å2 to 5.6×5.6 Å2 ). The increased pore volume endows the multifunctional MOFs with much higher ethane adsorption capacity, especially for LIFM-63 (4.8 mmol g-1 ), representing nearly three times as much ethane as the prototypical counterpart (1.7 mmol g-1 ) at 273 K and 1 bar. Meanwhile, the reduced pore size imparts enhanced ethane/ethylene selectivity of the multifunctional MOFs. Theoretical calculations and dynamic breakthrough experiments confirm that the DSI is a promising approach for the rational design of multifunctional MOFs for this challenging task.

7.
J Colloid Interface Sci ; 669: 258-264, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718579

RESUMO

For ethylene purification, C2H6-selective metal-organic frameworks (MOFs) show great potential to directly produce polymer-grade C2H4 from C2H6/C2H4 mixtures. Most C2H6-traping MOFs are ultra-microporous structures so as to strengthen multiple supramolecular interactions with C2H6. However, the narrowed pore channels of C2H6-traping MOFs cause large guest diffusion barriers, greatly hampering their practical applications. Herein, we present a feasible strategy by precisely constructing hierarchically porous MOF@COF core-shell structures to address this issue. Additional mesoporous diffusion channels were incorporated between MOF crystals through the construction of the COF shell, thereby enhancing the gas adsorption kinetics. Notably, designing a core-shell MOF@COF structure with an optimal coating amount of mesoporous COF shell will further improve the gas diffusion rate. Breakthrough experiments reveal that the tailored MOF@COF composites can effectively achieve C2H6/C2H4 separation and maintain its separation performance over five continuous measurement cycles. This investigation opens up a new avenue to solve the diffusion/transfer issues and provides more opportunities and potentials for MOF@COF composites in practical separation applications.

8.
ACS Appl Mater Interfaces ; 14(9): 11547-11558, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35191666

RESUMO

Gas separation performances are usually degraded under humid conditions for many crystalline porous materials because of the lack of water stability and/or the competition of water vapor toward the interaction sites (e.g., open metal sites). Zeolitic imidazolate frameworks (ZIFs) are suitable candidates for practical applications in gas separation because of their excellent physical/chemical stabilities. However, the limitation of substituent positions in common ZIFs has prevented extensive pore engineering to improve their separation performance. In a type of gyroidal ZIFs with gie topology, the Schiff base moiety provides additional substituent positions, making it possible to modify the spatial arrangement of hydrophobic methyl groups. Herein, a new gyroidal ZIF, ZnBAIm (H2BAIm = 1,2-bis(1-(1H-imidazol-4-yl)ethylidene)hydrazine), is designed, synthesized, and characterized. The spatially modified ZnBAIm exhibits improved thermal/chemical/mechanical stabilities compared to ZnBIm (H2BIm = 1,2-bis((5H-imidazol-4-yl)methylene)hydrazine). ZnBAIm can remain intact up to about 480 °C in a N2 atmosphere and tolerate harsh treatments (e.g., 5 M NaOH aqueous solution at room temperature for 24 h and 190 MPa high pressure in the presence of water). Moreover, the modified pore and window sizes have improved significantly the ethane/ethylene selectivity and separation performance under humid conditions for ZnBAIm. Breakthrough experiments demonstrate efficient separation of a C2H6/C2H4 (50/50, v/v) binary gas mixture under ambient conditions; more importantly, the C2H6/C2H4 separation performance is unaffected under highly humid conditions (up to 80% RH). The separation performance is attributed to combined thermodynamic (stronger dispersion interaction with C2H6 than with C2H4) and kinetic factors (diffusion), determined by density functional theory calculations and kinetic adsorption study, respectively.

9.
ACS Appl Mater Interfaces ; 14(13): 15195-15204, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315657

RESUMO

Efficient purification of ethylene (C2H4) from ethane (C2H6) is a crucial but daunting task for the chemical industry given their similar physical natures and molecular dimensions. Reversed capture of C2H6 from C2H6/C2H4 dual-mixtures can be expected to directly yield high-purity C2H4 through a one-step separation unit, but it remains a daunting challenge. Here, we skillfully target an unusual "electrostatic-driven linker microrotation" (EDLM) in a Zr-MOF through coupling dual-ligands having electron-withdrawing/donating groups (e.g., F and CH3 motifs). EDLM triggered microrotation of linker geometry and screening sites not only enhanced structural rigidity and hydrophobic nature, etc., but also effectively purified C2H4 through reversely trapping C2H6. Under ambient conditions, 1 kg of activated 2 adsorbents directly produces 7.2 L of C2H4 with over 99.9%+ purity in a single breakthrough operation starting from the equimolar C2H6/C2H4 cracked mixtures. Geometrical models and simulations have revealed that EDLM-derived H-bonding interaction and microrotation of linker geometry, synergistically customized C2H6-selective screening sites and pore inert for reversed C2H6 capture and improved surface hydrophobicity. Adsorption isotherms, modeling simulations, and breakthrough tests based on pressure swing adsorption (PSA) conditions have jointly elucidated the underlying separation properties for C2H4 purification. The enhanced hydrophobic nature, cycling durability, and separation property awarded 2 a new benchmark adsorbent to purify the olefin/paraffin mixtures.

10.
ACS Appl Mater Interfaces ; 13(45): 54059-54068, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730324

RESUMO

The preferential capture of ethane (C2H6) over ethylene (C2H4) presents a very cost-effective and energy-saving means applied to adsorptive separation and purification of C2H4 with a high product purity, which is however challenged by low selectivity originating from their similar molecular sizes and physical properties. Substituent engineering has been widely employed for selectivity regulation and improvement, but its effect on C2H6/C2H4 separation has been rarely explored to date. In this work, four isoreticular coordination framework compounds based on 5-(pyridin-3-yl)isophthalate ligands bearing different substituents were rationally constructed. As revealed by isotherm measurements, thermodynamic studies, and IAST computations, they exhibited promising utility for C2H6/C2H4 separation with moderate adsorption heat and a high uptake amount at a relatively low-pressure domain. Furthermore, the C2H6/C2H4 separation potential can be finely tuned and optimized via purposeful substituent alteration. Most remarkably, functionalization with a nonpolar methyl group yielded an improved separation efficiency compared to its parent compound. This work offers a good reference value for enhancing the C2H6/C2H4 separation efficiency of MOFs by engineering the pore microenvironment and dimensions via substituent manipulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa