Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-16, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705840

RESUMO

5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.

2.
J Exp Bot ; 72(17): 5942-5960, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34268575

RESUMO

Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experimental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source-sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establishment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limitation on crop yields.


Assuntos
Fotossíntese , Ribulose-Bifosfato Carboxilase , Produtos Agrícolas/metabolismo , Transporte de Elétrons , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/metabolismo
3.
J Appl Microbiol ; 127(6): 1790-1800, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31509316

RESUMO

AIMS: Ratoon stunting disease caused by Leifsonia xyli subsp. xyli (Lxx) is a bacterial disease that has plagued sugarcane-planting countries for a long time. This study mainly analysed Lxx localization and its effects on sugarcane leaf. METHODS AND RESULTS: Badila were inocultated by bacteria of Lxx. It was noted that the number of Lxx cells were rapidly enriched in sugarcane leaves from the 150th to the 210th days of post inoculation (dpi). Lxx infection disrupted the integrity of vascular bundle sheath cells (BSC) in the 'Kranz anatomy' of leaves, resulting in irregular accumulation of starch in vascular BSC of leaves. In situ PCR showed that the Lxx localized in the xylem vessels, mesophyll cell (MC) and BSC as described before in sugarcane leaf, a new niche within the host tissues in the phloem of sugarcane stem. The gene expression and activities of phosphoenolpyruvate carboxylase (PEPC), pyruvate, orthophosphate dikinase (PPDK) and NADP-malic enzyme (NADP-ME) enzymes were lower in Lxx-inoculated sugarcane plants as compared to the MI group. CONCLUSION: Lxx infection not only disrupted the structure of vascular BSC in the C4 'Kranz anatomy' of sugarcane leaves, but also affected the activities and gene expression of the key enzymes PEPC, PPDK and NADP-ME in the C4 cycle of sugarcane suggesting a reduction in CO2 fixation. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of Leifsonia xyli subsp. xyli (Lxx) infection on the photosynthetic physiology of sugarcane is currently limited to the evaluation of photosynthetic parameters. This study assessed the impact of Lxx infection on the mechanism of C4 cycle CO2 fixation and to accompanying plant anatomy.


Assuntos
Actinomycetales/fisiologia , Enzimas/metabolismo , Fotossíntese , Doenças das Plantas/microbiologia , Saccharum/enzimologia , Saccharum/microbiologia , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Folhas de Planta/enzimologia , Folhas de Planta/microbiologia , Feixe Vascular de Plantas/enzimologia , Feixe Vascular de Plantas/microbiologia , Amido/metabolismo
4.
BMC Genomics ; 18(1): 465, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619070

RESUMO

BACKGROUND: Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. RESULTS: Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. CONCLUSIONS: This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.


Assuntos
Secas , Eleusine/genética , Eleusine/fisiologia , Perfilação da Expressão Gênica , Genômica , Transporte Biológico/genética , Cálcio/metabolismo , Resistência à Doença/genética , Eleusine/metabolismo , Genes de Plantas/genética , Anotação de Sequência Molecular , Fotossíntese/genética , Filogenia , Sintenia , Fatores de Transcrição/metabolismo
5.
J Ind Microbiol Biotechnol ; 44(8): 1127-1135, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28382525

RESUMO

5-Aminolevulinic acid (ALA), the first committed intermediate for natural biosynthesis of tetrapyrrole compounds, has recently drawn intensive attention due to its broad potential applications. In this study, we describe the construction of recombinant Escherichia coli strains for ALA production from glucose via the C4 pathway. The hemA gene from Rhodobacter capsulatus was optimally overexpressed using a ribosome binding site engineering strategy, which enhanced ALA production substantially from 20 to 689 mg/L. Following optimization of biosynthesis pathways towards coenzyme A and precursor (glycine and succinyl-CoA), and downregulation of hemB expression, the production of ALA was further increased to 2.81 g/L in batch-fermentation.


Assuntos
Ácido Aminolevulínico/metabolismo , Glucose/metabolismo , Microbiologia Industrial , Microrganismos Geneticamente Modificados/genética , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Glicina/metabolismo , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
6.
Biotechnol Bioeng ; 113(6): 1284-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26616115

RESUMO

5-Aminolevulinic acid (5-ALA) has recently attracted attention for its potential applications in the fields of medicine and agriculture. In this study, Corynebacterium glutamicum was firstly engineered for 5-ALA production via the C4 pathway. HemA encoding 5-aminolevulinic acid synthase from Rhodobacter sphaeroides was codon optimized and expressed in C. glutamicum ATCC13032, resulting in accumulation of 5-ALA. Deletion of all known genes responsible for the formation of acetate and lactate further enhanced production of 5-ALA. Overexpression of ppc gene encoding phoenolpyruvate carboxylase resulted in an accumulation of 5-ALA up to 2.06 ± 0.05 g/L. Furthermore, deletion of high-molecular-weight penicillin-binding proteins (HMW-PBPs) genes pbp1a, pbp1b, and pbp2b led to an increase in 5-ALA production of 13.53%, 29.47%, and 22.22%, respectively. Finally, 5-ALA production was enhanced to 3.14 ± 0.02 g/L in shake flask by heterologously expressing rhtA encoding threonine/homoserine exporter, and 86.77% of supplemented glycine was channeled toward 5-ALA production in shake flask. The engineered C. glutamicum ALA7 strain produced 7.53 g/L 5-ALA in a 5 L bioreactor. This study demonstrated the potential utility of C. glutamicum as a platform for metabolic production of 5-ALA. Change of cell permeability by metabolic engineering HMW-PBPs may provide a new strategy for biochemicals production in Corynebacterium glutamicum. Biotechnol. Bioeng. 2016;113: 1284-1293. © 2015 Wiley Periodicals, Inc.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Ácido Aminolevulínico/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Rhodobacter sphaeroides/enzimologia , 5-Aminolevulinato Sintetase/genética , Ácido Aminolevulínico/isolamento & purificação , Melhoramento Genético/métodos , Regulação para Cima/genética
7.
Plants (Basel) ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447025

RESUMO

Desert shrubs are keystone species for plant diversity and ecosystem function. Atriplex clivicola and Atriplex deserticola (Amaranthaceae) are native shrubs from the Atacama Desert that show contrasting altitudinal distribution (A. clivicola: 0-700 m.a.s.l.; A. deserticola: 1500-3000 m.a.s.l.). Both species possess a C4 photosynthetic pathway and Kranz anatomy, traits adaptive to high temperatures. Historical records and projections for the near future show trends in increasing air temperature and frequency of heat wave events in these species' habitats. Besides sharing a C4 pathway, it is not clear how their leaf-level physiological traits associated with photosynthesis and water relations respond to heat stress. We studied their physiological traits (gas exchange, chlorophyll fluorescence, water status) before and after a simulated heat wave (HW). Both species enhanced their intrinsic water use efficiency after HW but via different mechanisms. A. clivicola, which has a higher LMA than A. deserticola, enhances water saving by closing stomata and maintaining RWC (%) and leaf Ψmd potential at similar values to those measured before HW. After HW, A. deserticola showed an increase of Amax without concurrent changes in gs and a significant reduction of RWC and Ψmd. A. deserticola showed higher values of Chla fluorescence after HW. Thus, under heat stress, A. clivicola maximizes water saving, whilst A. deserticola enhances its photosynthetic performance. These contrasting (eco)physiological strategies are consistent with the adaptation of each species to their local environmental conditions at different altitudes.

8.
Front Plant Sci ; 13: 917528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968085

RESUMO

Raising crops production via improving photosynthesis has always been focused. Recently excavating and increasing the photosynthetic capacity of non-leaf organs becomes an important approach to crops yield increase. Here we studied the photosynthetic characteristics of the flag leaf and the non-leaf organs including the sheath, the glume and the lemma under greenhouse. The relative water content (RWC), the stomatal characteristics, the photosynthetic pigment contents, the enzyme activities in C3 and C4 pathway and the malate content of the flag leaf and the non-leaf organs on 7, 14, 21, and 28 days after anthesis (denoted by 7DAA, 14DAA, 21DAA, and 28DAA) were determined under well-watered (CK) and water-stressed (D) treatments. Drought stress significantly reduced the RWC of the flag leaf and the non-leaf organs, while the variation of RWC in the glume and the lemma was lower than in the flag leaf. The chlorophyll a content, the chlorophyll b content, the total chlorophyll content and the xanthophyll content in the flag leaf were significantly decreased under D. However, drought stress significantly increased the photosynthetic pigment contents in the glume at the late stage (21DAA and 28DAA). In addition, the induced activities of PEPC, NADP-MDH, NADP-ME, NAD-ME, and PPDK in non-leaf organs under drought stress suggested that the C4 photosynthetic pathway in non-leaf organs compensated the limited C3 photosynthesis in the flag leaf. Non-leaf organs, in particular the glume, showed the crucial function in maintaining the stable photosynthetic performance of oat.

9.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4314-4328, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34984877

RESUMO

5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.


Assuntos
Ácido Aminolevulínico/metabolismo , Corynebacterium glutamicum , Rhodobacter capsulatus , Rodopseudomonas/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fermentação , Engenharia Metabólica , Rhodobacter capsulatus/enzimologia
10.
Bioresour Bioprocess ; 8(1): 13, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38650245

RESUMO

Programming non-canonical organisms is more attractive due to the prospect of high-value chemical production. Among all, Shewanella oneidensis MR-1 possesses outstanding heme synthesis ability and is well-known for electron transfer, thus has high potential in microbial fuel cell and bioremediation. However, heme, as the final product of C4 and C5 pathways, is regulated by heme cluster for the high-value 5-aminolevulinic acid (ALA) for cancer photodynamic therapy, which has never been explored in MR-1. Herein, the heme metabolism in MR-1 was firstly optimized for ALA production. We applied CRISPR interference (CRISPRi) targeted on the genes to fine-tune carbon flux in TCA cycle and redirected the carbon out-flux from heme, leading to a significant change in the amino acid profiles, while downregulation of the essential hemB showed a 2-fold increasing ALA production via the C5 pathway. In contrast, the modular design including of glucokinase, GroELS chaperone, and ALA synthase from Rhodobacter capsulatus enhanced ALA production markedly in the C4 pathway. By integrating gene cluster under dual T7 promoters, we obtained a new strain M::TRG, which significantly improved ALA production by 145-fold. We rewired the metabolic flux of MR-1 through this modular design and successfully produced the high-value ALA compound at the first time.

11.
Sci Total Environ ; 768: 144515, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33453542

RESUMO

Dinoflagellate blooming periods are paradoxically characterized by high biomass growth rate and low ambient dissolved CO2 and inorganic nutrients, however, the underlying mechanisms linking cell growth and nutrient acquisition are poorly understood. Here, we compared metaproteomes of non-bloom, mid-blooming and late-blooming cells of a marine dinoflagellate Prorocentrum donghaiense. Cell division, metabolism of carbon, nitrogen, phosphorus, lipid, porphyrin and chlorophyll were more active in blooming cells than in non-bloom cells. Up-regulation of carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase II, and C4-cycle proteins enhanced CO2 assimilation of P. donghaiense. Proteins participating in external organic nutrient acquisition and conversion, such as transporters for fatty acids, peptides and amino acids, external- and internal-phosphomonoester hydrolase, and diverse peptidases and amino acid transaminases, exhibited higher expression in blooming cells relative to non-bloom cells. Interestingly, dissolved organic nitrogen (DON) such as urea and aspartate significantly down-regulated expression and activity of carbon assimilation proteins except for RuBisCO form II, suggesting that DON provided sufficient carbon source which reduced the need to concentrate internal CO2. This study demonstrates that coupling of efficient CO2 assimilation with DON utilization are essential for bloom maintenance of P. donghaiense, and future efforts should be devoted to dissolved organic nutrients for prevention and management of dinoflagelllate blooms.


Assuntos
Dinoflagellida , Dióxido de Carbono , Proliferação Nociva de Algas , Nutrientes , Fósforo
12.
Genes (Basel) ; 11(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708598

RESUMO

C4 photosynthesis has evolved in over 60 different plant taxa and is an excellent example of convergent evolution. Plants using the C4 photosynthetic pathway have an efficiency advantage, particularly in hot and dry environments. They account for 23% of global primary production and include some of our most productive cereals. While previous genetic studies comparing phylogenetically related C3 and C4 species have elucidated the genetic diversity underpinning the C4 photosynthetic pathway, no previous studies have described the genetic diversity of the genes involved in this pathway within a C4 crop species. Enhanced understanding of the allelic diversity and selection signatures of genes in this pathway may present opportunities to improve photosynthetic efficiency, and ultimately yield, by exploiting natural variation. Here, we present the first genetic diversity survey of 8 known C4 gene families in an important C4 crop, Sorghum bicolor (L.) Moench, using sequence data of 48 genotypes covering wild and domesticated sorghum accessions. Average nucleotide diversity of C4 gene families varied more than 20-fold from the NADP-malate dehydrogenase (MDH) gene family (θπ = 0.2 × 10-3) to the pyruvate orthophosphate dikinase (PPDK) gene family (θπ = 5.21 × 10-3). Genetic diversity of C4 genes was reduced by 22.43% in cultivated sorghum compared to wild and weedy sorghum, indicating that the group of wild and weedy sorghum may constitute an untapped reservoir for alleles related to the C4 photosynthetic pathway. A SNP-level analysis identified purifying selection signals on C4 PPDK and carbonic anhydrase (CA) genes, and balancing selection signals on C4 PPDK-regulatory protein (RP) and phosphoenolpyruvate carboxylase (PEPC) genes. Allelic distribution of these C4 genes was consistent with selection signals detected. A better understanding of the genetic diversity of C4 pathway in sorghum paves the way for mining the natural allelic variation for the improvement of photosynthesis.


Assuntos
Variação Genética , Redes e Vias Metabólicas/genética , Fotossíntese/genética , Sorghum/genética , Domesticação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Malato Desidrogenase (NADP+)/genética , Malato Desidrogenase (NADP+)/metabolismo , Família Multigênica/genética , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Polimorfismo de Nucleotídeo Único , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo , Sorghum/classificação
13.
J Plant Physiol ; 213: 87-97, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28340469

RESUMO

Wheat is a C3 plant with relatively low photosynthetic efficiency and is a potential target for C4 photosynthetic pathway engineering. Here we reported the characterization of four key C4 pathway genes and assessed their expression patterns and enzymatic activities at three growth stages in flag leaves of 59 bread wheat genotypes. The C4-like genes homologous to PEPC, NADP-ME, MDH, and PPDK in maize were identified in the A, B, and D sub-genomes of bread wheat, located on the long arms of chromosomes 3 and 5 (TaPEPC), short arms of chromosomes 1 and 3 (TaNADP-ME), long arms of chromosomes 1 and 7 (TaMDH), and long arms of chromosome 1 (TaPPDK), respectively. All the four C4-like genes were expressed in the flag leaves at the three growth stages with considerable variations among the 59 bread wheat genotypes. Significant differences were observed between the photosynthesis rates (A) of wheat genotypes with higher expressions of TaPEPC_5, TaNADP-ME_1, and TaMDH_7 at heading and middle grain-filling stages and those with intermediate and low expressions. Our results also indicated that the four C4 enzymes showed activity in the flag leaves and were obviously different among the 59 wheat genotypes. The activities of PEPcase and PPDK decreased at anthesis and slightly increased at grain-filling stage, while NADP-ME and MDH exhibited a decreasing trend at the three stages. The results of the current study could be very valuable and useful for wheat researchers in improving photosynthetic capacity of wheat.


Assuntos
Fotossíntese/fisiologia , Triticum/metabolismo , Triticum/fisiologia , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Triticum/genética
14.
Chinese Journal of Biotechnology ; (12): 4314-4328, 2021.
Artigo em Chinês | WPRIM | ID: wpr-921508

RESUMO

5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.


Assuntos
Ácido Aminolevulínico/metabolismo , Corynebacterium glutamicum/metabolismo , Fermentação , Engenharia Metabólica , Rhodobacter capsulatus/enzimologia , Rodopseudomonas/enzimologia
15.
Oecologia ; 114(1): 11-19, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28307549

RESUMO

Microstegium vimineum (Trin.) A. Camus, a shade-tolerant C4 grass, has spread throughout the eastern United States since its introduction in 1919. This species invades disturbed understory habitats along streambanks and surrounding mesic forests, and has become a major pest in areas such as Great Smoky Mountains National Park. The focus of this study was to characterize the photosynthetic induction responses of M. vimineum, specifically its ability to utilize low light and sunflecks, two factors that may be critical to invasive abilities and survival in the understory. In addition, we were curious about the ability of a grass with the C4 photosynthetic pathway to respond to sunflecks. Plants were grown under 25% and 50% ambient sunlight, and photosynthetic responses to both steady-state and variable light were determined. Plants grown in both 25% and 50% ambient sun became 90% light saturated between 750-850 µmol m-2 s-1; however, plants grown in 50% ambient sun had significantly higher maximum steady-state photosynthetic rates (16.09 ± 1.37 µmol m-2 s-1 vs. 12.71 ± 1.18 µmol m-2 s-1). Both groups of plants induced to 50% of the steady-state rate in 3-5 min, while it took 10-13 min to reach 90% of maximum rates, under both flashing and steady-state light. For both groups of plants, stomatal conductance during induction reached maximum rates in 6-7 min, after which rates decreased slightly. Upon return to low light, rates of induction loss and stomatal closure were very rapid in both groups of plants, but were more rapid in those grown in high light. Rapid induction and the ability to induce under flashing light may enable this species to invade and dominate mesic understory habitats, while rapid induction loss due to stomatal closure may prevent excess water loss when low light constrains photosynthesis. The C4 pathway itself does not appear to present an insurmountable barrier to the ability of this grass species to respond to sunflecks in an understory environment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa