Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820854

RESUMO

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Assuntos
Nefropatias , Humanos , Acetilação , Nefropatias/tratamento farmacológico , Rim , Epigênese Genética , Epigenômica
2.
Mol Med ; 28(1): 129, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316651

RESUMO

Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1ß, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-ß/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.


Assuntos
Curcumina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Rim/metabolismo , Fibrose , Estresse Oxidativo , Inflamação/metabolismo
3.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630552

RESUMO

Pancreatic adenocarcinoma is by far the deadliest type of cancer. Inflammation is one of the important risk factors in tumor development. However, it is not yet clear whether deterioration in pancreatic cancer patients is related to inflammation, as well as the underlying mechanism. In addition, JNK is abnormally activated in pancreatic cancer cells and the JNK inhibitor C66 reduces the inflammatory microenvironment in the tumor. Therefore, the aim of this study was to evaluate the role of C66 in the proliferation and migration of pancreatic cancer. Our results showed that various inflammatory cytokines, such as IL-1ß, IL-6, IL-8, and IL-15, were more expressed in pancreatic cancer than in the matching normal tissue. Furthermore, C66, a curcumin analogue with good anti-inflammatory activity, inhibited the proliferation and migration of pancreatic cancer cells in a dose-dependent manner, and effectively inhibited the expression of the above inflammatory factors. Our previous research demonstrated that C66 prevents the inflammatory response by targeting JNK. Therefore, in this study, JNK activity in pancreatic cancer cells was investigated, revealing that JNK was highly activated, and the treatment with C66 inhibited the phosphorylation of JNK. Next, shJNK was used to knockdown JNK expression in pancreatic cancer cells to further confirm the role of JNK in the proliferation and migration of this tumor, as well as in the inflammatory tumor microenvironment (TME). The results demonstrated that JNK knockdown could significantly inhibit the proliferation and migration of pancreatic cancer. Moreover, the low JNK expression in pancreatic cancer cells significantly inhibited the expression of various inflammatory factors. These results indicated that C66 inhibited the progression of pancreatic cancer through the inhibition of JNK-mediated inflammation.


Assuntos
Adenocarcinoma , Curcumina , Neoplasias Pancreáticas , Animais , Curcumina/farmacologia , Humanos , Inflamação/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Heart Fail Rev ; 25(5): 731-743, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31512150

RESUMO

Cardiac fibrosis stems from the changes in the expression of fibrotic genes in cardiac fibroblasts (CFs) in response to the tissue damage induced by various cardiovascular diseases (CVDs) leading to their transformation into active myofibroblasts, which produce high amounts of extracellular matrix (ECM) proteins leading, in turn, to excessive deposition of ECM in cardiac tissue. The excessive accumulation of ECM elements causes heart stiffness, tissue scarring, electrical conduction disruption and finally cardiac dysfunction and heart failure. Curcumin (Cur; also known as diferuloylmethane) is a polyphenol compound extracted from rhizomes of Curcuma longa with an influence on an extensive spectrum of biological phenomena including cell proliferation, differentiation, inflammation, pathogenesis, chemoprevention, apoptosis, angiogenesis and cardiac pathological changes. Cumulative evidence has suggested a beneficial role for Cur in improving disrupted cardiac function developed by cardiac fibrosis by establishing a balance between degradation and synthesis of ECM components. There are various molecular mechanisms contributing to the development of cardiac fibrosis. We presented a review of Cur effects on cardiac fibrosis and the discovered underlying mechanisms by them Cur interact to establish its cardio-protective effects.


Assuntos
Curcumina/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miocárdio/patologia , Anti-Inflamatórios não Esteroides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Miocárdio/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais
5.
Fetal Pediatr Pathol ; 39(5): 373-380, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448666

RESUMO

Background: Preeclampsia (PE) is one of the main causes of fetal and maternal mortality. The analysis of candidate gene polymorphisms can improve our understanding of the mechanisms underlying pathogenesis of PE. Present study is aimed at investigating the association between MTRR c.66A > G, MTHFR c.677C > T, MTHFR c.1298A > C, and MTR c.2756A > G polymorphisms and PE in Iranian women. Methods: About 117 women with history of PE and 103 healthy women with a pregnancy not complicated by PE were selected. The genomic DNA was extracted from peripheral blood. Single-nucleotide polymorphisms were genotyped using Real-Time PCR. Results: There was a significant difference between MTHFR c.677C > T polymorphism with PE (p = 0.045). The frequency of C/T heterozygous genotypes were (58% vs. 36%) in the case and control groups, respectively. There were no statistically significant differences between other genetic polymorphisms. Conclusions: The results indicated that the MTHFR c.677C > T polymorphism may be associated with development of PE in Iranian women.


Assuntos
Pré-Eclâmpsia , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Irã (Geográfico) , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Pré-Eclâmpsia/genética , Gravidez
6.
J Cell Mol Med ; 22(12): 6314-6326, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30320490

RESUMO

AIM: Diabetic cardiomyopathy is an independent cardiac injury that can develop in diabetic individuals. Our previous study showed that C66, a curcumin analogue, protects against diabetes-induced cardiac damage. The present study sought to reveal the underlying mechanisms of C66-mediated cardioprotection. METHODS: An experimental diabetic model was established using JNK2-/- and wild-type (WT) mice. C66 (5 mg/kg) was administered orally every other day for 3 months. Body weight, plasma glucose levels, cardiac function, and structure were measured. Masson trichrome and TUNEL staining were used to assess myocardial fibrosis and apoptosis, respectively. mRNA and protein levels of inflammation, fibrosis, oxidative stress, and apoptosis molecules were measured by quantitative PCR and Western blot, respectively. RESULTS: Neither C66 treatment nor JNK2 knockout affected body weight or plasma glucose levels. Cardiac inflammation, fibrosis, oxidative stress, and apoptosis were increased in WT diabetic compared to WT control mice, all of which were attenuated by C66 treatment. However, these pathological and molecular changes induced by diabetes were eliminated in JNK2-/- diabetic mice compared to JNK2-/- control mice, and C66 treatment did not further affect these parameters in JNK2-/- diabetic mice. CONCLUSIONS: Our results indicate that C66 ameliorates diabetic cardiomyopathy by inhibiting JNK2 relative pathways.


Assuntos
Curcumina/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Proteína Quinase 9 Ativada por Mitógeno/genética , Animais , Apoptose/efeitos dos fármacos , Curcumina/análogos & derivados , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos NOD , Estresse Oxidativo/efeitos dos fármacos , Fosforilação
7.
J Cell Mol Med ; 18(6): 1203-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24720784

RESUMO

Cardiovascular diseases as leading causes of the mortality world-wide are related to diabetes. The present study was to explore the protective effect of curcumin analogue C66 on diabetes-induced pathogenic changes of aortas. Diabetes was induced in male C57BL/6 mice with a single intraperitoneal injection of streptozotocin. Diabetic mice and age-matched non-diabetic mice were randomly treated with either vehicle (Control and Diabetes), C66 (C66 and Diabetes/C66) or c-Jun N-terminal kinase (JNK) inhibitor (sp600125, JNKi and Diabetes/JNKi). All three treatments were given by gavage at 5 mg/kg every other day for 3 months. Aortic inflammation, oxidative stress, fibrosis, cell apoptosis and proliferation, Nrf2 expression and transcription were assessed by immunohistochemical staining for the protein level and real-time PCR method for mRNA level. Diabetes increased aortic wall thickness and structural derangement as well as JNK phosphorylation, all of which were attenuated by C66 treatment as JNKi did. Inhibition of JNK phosphorylation by C66 and JNKi also significantly prevented diabetes-induced increases in inflammation, oxidative and nitrative stress, apoptosis, cell proliferation and fibrosis. Furthermore, inhibition of JNK phosphorylation by C66 and JNKi significantly increased aortic Nrf2 expression and transcription function (e.g. increased expression of Nrf2-downstream genes) in normal and diabetic conditions. These results suggest that diabetes-induced pathological changes in the aorta can be protected by C66 via inhibition of JNK function, accompanied by the up-regulation of Nrf2 expression and function.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aorta/efeitos dos fármacos , Curcumina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Animais , Antracenos/farmacologia , Aorta/metabolismo , Aorta/patologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Curcumina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548092

RESUMO

Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos Endogâmicos C57BL , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/tratamento farmacológico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Masculino , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Estreptozocina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fibrose , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Sinalização do Cálcio/efeitos dos fármacos
9.
Biochem Pharmacol ; 229: 116491, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147331

RESUMO

The pathogenesis of type 1 diabetes mellitus (T1DM) involves oxidative stress and inflammation. Curcumin, a natural polyphenolic compound found in turmeric, known to exhibit antioxidative and anti-inflammatory properties, is characterized by poor chemical stability, low bioavailability, and rapid metabolism. Monocarbonyl analogs of curcumin (MACs) with a structural absence of ß-diketone and enhanced stability and bioavailability present a potential solution to the challenges associated with the use of curcumin. This study aimed to evaluate the effect of two MACs, C66 and B2BrBC, on oxidative stress markers, antioxidant enzyme activity, expression of diabetes-associated genes, and signaling pathway proteins in the context of T1DM. Streptozotocin (STZ)-induced male Wistar rats or rat pancreatic RIN-m cells were used for in vivo and in vitro experiments, respectively. C66 or B2BrBC were given either before or after STZ treatment. Oxidative stress markers and antioxidant enzyme activities were determined in various tissues. Expression of diabetes-associated genes was assessed using RT-qPCR, and the activity of signaling pathway proteins in the pancreas was determined through Western blot analysis. Treatment with C66 and B2BrBC significantly reduced oxidative stress markers and positively influenced antioxidant enzyme activities. Moreover, both compounds inhibited JNK activity in the pancreas while enhancing the expression of genes crucial for ß-cell survival and glucose and redox homeostasis. The findings highlight the multifaceted potential of C66 and B2BrBC in ameliorating oxidative stress, influencing gene expression patterns linked to diabetes, and modulating key signaling pathways in the pancreas. The findings suggest that these compounds can potentially address diabetes-related pathological processes.

10.
Biomed Pharmacother ; 143: 112121, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474346

RESUMO

Obesity has been recognized as a major risk factor for the development of chronic cardiomyopathy, which is associated with increased cardiac inflammation, fibrosis, and apoptosis. We previously developed an anti-inflammatory compound C66, which prevented inflammatory diabetic complications via targeting JNK. In the present study, we have tested the hypothesis that C66 could prevent obesity-induced cardiomyopathy by suppressing JNK-mediated inflammation. High-fat diet (HFD)-induced obesity mouse model and palmitic acid (PA)-challenged H9c2 cells were used to develop inflammatory cardiomyopathy and evaluate the protective effects of C66. Our data demonstrate a protective effect of C66 against obesity-induced cardiac inflammation, cardiac hypertrophy, fibrosis, and dysfunction, overall providing cardio-protection. C66 administration attenuates HFD-induced myocardial inflammation by inhibiting NF-κB and JNK activation in mouse hearts. In vitro, C66 prevents PA-induced myocardial injury and apoptosis in H9c2 cells, accompanied with inhibition against PA-induced JNK/NF-κB activation and inflammation. The protective effect of C66 is attributed to its potential to inhibit JNK activation, which led to reduced pro-inflammatory cytokine production and reduced apoptosis in cardiomyocytes both in vitro and in vivo. In summary, C66 provides significant protection against obesity-induced cardiac dysfunction, mainly by inhibiting JNK activation and JNK-mediated inflammation. Our data indicate that inhibition of JNK is able to provide significant protection against obesity-induced cardiac dysfunction.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/farmacologia , Cardiomiopatias/prevenção & controle , Cicloexanonas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Miocardite/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Obesidade/complicações , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Linhagem Celular , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Miocardite/enzimologia , Miocardite/etiologia , Miocardite/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Ácido Palmítico/toxicidade , Ratos , Transdução de Sinais
11.
Biomed Pharmacother ; 137: 111418, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761621

RESUMO

Obesity has been recognized as a major risk factor for the development of chronic kidney disease, which is accompanied by increased renal inflammation, fibrosis, and apoptosis. C66 is a curcumin derivative that exerts anti-inflammatory effects by inhibiting the JNK pathway and prevents diabetic nephropathy. The present study investigates the possible protective effect of C66 on high-fat diet (HFD)-induced obesity-related glomerulopathy. Mice were fed with HFD for 8 weeks while some were treated with C66 every 2 days for 11 weeks. The HFD-fed mice developed renal dysfunction, as well as elevated triglyceride and cholesterol. Kidneys of the HFD-fed mice showed marked glomerular injuries, apoptosis, and inflammation with markedly increased cytokine production. Interestingly, treating HFD-fed mice with C66 remarkably reversed these pathological changes via inhibiting inflammation and NF-κB/JNK activation. In cultured mesangial cells, Palmitic Acid was able to activate the pro-fibrotic mechanisms, apoptosis, inflammatory response, and NF-κB and JNK signaling pathways, all of which could be attenuated by C66 treatment. In all, we demonstrated that curcumin analogue C66 attenuates obesity-induced renal injury by inhibiting chronic inflammation and apoptosis via targeting NF-κB and JNK. Our data suggest that C66 can be potentially used to prevent obesity-associated renal diseases warranting future investigations.


Assuntos
Anti-Inflamatórios/uso terapêutico , Curcumina/análogos & derivados , Curcumina/uso terapêutico , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Obesidade/complicações , Animais , Apoptose/efeitos dos fármacos , Colesterol/sangue , Doença Crônica , Citocinas/metabolismo , Dieta Hiperlipídica , Glomérulos Renais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , Triglicerídeos/sangue
12.
Drug Des Devel Ther ; 13: 4161-4171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849448

RESUMO

BACKGROUND: Acute lung injury (ALI) is characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Curcumin analog C66, having reported as an inhibitor of c-Jun N-terminal kinase (JNK), exhibits anti-inflammatory property both in vitro and in vivo. However, whether C66 is capable of reducing lipopolysaccharide (LPS)-induced ALI through the inhibition of inflammation by targeting JNK remains unknown. METHODS: Intratracheal injection of LPS was employed to build a mouse ALI model. H&E staining, wet/dry ratio, immunofluorescence staining, inflammatory cell detection, and inflammatory gene expression were used to evaluate lung injury and lung inflammation. In vitro, LPS was used to induce the expression of inflammatory cytokines both in protein and gene levels. RESULTS: The results of our studies showed that the pretreatment with C66 and JNK inhibitor SP600125 was capable of attenuating the LPS-induced ALI by detecting pulmonary edema, pathological changes, total protein concentration, and inflammatory cell number in bronchoalveolar lavage fluid (BALF). Besides, C66 and SP600125 also suppressed LPS-induced inflammatory cytokine expression in BALF, serum, and lung tissue. In vitro, LPS-induced production of TNF-α and IL-6 and gene expression of TNF-α, IL-6, IL-1ß, and COX-2 could be inhibited by the pretreatment with C66 and SP600125. It was found that C66 and SP600125 could inhibit LPS-induced phosphorylation of JNK both in vitro and in vivo. CONCLUSION: In brief, our results suggested that C66 protects LPS-induced ALI through the inhibition of inflammation by targeting the JNK pathway. These findings further confirmed the pivotal role of JNK in ALI and implied that C66 is likely to serve as a potential therapeutic agent for ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Antracenos/farmacologia , Curcumina/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Antracenos/administração & dosagem , Antracenos/química , Células Cultivadas , Curcumina/análogos & derivados , Curcumina/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Injeções Intravenosas , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Relação Estrutura-Atividade
13.
Chem Biol Drug Des ; 86(4): 753-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25727339

RESUMO

We previously reported a symmetric monocarbonyl analog of curcumin (MACs), C66, which demonstrated potential anti-inflammatory activity and low toxicity. In continuation of our ongoing research, we designed and synthesized 34 asymmetric MACs based on C66 as a lead molecule. A majority of the C66 analogs effectively inhibited LPS induction of TNF-α and IL-6 expression. Additionally, a preliminary SAR was conducted. Furthermore, active compounds 4a11 and 4a16 were found to effectively reduce the W/D ratio in the lungs and the protein concentration in the bronchoalveolar lavage fluid (BALF). Meanwhile, a histopathological examination indicated that these two analogs significantly attenuate tissue injury in the lungs with LPS-induced ALI rats. 4a11 and 4a16 also inhibited mRNA expression of several inflammatory cytokines, including TNF-α, IL-6, IL-1ß, COX-2, ICAM-1 and VCAM-1, in the Beas-2B cells after LPS challenge. Altogether, the data exhibit a series of new C66 analogs as promising anti-inflammatory agents for the treatment of LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Compostos de Benzilideno/química , Líquido da Lavagem Broncoalveolar , Técnicas de Química Sintética , Cicloexanonas/química , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa