Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 239(6): 2180-2196, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537720

RESUMO

Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.


Assuntos
Agave , Metabolismo Ácido das Crassuláceas , Agave/metabolismo , Fotossíntese , Produtos Agrícolas/metabolismo , Carbono/metabolismo
2.
Ann Bot ; 132(4): 739-752, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36891814

RESUMO

Clusia is the only genus containing dicotyledonous trees with a capacity to perform crassulacean acid metabolism (CAM). Since the discovery of CAM in Clusia 40 years ago, several studies have highlighted the extraordinary plasticity and diversity of life forms, morphology and photosynthetic physiology of this genus. In this review, we revisit aspects of CAM photosynthesis in Clusia and hypothesize about the timing, the environmental conditions and potential anatomical characteristics that led to the evolution of CAM in the group. We discuss the role of physiological plasticity in influencing species distribution and ecological amplitude in the group. We also explore patterns of allometry of leaf anatomical traits and their correlations with CAM activity. Finally, we identify opportunities for further research on CAM in Clusia, such as the role of elevated nocturnal accumulation of citric acid, and gene expression in C3-CAM intermediate phenotypes.


Assuntos
Clusia , Metabolismo Ácido das Crassuláceas , Clusia/anatomia & histologia , Clusia/metabolismo , Fotossíntese/fisiologia , Folhas de Planta , Árvores
3.
Ann Bot ; 132(4): 655-670, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37625031

RESUMO

BACKGROUND AND AIMS: Bulnesia retama is a drought-deciduous, xerophytic shrub from arid landscapes of South America. In a survey of carbon isotope ratios (δ13C) in specimens from the field, B. retama exhibited less negative values, indicative of CAM or C4 photosynthesis. Here, we investigate whether B. retama is a C4 or CAM plant. METHODS: Gas-exchange responses to intercellular CO2, diurnal gas-exchange profiles, δ13C and dawn vs. afternoon titratable acidity were measured on leaves and stems of watered and droughted B. retama plants. Leaf and stem cross-sections were imaged to determine whether the tissues exhibited succulent CAM or C4 Kranz anatomy. KEY RESULTS: Field-collected stems and fruits of B. retama exhibited δ13C between -16 and -19 ‰. Plants grown in a glasshouse from field-collected seeds had leaf δ13C values near -31 ‰ and stem δ13C values near -28 ‰. The CO2 response of photosynthesis showed that leaves and stems used C3 photosynthesis during the day, while curvature in the nocturnal response of net CO2 assimilation rate (A) in all stems, coupled with slightly positive rates of A at night, indicated modest CAM function. C4 photosynthesis was absent. Succulence was absent in all tissues, although stems exhibited tight packing of the cortical chlorenchyma in a CAM-like manner. Tissue titratable acidity increased at night in droughted stems. CONCLUSIONS: Bulnesia retama is a weak to modest C3 + CAM plant. This is the first report of CAM in the Zygophyllaceae and the first showing that non-succulent, xerophytic shrubs use CAM. CAM alone in B. retama was too limited to explain less negative δ13C in field-collected plants, but combined with effects of low stomatal and mesophyll conductance it could raise δ13C to observed values between -16 and -19 ‰. Modest CAM activity, particularly during severe drought, could enable B. retama to persist in arid habitats of South America.


Assuntos
Metabolismo Ácido das Crassuláceas , Zygophyllaceae , Zygophyllaceae/anatomia & histologia , Dióxido de Carbono , Fotossíntese/fisiologia , Folhas de Planta/fisiologia
4.
Ann Bot ; 132(4): 753-770, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37642245

RESUMO

BACKGROUND AND AIMS: CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis. RESULTS: Where CAM origins can be inferred, strong CAM is estimated to have appeared in the past 30 million years in 46 of 48 examined clades, after atmospheric CO2 had declined from high (near 800 ppm) to lower (<450 ppm) values. In turn, 21 of 25 clades containing CAM species (but where CAM origins are less certain) also arose in the past 30 million years. In these clades, CAM is probably younger than the clade origin. We found evidence for repeated weak CAM evolution during the higher CO2 conditions before 30 million years ago, and possible strong CAM origins in the Crassulaceae during the Cretaceous period prior to atmospheric CO2 decline. Most CAM-specific clades arose in the past 15 million years, in a similar pattern observed for origins of C4 clades. CONCLUSIONS: The evidence indicates strong CAM repeatedly evolved in reduced CO2 conditions of the past 30 million years. Weaker CAM can pre-date low CO2 and, in the Crassulaceae, strong CAM may also have arisen in water-limited microsites under relatively high CO2. Experimental evidence from extant CAM species demonstrates that elevated CO2 reduces the importance of nocturnal CO2 fixation by increasing the contribution of C3 photosynthesis to daily carbon gain. Thus, the advantage of strong CAM would be reduced in high CO2, such that its evolution appears less likely and restricted to more extreme environments than possible in low CO2.


Assuntos
Dióxido de Carbono , Fotossíntese , Plantas , Filogenia , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Água
5.
Ann Bot ; 132(4): 671-683, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36861500

RESUMO

BACKGROUND: The plant family Cactaceae provides some of the most striking examples of adaptive evolution, expressing undeniably the most spectacular New World radiation of succulent plants distributed across arid and semi-arid regions of the Americas. Cacti are widely regarded for their cultural, economic and ecological value, yet they are also recognized as one of the most threatened and endangered taxonomic groups on the planet. SCOPE: This paper reviews current threats to species of cacti that have distributions in arid to semi-arid subtropical regions. Our review focuses primarily on four global change forces: (1) increases in atmospheric CO2 concentrations; (2) increases in mean annual temperatures and heat waves; (3) increases in the duration, frequency and intensity of droughts; and (4) and increases in competition and wildfire frequency from invasion by non-native species. We provide a broad range of potential priorities and solutions for stemming the extinction risk of cacti species and populations. CONCLUSIONS: Mitigating ongoing and emerging threats to cacti will require not only strong policy initiatives and international cooperation, but also new and creative approaches to conservation. These approaches include determining species at risk from climate extremes, enhancing habitat quality after disturbance, approaches and opportunities for ex situ conservation and restoration, and the potential use of forensic tools for identifying plants that have been removed illegally from the wild and sold on open markets.


Assuntos
Cactaceae , Clima Desértico , Ecossistema , Secas
6.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445801

RESUMO

The brown alga Pelvetia canaliculata is one of the species successfully adapted to intertidal conditions. Inhabiting the high intertidal zone, Pelvetia spends most of its life exposed to air, where it is subjected to desiccation, light, and temperature stresses. However, the physiological and biochemical mechanisms allowing this alga to tolerate such extreme conditions are still largely unknown. The objective of our study is to compare the biochemical composition of Pelvetia during the different phases of the tidal cycle. To our knowledge, this study is the first attempt to draft a detailed biochemical network underneath the complex physiological processes, conferring the successful survival of this organism in the harsh conditions of the high intertidal zone of the polar seas. We considered the tide-induced changes in relative water content, stress markers, titratable acidity, pigment, and phlorotannin content, as well as the low molecular weight metabolite profiles (GC-MS-based approach) in Pelvetia thalli. Thallus desiccation was not accompanied by considerable increase in reactive oxygen species content. Metabolic adjustment of P. canaliculata to emersion included accumulation of soluble carbohydrates, various phenolic compounds, including intracellular phlorotannins, and fatty acids. Changes in titratable acidity accompanied by the oscillations of citric acid content imply that some processes related to the crassulacean acid metabolism (CAM) may be involved in Pelvetia adaptation to the tidal cycle.


Assuntos
Phaeophyceae , Phaeophyceae/química , Cromatografia Gasosa-Espectrometria de Massas , Espécies Reativas de Oxigênio/metabolismo , Carboidratos
7.
New Phytol ; 233(2): 599-609, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637529

RESUMO

There is currently considerable interest in the prospects for bioengineering crassulacean acid metabolism (CAM) photosynthesis - or key elements associated with it, such as increased water-use efficiency - into C3 plants. Resolving how CAM photosynthesis evolved from the ancestral C3 pathway could provide valuable insights into the targets for such bioengineering efforts. It has been proposed that the ability to accumulate organic acids at night may be common among C3 plants, and that the transition to CAM might simply require enhancement of pre-existing fluxes, without the need for changes in circadian or diurnal regulation. We show, in a survey encompassing 40 families of vascular plants, that nocturnal acidification is a feature entirely restricted to CAM species. Although many C3 species can synthesize malate during the light period, we argue that the switch to night-time malic acid accumulation requires a fundamental metabolic reprogramming that couples glycolytic breakdown of storage carbohydrate to the process of net dark CO2 fixation. This central element of the CAM pathway, even when expressed at a low level, represents a biochemical capability not seen in C3 plants, and so is better regarded as a discrete evolutionary innovation than as part of a metabolic continuum between C3 and CAM.


Assuntos
Metabolismo Ácido das Crassuláceas , Fotossíntese , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Água/metabolismo
8.
Plant J ; 101(4): 816-830, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31960507

RESUMO

The conductance of carbon dioxide (CO2 ) from the substomatal cavities to the initial sites of CO2 fixation (gm ) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm , (iii) the technical limitation of estimating gm , which cannot be directly measured, and (iv) how gm responds to long- and short-term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two-resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three-dimensional (3-D) reaction-diffusion models and 3-D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm . Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.


Assuntos
Metabolismo Ácido das Crassuláceas , Células do Mesofilo/metabolismo , Folhas de Planta/anatomia & histologia , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Imageamento Tridimensional , Modelos Biológicos , Folhas de Planta/fisiologia , Temperatura
9.
Ann Bot ; 127(4): 437-449, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32166326

RESUMO

BACKGROUND AND AIMS: Crassulacean acid metabolism (CAM) is often considered to be a complex trait, requiring orchestration of leaf anatomy and physiology for optimal performance. However, the observation of trait correlations is based largely on comparisons between C3 and strong CAM species, resulting in a lack of understanding as to how such traits evolve and the level of intraspecific variability for CAM and associated traits. METHODS: To understand intraspecific variation for traits underlying CAM and how these traits might assemble over evolutionary time, we conducted detailed time course physiological screens and measured aspects of leaf anatomy in 24 genotypes of a C3+CAM hybrid species, Yucca gloriosa (Asparagaceae). Comparisons were made to Y. gloriosa's progenitor species, Y. filamentosa (C3) and Y. aloifolia (CAM). KEY RESULTS: Based on gas exchange and measurement of leaf acids, Y. gloriosa appears to use both C3 and CAM, and varies across genotypes in the degree to which CAM can be upregulated under drought stress. While correlations between leaf anatomy and physiology exist when testing across all three Yucca species, such correlations break down at the species level in Y. gloriosa. CONCLUSIONS: The variation in CAM upregulation in Y. gloriosa is a result of its relatively recent hybrid origin. The lack of trait correlations between anatomy and physiology within Y. gloriosa indicate that the evolution of CAM, at least initially, can proceed through a wide combination of anatomical traits, and more favourable combinations are eventually selected for in strong CAM plants.


Assuntos
Yucca , Genótipo , Fenótipo , Fotossíntese , Folhas de Planta
10.
BMC Genomics ; 21(1): 8, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896347

RESUMO

BACKGROUND: Pineapple is the most important crop with CAM photosynthesis, but its molecular biology is underexplored. MADS-box genes are crucial transcription factors involving in plant development and several biological processes. However, there is no systematic analysis of MADS-box family genes in pineapple (Ananas comosus). RESULTS: Forty-eight MADS-box genes were identified in the pineapple genome. Based on the phylogenetic studies, pineapple MADS-box genes can be divided into type I and type II MADS-box genes. Thirty-four pineapple genes were classified as type II MADS-box genes including 32 MIKC-type and 2 Mδ-type, while 14 type I MADS-box genes were further divided into Mα, Mß and Mγ subgroups. A majority of pineapple MADS-box genes were randomly distributed across 19 chromosomes. RNA-seq expression patterns of MADS-box genes in four different tissues revealed that more genes were highly expressed in flowers, which was confirmed by our quantitative RT-PCR results. There is no FLC and CO orthologs in pineapple. The loss of FLC and CO orthologs in pineapple indicated that modified flowering genes network in this tropical plant compared with Arabidopsis. The expression patterns of MADS-box genes in photosynthetic and non-photosynthetic leaf tissues indicated the potential roles of some MADS-box genes in pineapple CAM photosynthesis. The 23% of pineapple MADS-box genes showed diurnal rhythm, indicating that these MADS-box genes are regulated by circadian clock. CONCLUSIONS: MADS-box genes identified in pineapple are closely related to flowering development. Some MADS-box genes are involved in CAM photosynthesis and regulated by the circadian clock. These findings will facilitate research on the development of unusual spiral inflorescences on pineapple fruit and CAM photosynthesis.


Assuntos
Ananas/genética , Flores/genética , Proteínas de Domínio MADS/genética , Fotossíntese/genética , Ananas/crescimento & desenvolvimento , Arabidopsis/genética , Sequência Conservada/genética , Evolução Molecular , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Desenvolvimento Vegetal/genética
11.
BMC Genomics ; 21(1): 383, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493214

RESUMO

BACKGROUND: Lysine succinylation, an important protein posttranslational modification (PTM), is widespread and conservative. The regulatory functions of succinylation in leaf color has been reported. The chimeric leaves of Ananas comosus var. bracteatus are composed of normal green parts and albino white parts. However, the extent and function of lysine succinylation in chimeric leaves of Ananas comosus var. bracteatus has yet to be investigated. RESULTS: Compared to the green (Gr) parts, the global succinylation level was increased in the white (Wh) parts of chimeric leaves according to the Western blot and immunohistochemistry analysis. Furthermore, we quantitated the change in the succinylation profiles between the Wh and Gr parts of chimeric leaves using label-free LFQ intensity. In total, 855 succinylated sites in 335 proteins were identified, and 593 succinylated sites in 237 proteins were quantified. Compared to the Gr parts, 232 (61.1%) sites in 128 proteins were quantified as upregulated targets, and 148 (38.9%) sites in 70 proteins were quantified as downregulated targets in the Wh parts of chimeric leaves using a 1.5-fold threshold (P < 0.05). These proteins with altered succinylation level were mainly involved in crassulacean acid metabolism (CAM) photosynthesis, photorespiration, glycolysis, the citric acid cycle (CAC) and pyruvate metabolism. CONCLUSIONS: Our results suggested that the changed succinylation level in proteins might function in the main energy metabolism pathways-photosynthesis and respiration. Succinylation might provide a significant effect in the growth of chimeric leaves and the relationship between the Wh and Gr parts of chimeric leaves. This study not only provided a basis for further characterization on the function of succinylated proteins in chimeric leaves of Ananas comosus var. bracteatus but also provided a new insight into molecular breeding for leaf color chimera.


Assuntos
Ananas/metabolismo , Lisina/metabolismo , Proteínas de Plantas/metabolismo , Ácido Succínico/metabolismo , Quimera/metabolismo , Cromatografia Líquida , Cor , Regulação da Expressão Gênica de Plantas , Glicólise , Lisina/química , Fotossíntese , Folhas de Planta , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem
12.
New Phytol ; 223(4): 1742-1755, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30993711

RESUMO

Are evolutionary outcomes predictable? Adaptations that show repeated evolutionary convergence across the Tree of Life provide a special opportunity to dissect the context surrounding their origins, and identify any commonalities that may predict why certain traits evolved many times in particular clades and yet never evolved in others. The remarkable convergence of C4 and Crassulacean Acid Metabolism (CAM) photosynthesis in vascular plants makes them exceptional model systems for understanding the repeated evolution of complex phenotypes. This review highlights what we have learned about the recurring assembly of C4 and CAM, focusing on the increasingly predictable stepwise evolutionary integration of anatomy and biochemistry. With the caveat that we currently understand C4 evolution better than we do CAM, I propose a general model that explains and unites C4 and CAM evolutionary trajectories. Available data suggest that anatomical modifications are the 'rate-limiting step' in each trajectory, which in large part determines the evolutionary accessibility of both syndromes. The idea that organismal structure exerts a primary influence on innovation is discussed in the context of other systems. Whether the rate-limiting step occurs early or late in the evolutionary assembly of a new phenotype may have profound implications for its distribution across the Tree of Life.


Assuntos
Evolução Biológica , Carbono/metabolismo , Fotossíntese , Adaptação Fisiológica , Fenótipo , Filogenia
13.
J Exp Bot ; 70(22): 6509-6519, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31269200

RESUMO

The plant family Cactaceae is considered among the most threatened groups of organisms on the planet. The threatened status of the cacti family has created a renewed interest in the highly evolved physiological and morphological traits that underpin their persistence in some of the harshest subtropical environments in the Americas. Among the most important anatomical features of cacti is the modification of leaves into spines, and previous work has shown that the stable isotope chemistry of cacti spines records potential variations in stem water balance, stress, and Crassulacean acid metabolism (CAM). We review the opportunities, challenges, and pitfalls in measuring δ 13C, δ 2H, and δ 18O ratios captured in spine tissues that potentially reflect temporal and spatial patterns of stomatal conductance, internal to atmospheric CO2 partial pressures, and subsequent patterns of photosynthetic gas exchange. We then evaluate the challenges in stable isotope analysis in spine tissues related to variation in CAM expression, stem water compartmentalization, and spine whole-tissue composition among other factors. Finally, we describe how the analysis of all three isotopes can be used in combination to provide potentially robust analysis of photosynthetic function in cacti, and other succulent-stemmed taxa across broad spatio-temporal environmental gradients.


Assuntos
Cactaceae/fisiologia , Clima Desértico , Temperatura Alta , Isótopos/metabolismo , América , Modelos Biológicos , Estações do Ano
14.
Plant J ; 92(1): 19-30, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28670834

RESUMO

The altered carbon assimilation pathway of crassulacean acid metabolism (CAM) photosynthesis results in an up to 80% higher water-use efficiency than C3 photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA) expression patterns in the obligate CAM plant pineapple [Ananas comosus (L.) Merr.]. The high-resolution transcriptome atlas allowed us to distinguish between CAM-related and non-CAM gene copies. A differential gene co-expression network across green and white leaf diel datasets identified genes with circadian oscillation, CAM-related functions, and source-sink relations. Gene co-expression clusters containing CAM pathway genes are enriched with clock-associated cis-elements, suggesting circadian regulation of CAM. About 20% of pineapple microRNAs have diel expression patterns, with several that target key CAM-related genes. Expression and physiology data provide a model for CAM-specific carbohydrate flux and long-distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering of CAM into C3 photosynthesis crop species.


Assuntos
Ananas/genética , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Proteínas de Plantas/genética , Transcriptoma , Ananas/fisiologia , Relógios Circadianos , Fotossíntese , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , RNA de Plantas/genética , Água/metabolismo
15.
New Phytol ; 208(1): 73-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25975197

RESUMO

The key components of crassulacean acid metabolism (CAM) - nocturnal fixation of atmospheric CO2 and its processing via Rubisco in the subsequent light period - are now reasonably well understood in terms of the biochemical reactions defining this water-saving mode of carbon assimilation. Phenotypically, however, the degree to which plants engage in the CAM cycle relative to regular C3 photosynthesis is highly variable. Depending upon species, ontogeny and environment, the contribution of nocturnal CO2 fixation to 24-h carbon gain can range continuously from close to 0% to 100%. Nevertheless, not all possible combinations of light and dark CO2 fixation appear equally common. Large-scale surveys of carbon-isotope ratios typically show a strongly bimodal frequency distribution, with relatively few intermediate values. Recent research has revealed that many species capable of low-level CAM activity are nested within the peak of C3 -type isotope signatures. While questions remain concerning the adaptive significance of dark CO2 fixation in such species, plants with low-level CAM should prove valuable models for investigating the discrete changes in genetic architecture and gene expression that have enabled the evolutionary transition from C3 to CAM.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Carbono/metabolismo , Fenótipo , Fotossíntese , Plantas , Água/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecossistema , Genoma de Planta , Luz , Transpiração Vegetal , Plantas/genética , Plantas/metabolismo
16.
New Phytol ; 208(2): 469-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26192467

RESUMO

Crassulacean acid metabolism (CAM) photosynthesis is an adaptation to water and atmospheric CO2 deficits that has been linked to diversification in dry-adapted plants. We investigated whether CAM evolution can be associated with the availability of new or alternative niches, using Eulophiinae orchids as a case study. Carbon isotope ratios, geographical and climate data, fossil records and DNA sequences were used to: assess the prevalence of CAM in Eulophiinae orchids; characterize the ecological niche of extant taxa; infer divergence times; and estimate whether CAM is associated with niche shifts. CAM evolved in four terrestrial lineages during the late Miocene/Pliocene, which have uneven diversification patterns. These lineages originated in humid habitats and colonized dry/seasonally dry environments in Africa and Madagascar. Additional key features (variegation, heterophylly) evolved in the most species-rich CAM lineages. Dry habitats were also colonized by a lineage that includes putative mycoheterotrophic taxa. These findings indicate that the switch to CAM is associated with environmental change. With its suite of adaptive traits, this group of orchids represents a unique opportunity to study the adaptations to dry environments, especially in the face of projected global aridification.


Assuntos
Evolução Biológica , Ácidos Carboxílicos/metabolismo , Ecossistema , Orchidaceae/fisiologia , Fotossíntese , Biodiversidade , Isótopos de Carbono , Madagáscar , Filogenia , Análise de Componente Principal , Fatores de Tempo
17.
J Theor Biol ; 368: 83-94, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25542971

RESUMO

Crassulacean acid metabolism (CAM) photosynthesis functions as an endogenous circadian rhythm coupled to external environmental forcings of energy and water availability. This paper explores the nonlinear dynamics of a new CAM photosynthesis model (Bartlett et al., 2014) and investigates the responses of CAM plant carbon assimilation to different combinations of environmental conditions. The CAM model (Bartlett et al., 2014) consists of a Calvin cycle typical of C3 plants coupled to an oscillator of the type employed in the Van der Pol and FitzHugh-Nagumo systems. This coupled system is a function of environmental variables including leaf temperature, leaf moisture potential, and irradiance. Here, we explore the qualitative response of the system and the expected carbon assimilation under constant and periodically forced environmental conditions. The model results show how the diurnal evolution of these variables entrains the CAM cycle with prevailing environmental conditions. While constant environmental conditions generate either steady-state or periodically oscillating responses in malic acid uptake and release, forcing the CAM system with periodic daily fluctuations in light exposure and leaf temperature results in quasi-periodicity and possible chaos for certain ranges of these variables. This analysis is a first step in quantifying changes in CAM plant productivity with variables such as the mean temperature, daily temperature range, irradiance, and leaf moisture potential. Results may also be used to inform model parametrization based on the observed fluctuating regime.


Assuntos
Ritmo Circadiano/fisiologia , Crassulaceae/metabolismo , Modelos Biológicos , Relógios Biológicos/fisiologia , Carbono/metabolismo , Meio Ambiente , Dinâmica não Linear , Estimulação Luminosa , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Temperatura
18.
J Exp Bot ; 65(13): 3405-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24759883

RESUMO

Columnar cacti occur naturally in many habitats and environments in the Americas but are conspicuously dominant in very dry desert regions. These majestic plants are widely regarded for their cultural, economic, and ecological value and, in many ecosystems, support highly diverse communities of pollinators, seed dispersers, and frugivores. Massive amounts of water and other resources stored in the succulent photosynthetic stems of these species confer a remarkable ability to grow and reproduce during intensely hot and dry periods. Yet many columnar cacti are potentially under severe threat from environmental global changes, including climate change and loss of habitat. Stems in columnar cacti and other cylindrical-stemmed cacti are morphologically diverse; stem volume-to-surface area ratio (V:S) across these taxa varies by almost two orders of magnitude. Intrinsic functional trade-offs are examined here across a broad range of V:S in species of columnar cacti. It is proposed that variation in photosynthetic gas exchange, growth, and response to stress is highly constrained by stem V:S, establishing a mechanistic framework for understanding the sensitivity of columnar cacti to climate change and drought. Specifically, species that develop stems with low V:S, and thus have little storage capacity, are expected to express high mass specific photosynthesis and growth rates under favourable conditions compared with species with high V:S. But the trade-off of having little storage capacity is that low V:S species are likely to be less tolerant of intense or long-duration drought compared with high V:S species. The application of stable isotope measurements of cactus spines as recorders of growth, water relations, and metabolic responses to the environment across species of columnar cacti that vary in V:S is also reviewed. Taken together, our approach provides a coherent theory and required set of observations needed for predicting the responses of columnar cacti to climate change.


Assuntos
Cactaceae/fisiologia , Fotossíntese , Caules de Planta/fisiologia , Estresse Fisiológico , Mudança Climática , Secas
19.
J Exp Bot ; 65(13): 3609-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24638902

RESUMO

CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes.


Assuntos
Fosfoenolpiruvato Carboxilase/genética , Fotossíntese , Portulaca/enzimologia , Transcriptoma , Evolução Biológica , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Fenótipo , Filogenia , Proteínas de Plantas/genética , Portulaca/genética , Análise de Sequência de RNA
20.
J Exp Bot ; 65(13): 3395-404, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24692645

RESUMO

The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars.


Assuntos
Ananas/genética , Variação Genética , Genoma de Planta/genética , Genômica , Fotossíntese/genética , Ananas/fisiologia , Mapeamento Cromossômico , Epigenômica , Marcadores Genéticos/genética , Genótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa