Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(23): 8446-51, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912171

RESUMO

For decades, the enzymatic conversion of cellulose was thought to rely on the synergistic action of hydrolytic enzymes, but recent work has shown that lytic polysaccharide monooxygenases (LPMOs) are important contributors to this process. We describe the structural and functional characterization of two functionally coupled cellulose-active LPMOs belonging to auxiliary activity family 10 (AA10) that commonly occur in cellulolytic bacteria. One of these LPMOs cleaves glycosidic bonds by oxidation of the C1 carbon, whereas the other can oxidize both C1 and C4. We thus demonstrate that C4 oxidation is not confined to fungal AA9-type LPMOs. X-ray crystallographic structures were obtained for the enzyme pair from Streptomyces coelicolor, solved at 1.3 Å (ScLPMO10B) and 1.5 Å (CelS2 or ScLPMO10C) resolution. Structural comparisons revealed differences in active site architecture that could relate to the ability to oxidize C4 (and that also seem to apply to AA9-type LPMOs). Despite variation in active site architecture, the two enzymes exhibited similar affinities for Cu(2+) (12-31 nM), redox potentials (242 and 251 mV), and electron paramagnetic resonance spectra, with only the latter clearly different from those of chitin-active AA10-type LPMOs. We conclude that substrate specificity depends not on copper site architecture, but rather on variation in substrate binding and orientation. During cellulose degradation, the members of this LPMO pair act in synergy, indicating different functional roles and providing a rationale for the abundance of these enzymes in biomass-degrading organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Quitina/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zinco/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(17): 6287-92, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733907

RESUMO

The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity of well-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades various hemicelluloses, in particular xyloglucan. This activity was discovered using a glycan microarray-based screening method for detection of substrate specificities of carbohydrate-active enzymes, and further explored using defined oligomeric hemicelluloses, isolated polymeric hemicelluloses and cell walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting on the same substrates. The enzyme particularly acts on the glucose backbone of xyloglucan, accepting various substitutions (xylose, galactose) in almost all positions. Because the attachment of xyloglucan to cellulose hampers depolymerization of the latter, it is possible that the beneficial effect of the LPMOs that are present in current commercial cellulase mixtures in part is due to hitherto undetected LPMO activities on recalcitrant hemicellulose structures.


Assuntos
Parede Celular/metabolismo , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Células Vegetais/metabolismo , Polissacarídeos/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Glucanos/química , Glucanos/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/metabolismo , Mananas/metabolismo , Análise em Microsséries , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Xilanos/química , Xilanos/metabolismo , beta-Glucanas/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(1): 149-54, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344312

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass depolymerization. To date, several features of copper binding to LPMOs have been elucidated, but the identity of the reactive oxygen species and the key steps in the oxidative mechanism have not been elucidated. Here, density functional theory calculations are used with an enzyme active site model to identify the reactive oxygen species and compare two hypothesized reaction pathways in LPMOs for hydrogen abstraction and polysaccharide hydroxylation; namely, a mechanism that employs a η(1)-superoxo intermediate, which abstracts a substrate hydrogen and a hydroperoxo species is responsible for substrate hydroxylation, and a mechanism wherein a copper-oxyl radical abstracts a hydrogen and subsequently hydroxylates the substrate via an oxygen-rebound mechanism. The results predict that oxygen binds end-on (η(1)) to copper, and that a copper-oxyl-mediated, oxygen-rebound mechanism is energetically preferred. The N-terminal histidine methylation is also examined, which is thought to modify the structure and reactivity of the enzyme. Density functional theory calculations suggest that this posttranslational modification has only a minor effect on the LPMO active site structure or reactivity for the examined steps. Overall, this study suggests the steps in the LPMO mechanism for oxidative cleavage of glycosidic bonds.


Assuntos
Oxigenases de Função Mista/química , Oxigênio/química , Thermoascus/enzimologia , Biocombustíveis , Biomassa , Carboidratos/química , Domínio Catalítico , Parede Celular/metabolismo , Simulação por Computador , Cobre/química , Ativação Enzimática , Glicosídeos/química , Hidrogênio/química , Hidrólise , Hidroxilação , Oxigênio/metabolismo , Plantas/metabolismo , Polissacarídeos/química , Teoria Quântica , Espécies Reativas de Oxigênio
4.
J Biol Chem ; 289(5): 2632-42, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24324265

RESUMO

Lignocellulosic biomass is a renewable resource that significantly can substitute fossil resources for the production of fuels, chemicals, and materials. Efficient saccharification of this biomass to fermentable sugars will be a key technology in future biorefineries. Traditionally, saccharification was thought to be accomplished by mixtures of hydrolytic enzymes. However, recently it has been shown that lytic polysaccharide monooxygenases (LPMOs) contribute to this process by catalyzing oxidative cleavage of insoluble polysaccharides utilizing a mechanism involving molecular oxygen and an electron donor. These enzymes thus represent novel tools for the saccharification of plant biomass. Most characterized LPMOs, including all reported bacterial LPMOs, form aldonic acids, i.e., products oxidized in the C1 position of the terminal sugar. Oxidation at other positions has been observed, and there has been some debate concerning the nature of this position (C4 or C6). In this study, we have characterized an LPMO from Neurospora crassa (NcLPMO9C; also known as NCU02916 and NcGH61-3). Remarkably, and in contrast to all previously characterized LPMOs, which are active only on polysaccharides, NcLPMO9C is able to cleave soluble cello-oligosaccharides as short as a tetramer, a property that allowed detailed product analysis. Using mass spectrometry and NMR, we show that the cello-oligosaccharide products released by this enzyme contain a C4 gemdiol/keto group at the nonreducing end.


Assuntos
Biocombustíveis/microbiologia , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Oligossacarídeos/metabolismo , Carbono/metabolismo , Espectrometria de Massas , Neurospora crassa/metabolismo , Oxirredução , Oxigênio/metabolismo , Polissacarídeos/metabolismo
5.
J Biol Chem ; 288(18): 12828-39, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23525113

RESUMO

Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.


Assuntos
Cobre/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Phanerochaete/enzimologia , Domínio Catalítico , Celobiose/química , Celobiose/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo
6.
FEBS J ; 282(5): 921-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25565565

RESUMO

Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and ChiB) and a multi-modular lytic polysaccharide monooxygenase (LmLPMO10). These enzymes have been related to virulence and their role in chitin metabolism is poorly understood. It is thus of interest to functionally characterize the individual enzymes in order to shed light on their roles in vivo. Our results demonstrate that L. monocytogenes has a fully functional chitinolytic system. Both chitinases show substrate degradation rates similar to those of the nonprocessive endo-chitinase SmChiC from Serratia marcescens. Compared to the S. marcescens LPMO chitin-binding protein CBP21, LmLPMO10 shows a similar rate but different product profiles depending on the substrate. In LPMO-chitinase synergy experiments, CBP21 is able to boost the activity of both ChiA and ChiB more than LmLPMO10. Product analysis of the synergy assays revealed that the chitinases were unable to efficiently hydrolyse the LPMO products (chitooligosaccharide aldonic acids) with a degree of polymerization below four (ChiA and SmChiC) or three (ChiB). Gene transcription and protein expression analysis showed that LmLPMO10 is neither highly transcribed, nor abundantly secreted during the growth of L. monocytogenes in a chitin-containing medium. The chitinases on the other hand are both abundantly secreted in the presence of chitin. Although LmLPMO10 is shown to promote chitin degradation in tandem with the chitinases in vitro, the secretome and transcription data question whether this is the primary role of LmLPMO10 in vivo.


Assuntos
Quitinases/metabolismo , Listeria monocytogenes/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Quitina/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrólise , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Oxigenases de Função Mista/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Fatores de Virulência/metabolismo
7.
Comput Struct Biotechnol J ; 2: e201209015, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24688656

RESUMO

Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa