Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
EMBO J ; 40(20): e107795, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34487363

RESUMO

Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.


Assuntos
Fator de Ligação a CCCTC/química , Reparo do DNA , Melanoma/genética , Proteínas Serina-Treonina Quinases/química , Dímeros de Pirimidina/efeitos da radiação , Neoplasias Cutâneas/genética , Sítios de Ligação , Ligação Competitiva , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Expressão Gênica , Humanos , Melanoma/metabolismo , Melanoma/patologia , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dímeros de Pirimidina/biossíntese , Dímeros de Pirimidina/química , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Raios Ultravioleta
2.
J Biol Chem ; 299(9): 105153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567476

RESUMO

Astrocyte activation and proliferation contribute to glial scar formation during spinal cord injury (SCI), which limits nerve regeneration. The long noncoding RNAs (lncRNAs) are involved in astrocyte proliferation and act as novel epigenetic regulators. Here, we found that lncRNA-LOC100909675 (LOC9675) expression promptly increased after SCI and that reducing its expression decreased the proliferation and migration of the cultured spinal astrocytes. Depletion of LOC9675 reduced astrocyte proliferation and facilitated axonal regrowth after SCI. LOC9675 mainly localized in astrocytic nuclei. We used RNA-seq to analyze gene expression profile alterations in LOC9675-depleted astrocytes and identified the cyclin-dependent kinase 1 (Cdk1) gene as a hub candidate. Our RNA pull-down and RNA immunoprecipitation assays showed that LOC9675 directly interacted with the transcriptional regulator CCCTC-binding factor (CTCF). Dual-luciferase reporter and chromatin immunoprecipitation assays, together with downregulated/upregulated expression investigation, revealed that CTCF is a novel regulator of the Cdk1 gene. Interestingly, we found that with the simultaneous overexpression of CTCF and LOC9675 in astrocytes, the Cdk1 transcript was restored to the normal level. We then designed the deletion construct of LOC9675 by removing its interacting region with CTCF and found this effect disappeared. A transcription inhibition assay using actinomycin D revealed that LOC9675 could stabilize Cdk1 mRNA, while LOC9675 depletion or binding with CTCF reduced Cdk1 mRNA stability. These data suggest that the cooperation between CTCF and LOC9675 regulates Cdk1 transcription at a steady level, thereby strictly controlling astrocyte proliferation. This study provides a novel perspective on the regulation of the Cdk1 gene transcript by lncRNA LOC9675.

3.
J Virol ; 97(2): e0189422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744959

RESUMO

The ability of Epstein-Barr virus (EBV) to switch between latent and lytic infection is key to its long-term persistence, yet the molecular mechanisms behind this switch remain unclear. To investigate transcriptional events during the latent-to-lytic switch, we utilized Precision nuclear Run On followed by deep Sequencing (PRO-Seq) to map cellular RNA polymerase (Pol) activity to single-nucleotide resolution on the host and EBV genome in three different models of EBV latency and reactivation. In latently infected Mutu-I Burkitt lymphoma (BL) cells, Pol activity was enriched at the Qp promoter, the EBER region, and the BHLF1/LF3 transcripts. Upon reactivation with phorbol ester and sodium butyrate, early-phase Pol activity occurred bidirectionally at CTCF sites within the LMP-2A, EBER-1, and RPMS1 loci. PRO-Seq analysis of Akata cells reactivated from latency with anti-IgG and a lymphoblastoid cell line (LCL) reactivated with small molecule C60 showed a similar pattern of early bidirectional transcription initiating around CTCF binding sites, although the specific CTCF sites and viral genes were different for each latency model. The functional importance of CTCF binding, transcription, and reactivation was confirmed using an EBV mutant lacking the LMP-2A CTCF binding site. This virus was unable to reactivate and had disrupted Pol activity at multiple CTCF binding sites relative to the wild-type (WT) virus. Overall, these data suggest that CTCF regulates the viral early transcripts during reactivation from latency. These activities likely help maintain the accessibility of the viral genome to initiate productive replication. IMPORTANCE The ability of EBV to switch between latent and lytic infection is key to its long-term persistence in memory B cells, and its ability to persist in proliferating cells is strongly linked to oncogenesis. During latency, most viral genes are epigenetically silenced, and the virus must overcome this repression to reactivate lytic replication. Reactivation occurs once the immediate early (IE) EBV lytic genes are expressed. However, the molecular mechanisms behind the switch from the latent transcriptional program to begin transcription of the IE genes remain unknown. In this study, we mapped RNA Pol positioning and activity during latency and reactivation. Unexpectedly, Pol activity accumulated at distinct regions characteristic of transcription initiation on the EBV genome previously shown to be associated with CTCF. We propose that CTCF binding at these regions retains Pol to maintain a stable latent chromosome conformation and a rapid response to various reactivation signals.


Assuntos
Fator de Ligação a CCCTC , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , RNA Polimerase Dependente de RNA , Ativação Viral , Humanos , Sítios de Ligação , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Latência Viral , RNA Polimerase Dependente de RNA/metabolismo , Linhagem Celular Tumoral , Fator de Ligação a CCCTC/metabolismo
4.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326830

RESUMO

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Galactosídeos , Fatores de Transcrição , Animais , Camundongos , Humanos , Fator de Ligação a CCCTC , Anticorpos Antiproteína Citrulinada , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Knockout , Sialiltransferases/genética
5.
Physiol Genomics ; 54(10): 380-388, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036457

RESUMO

Sequencing cancer predisposing genes (CPGs) in evocative patients (i.e., patients with personal and family history of multiple/early-onset/unusual cancers) allows follow-up in their relatives to be adapted when a causative pathogenic variant is identified. Unfortunately, many evocative families remain unexplained. Part of this "missing heritability" could be due to CPG dysregulations caused by remote noncoding genomic alterations. Transcription levels are regulated through the ability of promoters to physically interact with their distant cis-regulatory elements. Three-dimensional chromatin contacts, mediated by a dynamic loop extrusion process, are uncovered by chromosome conformation capture (3C) and 3C-derived techniques, which have enabled the discovery of new pathological mechanisms in developmental diseases and cancers. High-penetrance cancer predisposition is caused by germline hereditary alterations otherwise found at the somatic level in sporadic cancers. Thus, data from both developmental diseases and cancers provide information about possible unknown cancer predisposition mechanisms. This mini-review aims to deduce from these data whether abnormal chromatin folding can cause high-penetrance cancer predisposition.


Assuntos
Cromatina , Neoplasias , Cromatina/genética , Genoma , Humanos , Neoplasias/genética , Penetrância , Regiões Promotoras Genéticas
6.
J Biol Chem ; 297(5): 101296, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34637788

RESUMO

Adipose tissue dysfunction is a hallmark of obesity and contributes to obesity-related sequelae such as metabolic complications and insulin resistance. Compelling evidence indicates that adipose-tissue-specific gene expression is influenced by gene interactions with proximal and distal cis-regulatory elements; the latter exert regulatory effects via three-dimensional (3D) chromosome conformation. Recent advances in determining the regulatory mechanisms reveal that compromised epigenomes are molecularly interlinked to altered cis-regulatory element activity and chromosome architecture in the adipose tissue. This review summarizes the roles of epigenomic components, particularly DNA methylation, in transcriptional rewiring in adipose tissue. In addition, we discuss the emerging roles of DNA methylation in the maintenance of 3D chromosome conformation and its pathophysiological significance concerning adipose tissue function.


Assuntos
Tecido Adiposo/metabolismo , Metilação de DNA , Epigênese Genética , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Tecido Adiposo/patologia , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Obesidade/genética , Obesidade/patologia
7.
J Biol Chem ; 296: 100097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208463

RESUMO

Heat shock transcription factor 1 (HSF1) orchestrates cellular stress protection by activating or repressing gene transcription in response to protein misfolding, oncogenic cell proliferation, and other environmental stresses. HSF1 is tightly regulated via intramolecular repressive interactions, post-translational modifications, and protein-protein interactions. How these HSF1 regulatory protein interactions are altered in response to acute and chronic stress is largely unknown. To elucidate the profile of HSF1 protein interactions under normal growth and chronic and acutely stressful conditions, quantitative proteomics studies identified interacting proteins in the response to heat shock or in the presence of a poly-glutamine aggregation protein cell-based model of Huntington's disease. These studies identified distinct protein interaction partners of HSF1 as well as changes in the magnitude of shared interactions as a function of each stressful condition. Several novel HSF1-interacting proteins were identified that encompass a wide variety of cellular functions, including roles in DNA repair, mRNA processing, and regulation of RNA polymerase II. One HSF1 partner, CTCF, interacted with HSF1 in a stress-inducible manner and functions in repression of specific HSF1 target genes. Understanding how HSF1 regulates gene repression is a crucial question, given the dysregulation of HSF1 target genes in both cancer and neurodegeneration. These studies expand our understanding of HSF1-mediated gene repression and provide key insights into HSF1 regulation via protein-protein interactions.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Doença de Huntington/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Células HEK293 , Fatores de Transcrição de Choque Térmico/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Mapas de Interação de Proteínas
8.
Semin Cell Dev Biol ; 90: 114-127, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30096365

RESUMO

The eukaryotic genome, constituting several billion base pairs, must be contracted to fit within the volume of a nucleus where the diameter is on the scale of µm. The 3D structure and packing of such a long sequence cannot be left to pure chance, as DNA must be efficiently used for its primary roles as a matrix for transcription and replication. In recent years, methods like chromatin conformation capture (including 3C, 4C, Hi-C, ChIA-PET and Multi-ChIA) and optical microscopy have advanced substantially and have shed new light on how eukaryotic genomes are hierarchically organized; first into 10-nm fiber, next into DNA loops, topologically associated domains and finally into interphase or mitotic chromosomes. This knowledge has allowed us to revise our understanding regarding the mechanisms governing the process of DNA organization. Mounting experimental evidence suggests that the key element in the formation of loops is the binding of the CCCTC-binding factor (CTCF) to DNA; a protein that can be referred to as the chief organizer of the genome. However, CTCF does not work alone but in cooperation with other proteins, such as cohesin or Yin Yang 1 (YY1). In this short review, we briefly describe our current understanding of the structure of eukaryotic genomes, how they are established and how the formation of DNA loops can influence gene expression. We discuss the recent discoveries describing the 3D structure of the CTCF-DNA complex and the role of CTCF in establishing genome structure. Finally, we briefly explain how various genetic disorders might arise as a consequence of mutations in the CTCF target sequence or alteration of genomic imprinting.


Assuntos
Fator de Ligação a CCCTC/genética , Genoma Humano/genética , Fator de Ligação a CCCTC/química , DNA/química , DNA/genética , Humanos
9.
Bioessays ; 41(9): e1900048, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31264253

RESUMO

The organization of the genome into topologically associated domains (TADs) appears to be a fundamental process occurring across a wide range of eukaryote organisms, and it likely plays an important role in providing an architectural foundation for gene regulation. Initial studies emphasized the remarkable parallels between TAD organization in organisms as diverse as Drosophila and mammals. However, whereas CCCTC-binding factor (CTCF)/cohesin loop extrusion is emerging as a key mechanism for the formation of mammalian topological domains, the genome organization in Drosophila appears to depend primarily on the partitioning of chromatin state domains. Recent work suggesting a fundamental conserved role of chromatin state in building domain architecture is discussed and insights into genome organization from recent studies in Drosophila are considered.


Assuntos
Fator de Ligação a CCCTC/química , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/química , Drosophila/genética , Sequência de Aminoácidos , Animais , Fator de Ligação a CCCTC/metabolismo , Cromatina/química , Cromatina/genética , Sequência Conservada , Proteínas de Drosophila/metabolismo , Genoma de Inseto/genética , Mamíferos/genética , Domínios Proteicos , Transcrição Gênica , Coesinas
10.
Biochem Biophys Res Commun ; 512(4): 896-901, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30929920

RESUMO

The cochlea in the mammalian inner ear is a sensitive and sharply organized sound-detecting structure. The proper specification of neurosensory-competent domain in the otic epithelium is required for the formation of mature neuronal and sensory domains. Genetic studies have provided many insights into inner ear development, but there have been few epigenetic studies of inner ear development. CTCF is an epigenetic factor that plays a pivotal role in the organization of global chromatin conformation. To determine the role of CTCF in the otic sensory formation, we made a conditional knockout of Ctcf in the developing otic epithelium by crossing Ctcffl/fl mice with Pax2-Cre mice. Ctcf deficiency resulted in extra rows of auditory hair cells in the shortened cochlea on mouse embryonic day 14.5 (E14.5) and E17.5. The massive and ectopic expression of sensory specifiers such as Jag1 and Sox2 indicated that the sensory domain was expanded in the Ctcf-deficient cochlea. Other regulators of the sensory domain such as Bmp4, Gata3, and Fgf10 were not affected. These results suggest that CTCF plays a role in the regulation of the sensory domain in mammalian cochlear development.


Assuntos
Fator de Ligação a CCCTC/genética , Cóclea/embriologia , Cóclea/fisiopatologia , Animais , Proteína Morfogenética Óssea 4/genética , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Fator 10 de Crescimento de Fibroblastos/genética , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Proteína Jagged-1/genética , Camundongos Knockout , Fator de Transcrição PAX2/genética , Fatores de Transcrição SOXB1/genética
11.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046446

RESUMO

Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in "enhancerless" self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required.IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy.


Assuntos
Vetores Genéticos , Elementos Isolantes , Spumavirus/genética , Sequências Repetidas Terminais , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sistemas CRISPR-Cas/genética , Células Cultivadas , Terapia Genética/métodos , Células-Tronco Hematopoéticas/virologia , Proteínas com Domínio LIM/genética , Camundongos , Mutagênese Insercional , Testes de Mutagenicidade , Proto-Oncogene Mas , Transdução Genética , Transgenes
12.
Mol Ther ; 26(3): 755-773, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29398485

RESUMO

Neuroblastoma (NB) is the most common extracranial tumor in childhood. Recent studies have implicated the emerging roles of long noncoding RNAs (lncRNAs) in tumorigenesis and aggressiveness. However, the functions and targets of risk-associated lncRNAs in NB progression still remain to be determined. Herein, through mining of public microarray datasets, we identify lncRNA forkhead box D3 antisense RNA 1 (FOXD3-AS1) as an independent prognostic marker for favorable outcome of NB patients. FOXD3-AS1 is downregulated in NB tissues and cell lines, and ectopic expression of FOXD3-AS1 induces neuronal differentiation and decreases the aggressiveness of NB cells in vitro and in vivo. Mechanistically, as a nuclear lncRNA, FOXD3-AS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1) to inhibit the poly(ADP-ribosyl)ation and activation of CCCTC-binding factor (CTCF), resulting in derepressed expression of downstream tumor-suppressive genes. Rescue experiments indicate that FOXD3-AS1 harbors tumor-suppressive properties by inhibiting the oncogenic roles of PARP1 or CTCF and plays crucial roles in all-trans-retinoic-acid-mediated therapeutic effects on NB. Administration of FOXD3-AS1 construct or siRNAs against PARP1 or CTCF reduces the tumor growth and prolongs the survival of nude mice. These findings suggest that as a risk-associated lncRNA, FOXD3-AS1 inhibits the progression of NB through repressing PARP1-mediated CTCF activation.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Fatores de Transcrição Forkhead/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , RNA Antissenso , RNA Longo não Codificante , Animais , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prognóstico , Ligação Proteica , Interferência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Semin Cancer Biol ; 42: 39-43, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27840277

RESUMO

Tomorrow's genome medicine in lung cancer should focus more on the homogeneity and heterogeneity of lung cancer which play an important role in the development of drug resistance, genetic complexity, as well as confusion and difficulty of early diagnosis and therapy. Chromosome positioning and repositioning may contribute to the sensitivity of lung cancer cells to therapy, the heterogeneity associated with drug resistance, and the mechanism of lung carcinogenesis. The CCCTC-binding factor plays critical roles in genome topology and function, increased risk of carcinogenicity, and potential of lung cancer-specific mediations. Chromosome reposition in lung cancer can be regulated by CCCTC binding factor. Single-cell gene sequencing, as part of genome medicine, was paid special attention in lung cancer to understand mechanical phenotypes, single-cell biology, heterogeneity, and chromosome positioning and function of single lung cancer cells. We at first propose to develop an intelligent single-cell robot of human cells to integrate together systems information of molecules, genes, proteins, organelles, membranes, architectures, signals, and functions. It can be a powerful automatic system to assist clinicians in the decision-making, molecular understanding, risk analyzing, and prognosis predicting.


Assuntos
Fator de Ligação a CCCTC/genética , Carcinogênese/genética , Genoma Humano , Neoplasias Pulmonares/genética , Cromossomos/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Análise de Sequência de DNA , Análise de Célula Única
14.
Biochem Biophys Res Commun ; 503(4): 2646-2652, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30107916

RESUMO

Auditory hair cells play an essential role in hearing. These cells convert sound waves, mechanical stimuli, into electrical signals that are conveyed to the brain via spiral ganglion neurons. The hair cells are located in the organ of Corti within the cochlea. They assemble in a special arrangement with three rows of outer hair cells and one row of inner hair cells. The proper differentiation and preservation of auditory hair cells are essential for acquiring and maintaining hearing function, respectively. Many genetic regulatory mechanisms underlying hair-cell differentiation and maintenance have been elucidated to date. However, the role of epigenetic regulation in hair-cell differentiation and maintenance has not been definitively demonstrated. CTCF is an essential epigenetic component that plays a primary role in the organization of global chromatin architecture. To determine the role of CTCF in mammalian hair cells, we specifically deleted Ctcf in developing hair cells by crossing Ctcffl/fl mice with Gfi1Cre/+ mice. Gfi1Cre; Ctcffl/fl mice did not exhibit obvious developmental defects in hair cells until postnatal day 8. However, at 3 weeks, the Ctcf deficiency caused intermittent degeneration of the stereociliary bundles of outer hair cells, resulting in profound hearing impairment. At 5 weeks, most hair cells were degenerated in Gfi1Cre; Ctcffl/fl mice, and defects in other structures of the organ of Corti, such as the tunnel of Corti and Nuel's space, became apparent. These results suggest that CTCF plays an essential role in maintaining hair cells and hearing function in mammalian cochlea.


Assuntos
Fator de Ligação a CCCTC/genética , Epigênese Genética , Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Ligação a CCCTC/deficiência , Diferenciação Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/patologia , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Gânglio Espiral da Cóclea/patologia , Estereocílios/metabolismo , Estereocílios/patologia
15.
BMC Med Genet ; 18(1): 68, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619046

RESUMO

BACKGROUND: Autosomal dominant mental retardation 21 (MRD21) is a very rare condition, characterized by short stature, microcephaly, mild facial dysmorphisms and intellectual disability that ranged from mild to severe. MRD21 is caused by mutations in CCCTC-binding factor (CTCF) and this was established through only four unrelated cases, two of which had frameshift mutations. CTCF is a master transcriptional regulator that controls chromatin structure and may serve as insulator and transcriptional activator and repressor. CASE PRESENTATION: This study presents, clinically and molecularly, an Emirati patient with de novo frameshift mutation in CTCF. This novel mutation was uncovered using whole exome sequencing and was confirmed by Sanger sequencing in the trio. In silico analysis, using SIFT Indel, indicates that this frameshift; p.Lys206Profs*13 is functionally damaging with the likely involvement of nonsense-mediated mRNA decay. CONCLUSIONS: Upon comparing the clinical picture of the herewith-reported individual with previously reported cases of MRD21, there seems to be many common symptoms, and few new ones that were not observed before. This helps to further define this rare condition and its molecular underpinnings.


Assuntos
Mutação da Fase de Leitura , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Fator de Ligação a CCCTC , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Síndrome
16.
BMC Cancer ; 16: 226, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26983574

RESUMO

BACKGROUND: Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells. METHODS: To explore the epigenetic regulation of the miR-181c we evaluated its expression using RT-qPCR and the in vivo binding of the CCCTC-binding factor (CTCF) to its regulatory region in different glioblastoma cell lines. DNA methylation survey, chromatin immunoprecipitation and RNA interference assays were used to assess the role of CTCF in the miR-181c epigenetic silencing. RESULTS: We found that miR-181c is downregulated in glioblastoma cell lines, as compared to normal brain tissues. Loss of expression correlated with a notorious gain of DNA methylation at the miR-181c promoter region and the dissociation of the multifunctional nuclear factor CTCF. Taking advantage of the genomic distribution of CTCF in different cell types we propose that CTCF has a local and cell type specific regulatory role over the miR-181c and not an architectural one through chromatin loop formation. This is supported by the depletion of CTCF in glioblastoma cells affecting the expression levels of NOTCH2 as a target of miR-181c. CONCLUSION: Together, our results point to the epigenetic role of CTCF in the regulation of microRNAs implicated in tumorigenesis.


Assuntos
Biomarcadores Tumorais/biossíntese , Glioblastoma/genética , MicroRNAs/biossíntese , Receptor Notch2/biossíntese , Proteínas Repressoras/biossíntese , Biomarcadores Tumorais/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioblastoma/patologia , Humanos , Receptor Notch2/genética , Proteínas Repressoras/genética
17.
J Allergy Clin Immunol ; 136(3): 713-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25936568

RESUMO

BACKGROUND: Langerhans cells (LCs) are skin-resident dendritic cells (DCs) that orchestrate skin immunity. CCCTC-binding factor (CTCF) is a highly conserved DNA-binding protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. OBJECTIVE: We sought to clarify a possible role for CTCF in LC homeostasis and function in vivo. METHODS: We used a conditional gene deletion mouse system to generate DC- and LC-specific CTCF-ablated mice. Short hairpin RNA-mediated RNA interference was used to silence CTCF expression in human monocyte-derived Langerhans cells. DC populations were assessed by using flow cytometry and immunofluorescence. Gene expression arrays were performed to identify genes regulated by CTCF in LCs. Contact hypersensitivity and epicutaneous sensitization responses were measured to examine the functional significance of CTCF ablation. RESULTS: DC-specific CTCF deletion led to a reduced pool of systemic DCs, with LCs most severely affected. Decreases in epidermal LC numbers were specifically associated with self-turnover defects. Interestingly, CTCF-deficient LCs demonstrated impaired migration out of the epidermis. Whole-transcriptome analyses revealed that genes that promoted cell adhesion were highly expressed, but CCR7 was downregulated in CTCF-depleted LCs. Hapten-induced contact hypersensitivity responses were more sustained in LC-specific CTCF-deficient mice, whereas epicutaneous sensitization to protein antigen was attenuated, indicating that CTCF-dependent LC homeostasis is required for optimal immune function of LCs in a context-dependent manner. CONCLUSION: Our results show that CTCF positively regulates the homeostatic pool and the efficient emigration of LCs, which are required for modulating the functional immune network of the skin.


Assuntos
Dermatite de Contato/genética , Homeostase/genética , Células de Langerhans/metabolismo , Proteínas Repressoras/genética , Animais , Fator de Ligação a CCCTC , Adesão Celular , Movimento Celular/genética , Movimento Celular/imunologia , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Haptenos , Homeostase/imunologia , Humanos , Células de Langerhans/imunologia , Células de Langerhans/patologia , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Receptores CCR7/genética , Receptores CCR7/imunologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/deficiência , Proteínas Repressoras/imunologia , Transdução de Sinais
18.
Biochim Biophys Acta ; 1839(1): 50-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24321385

RESUMO

Runx1 is a transcription factor essential for definitive hematopoiesis. In all vertebrates, the Runx1 gene is transcribed from two promoters: a proximal promoter (P2), and a distal promoter (P1). We previously found that runx1 expression in a specific hematopoietic cell population in zebrafish embryos depends on cohesin. Here we show that zebrafish runx1 is directly bound by cohesin and CCCTC binding factor (CTCF) at the P1 and P2 promoters, and within the intron between P1 and P2. Cohesin initiates expression of runx1 in the posterior lateral mesoderm and influences promoter use, while CTCF represses its expression in the newly emerging cells of the tail bud. The intronic binding sites for cohesin and CTCF coincide with histone modifications that confer enhancer-like properties, and two of the cohesin/CTCF sites behaved as insulators in an in vivo assay. The identified cohesin and CTCF binding sites are likely to be cis-regulatory elements (CREs) for runx1 since they also recruit RNA polymerase II (RNAPII). CTCF depletion excluded RNAPII from two intronic CREs but not the promoters of runx1. We propose that cohesin and CTCF have distinct functions in the regulation of runx1 during zebrafish embryogenesis, and that these regulatory functions are likely to involve runx1 intronic CREs. Cohesin (but not CTCF) depletion enhanced RUNX1 expression in a human leukemia cell line, suggesting conservation of RUNX1 regulation through evolution.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Animais , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Embrião não Mamífero , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma , Regiões Promotoras Genéticas , Peixe-Zebra/genética , Coesinas
20.
Front Endocrinol (Lausanne) ; 14: 1138386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334314

RESUMO

Background: Non-obstructive azoospermia (NOA) is the most severe type that leads to 1% of male infertility. Wnt signaling governs normal sperm maturation. However, the role of Wnt signaling in spermatogonia in NOA has incompletely been uncovered, and upstream molecules regulating Wnt signaling remain unclear. Methods: Bulk RNA sequencing (RNA-seq) of NOA was used to identify the hub gene module in NOA utilizing weighted gene co-expression network analyses (WGCNAs). Single-cell RNA sequencing (scRNA-seq) of NOA was employed to explore dysfunctional signaling pathways in the specific cell type with gene sets of signaling pathways. Single-cell regulatory network inference and clustering (pySCENIC) for Python analysis was applied to speculate putative transcription factors in spermatogonia. Moreover, single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) determined the regulated genes of these transcription factors. Finally, spatial transcriptomic data were used to analyze cell type and Wnt signaling spatial distribution. Results: The Wnt signaling pathway was demonstrated to be enriched in the hub gene module of NOA by bulk RNA-seq. Then, scRNA-seq data revealed the downregulated activity and dysfunction of Wnt signaling of spermatogonia in NOA samples. Conjoint analyses of the pySCENIC algorithm and scATAC-seq data indicated that three transcription factors (CTCF, AR, and ARNTL) were related to the activities of Wnt signaling in NOA. Eventually, spatial expression localization of Wnt signaling was identified to be in accordance with the distribution patterns of spermatogonia, Sertoli cells, and Leydig cells. Conclusion: In conclusion, we identified that downregulated Wnt signaling of spermatogonia in NOA and three transcription factors (CTCF, AR, and ARNTL) may be involved in this dysfunctional Wnt signaling. These findings provide new mechanisms for NOA and new therapeutic targets for NOA patients.


Assuntos
Azoospermia , Humanos , Masculino , Azoospermia/genética , Via de Sinalização Wnt/genética , Fatores de Transcrição ARNTL/metabolismo , Espermatogônias/metabolismo , Multiômica , Sêmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa