Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Cell ; 179(5): 1160-1176.e24, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730855

RESUMO

Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling. Specifically, infiltration of PDE4B- and TNF-expressing macrophages, decreased abundance of CD39-expressing intraepithelial T cells, and platelet aggregation and release of 5-hydroxytryptamine at the colonic mucosae were common in colitis and IBD patients. Targeting these pathways by using the phosphodiesterase inhibitor dipyridamole restored immune homeostasis and improved colitis symptoms in a pilot study. In summary, comprehensive analysis of the colonic mucosae has uncovered common pathogenesis and therapeutic targets for children with colitis and IBD.


Assuntos
Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/terapia , Mucosa Intestinal/patologia , Antígenos CD/metabolismo , Apirase/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Morte Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Criança , Estudos de Coortes , Colo/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Dipiridamol/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Homeostase/efeitos dos fármacos , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Inflamação/patologia , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/genética , Interferon Tipo I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilprednisolona/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo
2.
Immunity ; 54(9): 2024-2041.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34473957

RESUMO

Sepsis results in elevated adenosine in circulation. Extracellular adenosine triggers immunosuppressive signaling via the A2a receptor (A2aR). Sepsis survivors develop persistent immunosuppression with increased risk of recurrent infections. We utilized the cecal ligation and puncture (CLP) model of sepsis and subsequent infection to assess the role of adenosine in post-sepsis immune suppression. A2aR-deficient mice showed improved resistance to post-sepsis infections. Sepsis expanded a subset of CD39hi B cells and elevated extracellular adenosine, which was absent in mice lacking CD39-expressing B cells. Sepsis-surviving B cell-deficient mice were more resistant to secondary infections. Mechanistically, metabolic reprogramming of septic B cells increased production of ATP, which was converted into adenosine by CD39 on plasmablasts. Adenosine signaling via A2aR impaired macrophage bactericidal activity and enhanced interleukin-10 production. Septic individuals exhibited expanded CD39hi plasmablasts and adenosine accumulation. Our study reveals CD39hi plasmablasts and adenosine as important drivers of sepsis-induced immunosuppression with relevance in human disease.


Assuntos
Adenosina/imunologia , Antígenos CD/imunologia , Apirase/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Plasmócitos/imunologia , Sepse/imunologia , Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Reprogramação Celular/imunologia , Macrófagos/metabolismo , Camundongos , Plasmócitos/metabolismo , Receptor A2A de Adenosina/imunologia , Receptor A2A de Adenosina/metabolismo , Sepse/metabolismo
3.
Immunity ; 50(3): 738-750.e7, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30770248

RESUMO

Systemic immunosuppression greatly affects the chemotherapeutic antitumor effect. Here, we showed that CD19+ extracellular vesicles (EVs) from B cells through CD39 and CD73 vesicle-incorporated proteins hydrolyzed ATP from chemotherapy-treated tumor cells into adenosine, thus impairing CD8+ T cell responses. Serum CD19+ EVs were increased in tumor-bearing mice and patients. Patients with fewer serum CD19+ EVs had a better prognosis after chemotherapy. Upregulated hypoxia-inducible factor-1α (HIF-1α) promoted B cells to release CD19+ EVs by inducing Rab27a mRNA transcription. Rab27a or HIF-1α deficiency in B cells inhibited CD19+ EV production and improved the chemotherapeutic antitumor effect. Silencing of Rab27a in B cells by inactivated Epstein-Barr viruses carrying Rab27a siRNA greatly improved chemotherapeutic efficacy in humanized immunocompromised NOD PrkdcscidIl2rg-/- mice. Thus, decreasing CD19+ EVs holds high potential to improve the chemotherapeutic antitumor effect.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Vesículas Extracelulares/imunologia , Animais , Antígenos CD19/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Herpesvirus Humano 4/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células NIH 3T3 , RNA Mensageiro/imunologia , Transcrição Gênica/imunologia , Proteínas rab27 de Ligação ao GTP/imunologia
4.
EMBO J ; 40(13): e108130, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121201

RESUMO

While intracellular adenosine triphosphate (ATP) occupies a key position in the bioenergetic metabolism of all the cellular compartments that form the tumor microenvironment (TME), extracellular ATP operates as a potent signal transducer. The net effects of purinergic signaling on the biology of the TME depend not only on the specific receptors and cell types involved, but also on the activation status of cis- and trans-regulatory circuitries. As an additional layer of complexity, extracellular ATP is rapidly catabolized by ectonucleotidases, culminating in the accumulation of metabolites that mediate distinct biological effects. Here, we discuss the molecular and cellular mechanisms through which ATP and its degradation products influence cancer immunosurveillance, with a focus on therapeutically targetable circuitries.


Assuntos
Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Humanos , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia
5.
Eur Heart J ; 45(17): 1553-1567, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38486376

RESUMO

BACKGROUND AND AIMS: The ecto-nucleoside triphosphate diphosphohydrolases of the CD39 family degrade ATP and ADP into AMP, which is converted into adenosine by the extracellular CD73/ecto-5-nucleotidase. This pathway has been explored in antithrombotic treatments but little in myocardial protection. We have investigated whether the administration of solCD39L3 (AZD3366) confers additional cardioprotection to that of ticagrelor alone in a pre-clinical model of myocardial infarction (MI). METHODS: Ticagrelor-treated pigs underwent balloon-induced MI (90 min) and, before reperfusion, received intravenously either vehicle, 1 mg/kg AZD3366 or 3 mg/kg AZD3366. All animals received ticagrelor twice daily for 42 days. A non-treated MI group was run as a control. Serial cardiac magnetic resonance (baseline, Day 3 and Day 42 post-MI), light transmittance aggregometry, bleeding time, and histological and molecular analyses were performed. RESULTS: Ticagrelor reduced oedema formation and infarct size at Day 3 post-MI vs. controls. A 3 mg/kg AZD3366 provided an additional 45% reduction in oedema and infarct size compared with ticagrelor and a 70% reduction vs. controls (P < .05). At Day 42, infarct size declined in all ticagrelor-administered pigs, particularly in 3 mg/kg AZD3366-treated pigs (P < .05). Left ventricular ejection fraction was diminished at Day 3 in placebo pigs and worsened at Day 42, whereas it remained unaltered in ticagrelor ± AZD3366-administered animals. Pigs administered with 3 mg/kg AZD3366 displayed higher left ventricular ejection fraction upon dobutamine stress at Day 3 and minimal dysfunctional segmental contraction at Day 42 (χ2P < .05 vs. all). Cardiac and systemic molecular readouts supported these benefits. Interestingly, AZD3366 abolished ADP-induced light transmittance aggregometry without affecting bleeding time. CONCLUSIONS: Infusion of AZD3366 on top of ticagrelor leads to enhanced cardioprotection compared with ticagrelor alone.


Assuntos
Adenosina Trifosfatases , Apirase , Infarto do Miocárdio , Ticagrelor , Animais , Humanos , Masculino , Adenosina/análogos & derivados , Adenosina/farmacologia , Antígenos CD , Apirase/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Modelos Animais de Doenças , Infarto do Miocárdio/tratamento farmacológico , Agregação Plaquetária/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Suínos , Ticagrelor/farmacologia , Ticagrelor/uso terapêutico , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico
6.
Lab Invest ; 104(3): 100303, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103870

RESUMO

Triple-negative breast cancer (TNBC) has a poor prognosis with limited therapeutic options available for affected patients. Efforts are ongoing to identify surrogate markers for tumor-specific CD8+ T cells that can predict the response to immune checkpoint inhibitor (ICI) therapies, such as programmed cell death protein 1 or programmed cell death ligand-1 blockade. We have previously identified tumor-specific CD39+CD8+ T cells in non-small cell lung cancer that might help predict patient responses to programmed cell death protein 1 or programmed cell death ligand-1 blockade. Based on this finding, we conducted a comparative interrogation of TNBC in an Asian cohort to evaluate the potential of CD39 as a surrogate marker of tumor-specific CD8+ T cells. Using ICI-treated TNBC mouse models (n = 24), flow cytometric analyses of peripheral blood mononuclear cells and tumor-infiltrating lymphocytes revealed that >99% of tumor-specific CD8+ T cells also expressed CD39. To investigate the relationship between CD39+CD8+ T-cell density and CD39 expression with disease prognosis, we performed multiplex immunohistochemistry staining on treatment-naive human TNBC tissues (n = 315). We saw that the proportion of CD39+CD8+ T cells in human TNBC tumors correlated with improved overall survival, as did the densities of other CD39+ immune cell infiltrates, such as CD39+CD68+ macrophages. Finally, increased CD39 expression on CD8+ T cells was also found to predict the response to ICI therapy (pembrolizumab) in a separate cohort of 11 TNBC patients. These findings support the potential of CD39+CD8+ T-cell density as a prognostic factor in Asian TNBC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Linfócitos T CD8-Positivos , Prognóstico , Neoplasias de Mama Triplo Negativas/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Leucócitos Mononucleares/metabolismo , Ligantes , Neoplasias Pulmonares/metabolismo , Biomarcadores/metabolismo , Linfócitos do Interstício Tumoral , Antígeno B7-H1/metabolismo
7.
J Gene Med ; 26(5): e3691, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757222

RESUMO

BACKGROUND: Pancreatic cancer is characterized by metabolic dysregulation and unique immunological profiles. Nevertheless, the comprehensive understanding of immune and metabolic dysregulation of pancreatic cancer remains unclear. In the present study, we aimed to investigate the causal relationship of circulating immune cells and pancreatic cancer and identify the blood metabolites as potential mediators. METHODS: The exposure and outcome genome-wide association studies (GWAS) data used in the present study were obtained from the GWAS open-access database (https://gwas.mrcieu.ac.uk). The study used 731 circulating immune cell features, 1400 types of blood metabolites and pancreatic cancer from GWAS. We then performed bidirectional Mendelian randomization (MR) analyses to explore the causal relationships between the circulating immune cells and pancreatic cancer, and two-step MR to discover potential mediating blood metabolites in this process. All statistical analyses were performed in R software. The STROBE-MR (i.e. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization) checklist for the reporting of MR studies was also used. RESULTS: MR analysis identified seven types of circulating immune cells causally associated with pancreatic cancer. Furthermore, there was no strong evidence that genetically predicted pancreatic cancer had an effect on these seven types of circulating immune cells. Further two-step MR analysis found 10 types of blood metabolites were causally associated with pancreatic cancer and the associations between circulating CD39+CD8+ T cells and pancreatic cancer were mediated by blood orotates with proportions of 5.18% (p = 0.016). CONCLUSIONS: The present study provides evidence supporting the causal relationships between various circulating immune cells, especially CD39+CD8+ T cells, and pancreatic cancer, with a potential effect mediated by blood orotates. Further research is needed on additional risk factors as potential mediators and establish a comprehensive immunity-metabolism network in pancreatic cancer.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/imunologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Metaboloma
8.
Biochem Biophys Res Commun ; 730: 150367, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38991255

RESUMO

Rapid tumor growth and insufficient blood supply leads to the development of a hypoxic and nutrient deprived microenvironment. To survive, tumor cells need to tolerate these adverse conditions. Here we found the expression of CD39 was enhanced in necrotic regions distant from blood vessels. We speculate that this is a strategy for tumor cells to actively adapt to the hostile environment. Further studies showed that CD39 was induced by nutrient deprivation through the AMPK signalling pathway. We next explored the significance of CD39 for tumor cells. Our results showed that CD39 reduced cellular oxygen consumption, which could be significant for tumor cells if the available oxygen is limited. Metabolomics analysis showed that overexpression of CD39 significantly altered cellular metabolism, and tricarboxylic acid (TCA) cycle was identified as the most impacted metabolic pathway. In order to explore the molecular mechanism, we performed RNA-seq analysis. The results showed that CD39 significantly up-regulated the expression of pyruvate dehydrogenase kinase isozyme 2 (PDK2), thus inhibiting the activity of pyruvate dehydrogenase (PDH) and TCA cycle. Finally, CD39 was shown to protect tumor cells from hypoxia-induced cell death and reduce intratumoral hypoxia levels. CD39 has attracted a great deal of attention as a newly discovered immune checkpoint molecule in recent years. Our results indicate that CD39 not only plays a role in immune regulation, but also enables tumor cells to tolerate hypoxia by inhibiting TCA cycle and reducing cellular oxygen consumption. This study provides evidence that targeting CD39 may be a novel strategy to prevent adaptation of tumor cells in stressed conditions.


Assuntos
Apirase , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Apirase/metabolismo , Apirase/genética , Linhagem Celular Tumoral , Nutrientes/metabolismo , Hipóxia Celular , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Ciclo do Ácido Cítrico , Microambiente Tumoral , Animais , Transdução de Sinais , Consumo de Oxigênio , Regulação Neoplásica da Expressão Gênica
9.
Artigo em Inglês | MEDLINE | ID: mdl-39141491

RESUMO

OBJECTIVES: A subset of human circulating FoxP3+ regulatory T cells expresses CD39 (cTreg39+) and hydrolyses pro-inflammatory adenine nucleotides released at inflammatory foci, rendering the anti-inflammatory agent adenosine. Methotrexate (MTX), inhibiting ATIC, enhances the extrusion of adenine nucleotides and may help Treg39+ cells control inflammation. Therefore, we examined the relation of cTreg39+ cells with the effect of MTX in early Rheumatoid Arthritis (eRA). METHODS: Freshly isolated peripheral blood lymphocytes from 98 untreated eRA patients and 98 healthy controls (HC) were examined by cytometry. Twelve months (12m) after initiating MTX, 82 patients were clinically re-evaluated and cytometry was repeated in 40 of them. The effect of MTX on Treg cell potency was assessed in Treg/Tresp cocultures. RESULTS: The baseline (0m) cTreg39+ cell frequency was elevated in eRA above HC levels. Patients who reached low disease activity at 12 months (12m-LDA, DAS28-ESR≤ 3.2, n = 51) had presented with a significantly higher 0m cTreg39+ frequency vs those who did not (n = 31). The 0m cTreg39+ cutoff for attaining 12 m-LDA was 42.0% (Sensitivity=90.4%/Specificity=96.8%). At 12m, the cTreg39+ frequency was no longer elevated but its association with disease activity remained: it was still significantly higher in patients who had reached LDA vs those who had not. In vitro, MTX augmented the Treg39+ cell potency but had no effect on Treg39- cells. CONCLUSION: MTX cooperates with Treg39+ cells and the baseline cTreg39+ frequency predicts the response to MTX in eRA. In addition, the transiently elevated baseline cTreg39+ frequency in eRA may provide a slot for prompt MTX initiation.

10.
Pharmacol Res ; 202: 107122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428703

RESUMO

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Purinergic Signal ; 20(1): 73-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37055675

RESUMO

Plasmacytoid dendritic cells (pDCs) are a specialized DC subset mainly associated with sensing viral pathogens and high-type I interferon (IFN-I) release in response to toll-like receptor (TLR)-7 and TLR-9 signaling. Currently, pDC contribution to inflammatory responses is extensively described; nevertheless, their regulatory mechanisms require further investigation. CD39 and CD73 are ectoenzymes driving a shift from an ATP-proinflammatory milieu to an anti-inflammatory environment by converting ATP to adenosine. Although the regulatory function of the purinergic halo CD39/CD73 has been reported in some immune cells like regulatory T cells and conventional DCs, its presence in pDCs has not been examined. In this study, we uncover for the first time the expression and functionality of the purinergic halo in human blood pDCs. In healthy donors, CD39 was expressed in the cell surface of 14.0 ± 12.5% pDCs under steady-state conditions, while CD73 showed an intracellular location and was only expressed in 8.0 ± 2.2% of pDCs. Nevertheless, pDCs stimulation with a TLR-7 agonist (R848) induced increased surface expression of both molecules (43.3 ± 23.7% and 18.6 ± 9.3%, respectively), as well as high IFN-α secretion. Furthermore, exogenous ATP addition to R848-activated pDCs significantly increased adenosine generation. This effect was attributable to the superior CD73 expression and activity because blocking CD73 reduced adenosine production and improved pDC allostimulatory capabilities on CD4 + T cells. The functional expression of the purinergic halo in human pDCs described in this work opens new areas to investigate its participation in the regulatory pDC mechanisms in health and disease.


Assuntos
Adenosina , Linfócitos T CD4-Positivos , Humanos , Adenosina/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Células Dendríticas/metabolismo
12.
Purinergic Signal ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446337

RESUMO

Despite the use of various therapies such as hematopoietic stem cell transplantation and chimeric antigen receptor T cell therapy (CAR-T), the prognosis of patients with acute myeloid leukemia (AML) is still generally poor. However, immunotherapy is currently a hot topic in the treatment of hematological tumors. Extracellular adenosine triphosphate (ATP) can be converted to adenosine diphosphate (ADP) via CD39, and ADP can be converted to adenosine via CD73, which can bind to P1 and P2 receptors to exert immunomodulatory effects. Research on the mechanism of the purinergic signaling pathway can provide a new direction for the treatment of AML, and inhibitors of this signaling pathway have been discovered by several researchers and gradually applied in the clinic. In this paper, the mechanism of the purinergic signaling pathway and its clinical application are described, revealing a new target for the treatment of AML and subsequent improvement in patient prognosis.

13.
Purinergic Signal ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976175

RESUMO

Medulloblastoma is the most common malignant tumor in the pediatric population. Its classification has incorporated key molecular variations alongside histological characterization. CD39 (also known as ENTPD1) and CD73 (also known as NT5E), enzymes of the purinergic signaling pathway, act in synergy to generate extracellular adenosine, creating an immunosuppressive tumor microenvironment. Our study examined the expression of mRNA of these genes in previously described transcriptome data sets of medulloblastoma patient samples from the Cavalli Cohort (n = 763). Survival distribution was estimated according to the Kaplan-Meier method using a median cut-off and log-rank statistics (p ≤ 0.05). In non-WNT and non-SHH medulloblastoma Group 4 (n = 264), the high expression of ENTPD1 and NT5E was significantly related to a lower overall survival (p = 2.7e-04; p = 2.6e-03). In the SHH-activated group (n = 172), the high expression of ENTPD1 was significantly related to lower overall survival (p = 7.8e-03), while the high expression of NT5E was significantly related to greater overall survival (p = 0.017). In the WNT group (n = 63), the expressions of ENTPD1 and NT5E were not significantly correlated with overall survival (p = 0.212; p = 0.101). In non-WNT and non-SHH medulloblastoma Group 3 (n = 113), the high expression of ENTPD1 was significantly related to greater survival (p = 0.034), while expression of NT5E was not significantly related to survival of patients (p = 0.124). This in silico analysis indicates that ENTPD1 (CD39) and NT5E (CD73) can be seen as potential prognostic markers and therapeutic targets for primary medulloblastomas in non-WNT and non-SHH Group 4.

14.
Future Oncol ; 20(19): 1367-1380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652041

RESUMO

CD39 is the rate-limiting enzyme for the molecular signal cascade leading to the generation of ADP and adenosine monophosphate (AMP). In conjunction with CD73, CD39 converts adenosine triphosphate (ATP) to ADP and AMP, which leads to the accumulation of immunosuppressive adenosine in the tumor microenvironment. This review focuses on the role of CD39 and CD73 in immune response and malignant progression, including the expression of CD39 within the tumor microenvironment and its relationship to immune effector cells, and its role in antigen presentation. The role of CD39- and CD73-targeting therapeutics and cancer-directed clinical trials investigating CD39 modulation are also explored.


[Box: see text].


Assuntos
5'-Nucleotidase , Apirase , Neoplasias , Microambiente Tumoral , Humanos , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/imunologia , Apirase/metabolismo , Apirase/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologia , Animais , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Antígenos CD/metabolismo , Antígenos CD/imunologia , Apresentação de Antígeno/imunologia
15.
Semin Cancer Biol ; 86(Pt 2): 202-213, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779713

RESUMO

Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations being in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and the adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Masculino , Humanos , Movimento Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Neoplasias da Próstata/patologia
16.
Mol Cancer ; 22(1): 44, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859386

RESUMO

Cancer development is closely associated with immunosuppressive tumor microenvironment (TME) that attenuates antitumor immune responses and promotes tumor cell immunologic escape. The sequential conversion of extracellular ATP into adenosine by two important cell-surface ectonucleosidases CD39 and CD73 play critical roles in reshaping an immunosuppressive TME. The accumulated extracellular adenosine mediates its regulatory functions by binding to one of four adenosine receptors (A1R, A2AR, A2BR and A3R). The A2AR elicits its profound immunosuppressive function via regulating cAMP signaling. The increasing evidence suggests that CD39, CD73 and A2AR could be used as novel therapeutic targets for manipulating the antitumor immunity. In recent years, monoclonal antibodies or small molecule inhibitors targeting the CD39/CD73/A2AR pathway have been investigated in clinical trials as single agents or in combination with anti-PD-1/PD-L1 therapies. In this review, we provide an updated summary about the pathophysiological function of the adenosinergic pathway in cancer development, metastasis and drug resistance. The targeting of one or more components of the adenosinergic pathway for cancer therapy and circumvention of immunotherapy resistance are also discussed. Emerging biomarkers that may be used to guide the selection of CD39/CD73/A2AR-targeting treatment strategies for individual cancer patients is also deliberated.


Assuntos
Imunoterapia , Neoplasias , Humanos , Adenosina , Anticorpos Monoclonais , Membrana Celular
17.
BMC Immunol ; 24(1): 53, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087217

RESUMO

Malignant pleural effusion (MPE), which is a complex microenvironment that contains numerous immune and tumour signals, is common in lung cancer. Gene alterations, such as driver gene mutations, are believed to affect the components of tumour immunity in the microenvironment (TIME) of non-small-cell lung cancer. In this study, we have shown that pleural CD39 + CD8 + T cells are selectively elevated in lung adenocarcinoma (LUAD) with wild-type epidermal growth factor receptor (EGFRwt) compared to those with newly diagnosed mutant EGFR (EGFRmu). Furthermore, these CD39 + CD8 + T cells are more prevalent in MPE with acquired resistance to EGFR-tyrosine kinase inhibitors (AR-EGFR-TKIs). Our analysis reveals that pleural CD39 + CD8 + T cells exhibit an exhausted phenotype while still retaining cytolytic function. Additionally, they have a higher T cell receptor (TCR) repertoire clonality compared to CD39-CD8 + T cells, which is a unique characteristic of LUAD-related MPE. Further investigation has shown that TCR-Vß clonality tends to be more enhanced in pleural CD39 + CD8 + T cells from MPE with AR-EGFR-TKIs. In summary, we have identified a subset of CD8 + T cells expressing CD39 in MPE, which may potentially be tumour-reactive CD8 + T cells. This study provides new insights into the dynamic immune composition of the EGFRmu tumour microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patologia , Receptores ErbB/genética , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
18.
Annu Rev Med ; 72: 331-348, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32903139

RESUMO

Cancer immunotherapy has revolutionized the way that we think about treating cancer. Although checkpoint blockade therapy, including anti-PD-1/PD-L1 and anti-CTLA-4, has shown remarkable success, the responses are limited to only a subset of patients. This discrepancy highlights the many overlapping avenues for immune evasion or suppression that can be employed by a tumor. One such mechanism of immunosuppression is adenosinergic signaling within the tumor microenvironment. We provide an overview of the current status of clinical trials targeting the adenosine pathway, including CD73, CD39, and adenosine receptors. Additionally, we highlight several avenues that may be explored to further potentiate responses in the clinic by combining adenosine-targeting agents to target multiple arms of the pathway or by using conventional immunotherapy agents.


Assuntos
Adenosina/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias/terapia , Adenosina/metabolismo , Humanos
19.
Eur J Immunol ; 52(1): 96-108, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505280

RESUMO

The detection of tumor-specific T cells in solid tumors is integral to interrogate endogenous antitumor responses and to advance downstream therapeutic applications. Multiple biomarkers are reported to identify endogenous tumor-specific tumor-infiltrating lymphocytes (TILs), namely CD137, PD-1, CD103, and CD39; however, a direct comparison of these molecules has yet to be performed. We evaluated these biomarkers in primary human ovarian tumor samples using single-cell mass cytometry to compare their relative phenotypic profiles, and examined their response to autologous tumor cells ex vivo. PD-1+ , CD103+ , and CD39+ TILs all contain a CD137+ cell subset, while CD137+ TILs highly co-express the aforementioned markers. CD137+ TILs exhibit the highest expression of cytotoxic effector molecules compared to PD-1+ , CD103+ , or CD39+ TILs. Removal of CD137+ cells from PD-1+ , CD103+ , or CD39+ TILs diminish their IFN-γ secretion in response to autologous tumor cell stimulation, while CD137+ TILs maintain high HLA-dependent IFN-γ secretion. CD137+ TILs exhibited an exhausted phenotype but with CD28 co-expression, suggesting possible receptiveness to reinvigoration via immune checkpoint blockade. Together, our findings demonstrate that the antitumor abilities of PD-1+ , CD103+ , and CD39+ TILs are mainly derived from a subset of CD137-expressing TILs, implicating CD137 as a more selective biomarker for naturally occurring tumor-specific TILs.


Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Biomarcadores Tumorais/imunologia , Cadeias alfa de Integrinas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/imunologia , Receptor de Morte Celular Programada 1/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Feminino , Humanos , Interferon gama/imunologia
20.
J Transl Med ; 21(1): 610, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684649

RESUMO

BACKGROUND: Identifying response markers is highly needed to guide the treatment strategy in patients with metastatic melanoma. METHODS: A retrospective study was carried out in patients with unresectable/metastatic melanoma (stage IIIb-IV), treated with anti-PD-1 in the first line setting, to better explore the role and the timing of neutrophil/lymphocyte ratio (NLR) as potential biomarker of response. The relationship of NLR with inflammation-immune mediators and the underlying negative effect of raising NLR during immunotherapy, have been investigated with transcriptomic gene analysis. RESULTS: The results confirmed previous findings that a high baseline NLR is associated with a poorer prognosis and with higher serum level of lactate dehydrogenase (LDH), regardless of the presence of brain metastases. The transcriptomic analysis showed that high baseline NLR is associated with a characteristic gene signature CCNA1, LDHA and IL18R1, which correlates with inflammation and tumorigenesis. Conversely, low baseline NLR is associated with the signature CD3, SH2D1A, ZAP70 and CD45RA, linked to the immune-activation. The genes positively associated with NLR (CD39 (ENTPD1), PTEN, MYD88, MMP9 and LDH) are involved in processes of immunosuppression, inflammation and tumor-promoting activity. Increased expression of CD39 correlated with TGFß2, a marker of the N2 neutrophils with immunosuppressive activity. CONCLUSIONS: These results suggest that increasing NLR is associated with an increased neutrophil population, with polarization to the N2 phenotype, and this process may be the basis for the negatively prognostic role of NLR.


Assuntos
Melanoma , Neutrófilos , Humanos , Prognóstico , Estudos Retrospectivos , Imunoterapia , Melanoma/genética , Melanoma/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa