Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell ; 167(4): 1041-1051.e11, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881302

RESUMO

Tetraspanins comprise a diverse family of four-pass transmembrane proteins that play critical roles in the immune, reproductive, genitourinary, and auditory systems. Despite their pervasive roles in human physiology, little is known about the structure of tetraspanins or the molecular mechanisms underlying their various functions. Here, we report the crystal structure of human CD81, a full-length tetraspanin. The transmembrane segments of CD81 pack as two largely separated pairs of helices, capped by the large extracellular loop (EC2) at the outer membrane leaflet. The two pairs of helices converge at the inner leaflet to create an intramembrane pocket with additional electron density corresponding to a bound cholesterol molecule within the cavity. Molecular dynamics simulations identify an additional conformation in which EC2 separates substantially from the transmembrane domain. Cholesterol binding appears to modulate CD81 activity in cells, suggesting a potential mechanism for regulation of tetraspanin function.


Assuntos
Colesterol/metabolismo , Simulação de Dinâmica Molecular , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Químicos
2.
J Virol ; 98(7): e0085024, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953378

RESUMO

Viruses are obligate parasites that depend on the cellular machinery for their propagation. Several viruses also incorporate cellular proteins that facilitate viral spread. Defining these cellular proteins is critical to decipher viral life cycles and delineate novel therapeutic strategies. While numerous studies have explored the importance of host proteins in coronavirus spread, information about their presence in mature virions is limited. In this study, we developed a protocol to highly enrich mature HCoV-OC43 virions and characterize them by proteomics. Recognizing that cells release extracellular vesicles whose content is modulated by viruses, and given our ability to separate virions from these vesicles, we also analyzed their protein content in both uninfected and infected cells. We uncovered 69 unique cellular proteins associated with virions including 31 high-confidence hits. These proteins primarily regulate RNA metabolism, enzymatic activities, vesicular transport, cell adhesion, metabolite interconversion, and translation. We further discovered that the virus had a profound impact on exosome composition, incorporating 47 novel cellular proteins (11 high confidence) and excluding 92 others (61 high confidence) in virus-associated extracellular vesicles compared to uninfected cells. Moreover, a dsiRNA screen revealed that 11 of 18 select targets significantly impacted viral yields, including proteins found in virions or extracellular vesicles. Overall, this study provides new and important insights into the incorporation of numerous host proteins into HCoV-OC43 virions, their biological significance, and the ability of the virus to modulate extracellular vesicles. IMPORTANCE: In recent years, coronaviruses have dominated global attention, making it crucial to develop methods to control them and prevent future pandemics. Besides viral proteins, host proteins play a significant role in viral propagation and offer potential therapeutic targets. Targeting host proteins is advantageous because they are less likely to mutate and develop resistance compared to viral proteins, a common issue with many antiviral treatments. In this study, we examined the protein content of the less virulent biosafety level 2 HCoV-OC43 virus as a stand-in for the more virulent SARS-CoV-2. Our findings reveal that several cellular proteins incorporated into the virion regulate viral spread. In addition, we report that the virus extensively modulates the content of extracellular vesicles, enhancing viral dissemination. This underscores the critical interplay between the virus, host proteins, and extracellular vesicles.


Assuntos
Coronavirus Humano OC43 , Vesículas Extracelulares , Proteômica , Vírion , Vírion/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/metabolismo , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Exossomos/metabolismo , Exossomos/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091467

RESUMO

Adoptive cellular therapy using chimeric antigen receptors (CARs) has revolutionized our treatment of relapsed B cell malignancies and is currently being integrated into standard therapy. The impact of selecting specific T cell subsets for CAR transduction remains under investigation. Previous studies demonstrated that effector T cells derived from naive, rather than central memory T cells mediate more potent antitumor effects. Here, we investigate a method to skew CAR transduction toward naive T cells without physical cell sorting. Viral-mediated CAR transduction requires ex vivo T cell activation, traditionally achieved using antibody-mediated strategies. CD81 is a T cell costimulatory molecule that when combined with CD3 and CD28 enhances naive T cell activation. We interrogate the effect of CD81 costimulation on resultant CAR transduction. We identify that upon CD81-mediated activation, naive T cells lose their identifying surface phenotype and switch to a memory phenotype. By prelabeling naive T cells and tracking them through T cell activation and CAR transduction, we document that CD81 costimulation enhanced naive T cell activation and resultantly generated a CAR T cell product enriched with naive-derived CAR T cells.


Assuntos
Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Tetraspanina 28/farmacologia , Bioengenharia/métodos , Antígenos CD28/imunologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Voluntários Saudáveis , Humanos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Tetraspanina 28/imunologia , Tetraspanina 28/metabolismo
4.
EMBO J ; 39(18): e105246, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32974937

RESUMO

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.


Assuntos
Movimento Celular , Células Precursoras de Linfócitos B/metabolismo , Tetraspanina 25 , Tetraspanina 28 , Animais , Antígenos CD19/química , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Camundongos , Camundongos Knockout , Domínios Proteicos , Tetraspanina 25/química , Tetraspanina 25/genética , Tetraspanina 25/metabolismo , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
5.
Biochem Biophys Res Commun ; 692: 149344, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070275

RESUMO

CD81 is a cell surface transmembrane protein of the tetraspanin family, which critically regulates signal transduction and immune response. Growing evidence has shown that CD81 plays important roles in tumorigenesis and influences immunotherapy response. Here, combining bio-informatics and functional analysis, we find that CD81 is a risk factor in lung squamous cell carcinoma (LUSC), whereas a protective factor in lung adenocarcinoma. In LUSC with high expression of CD81, the autophagy and JAK-STAT signaling pathway are activated. Meanwhile, the expression level of CD81 is negatively correlated with tumor mutational load (TMB), microsatellite instability (MSI), and neoantigen (NEO). Furthermore, patients with LUSC and high expression of CD81 do not respond to immunotherapy drugs, but can respond to chemotherapy drugs. Importantly, depletion of CD81 suppresses the proliferation of LUSC cell, and enhances the sensitivity to cisplatin. Our findings suggest that CD81 represents a potential target for cisplatin-based chemotherapy in patients with LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Cisplatino , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Pulmão/patologia , Tetraspanina 28/metabolismo
6.
FASEB J ; 37(4): e22834, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961378

RESUMO

The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Camundongos , Humanos , Ratos , Feminino , Animais , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Cloretos/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Placenta/metabolismo , Túbulos Renais Distais/metabolismo , Hipertensão/metabolismo , Sódio/metabolismo , Potássio/metabolismo , Tetraspanina 28/metabolismo
7.
Platelets ; 35(1): 2313362, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38380806

RESUMO

Coagulation disturbances are major contributors to COVID-19 pathogenicity, but limited data exist on the involvement of extracellular vesicles (EVs) and residual cells (RCs). Fifty hospitalized COVID-19 patients stratified by their D-dimer levels into high (>1.5 mg/L, n = 15) or low (≤1.5 mg/l, n = 35) and 10 healthy controls were assessed for medium-sized EVs (mEVs; 200-1000 nm) and large EVs/RCs (1000-4000 nm) by high sensitivity flow cytometry. EVs were analyzed for CD61, CD235a, CD45, and CD31, commonly used to detect platelets, red blood cells, leukocytes or endothelial cells, respectively, whilst phosphatidyl serine EVs/RCs were detected by lactadherin-binding implicating procoagulant catalytic surface. Small EV detection (sEVs; 50-200 nm) and CD41a (platelet integrin) colocalization with general EV markers CD9, CD63, and CD81 were performed by single particle interferometric reflectance imaging sensor. Patients with increased D-dimer exhibited the highest number of RCs and sEVs irrespective of cell origin (p < .05). Platelet activation, reflected by increased CD61+ and lactadherin+ mEV and RC levels, associated with coagulation disturbances. Patients with low D-dimer could be discriminated from controls by tetraspanin signatures of the CD41a+ sEVs, suggesting the changes in the circulating platelet sEV subpopulations may offer added prognostic value during COVID progression.


What is the context? Coronavirus disease 19 (COVID-19) frequently leads to blood clotting disturbances, including thromboses.Particles smaller than cells, extracellular vesicles (EVs), and residual cells (RCs) affect blood clotting, but data on their role and diagnostic utility in COVID-19 are sparse.What is new? In this study, we assessed 50 hospitalized COVID-19 patients and 10 healthy controls for their different EV subpopulations and residual cells (50­4000 nm).Blood clotting marker D-dimer, which is elevated in severe COVID-19 infection, was used to characterize disease severity and stratify the patient subgroups. Fifteen patients (30%) with high D-dimer (>1.5 mg/L) were compared to controls, and 35 patients with lower D-dimer (≤1.5 mg/mL).The most topical state-of-the-art methods for detection of EV subpopulations, that is, high sensitivity flow cytometry (hsFCM) and single particle interferometric reflectance imaging sensor (SP-IRIS), were used with markers indicative of platelet, red blood cell, leukocyte or endothelial cells. The subpopulations differentiated by platelet and tetraspanin signatures by hsFCM and SP-IRIS, respectively.The main findings are Patients with high D-dimer systematically exhibited the highest number of platelet EVs in all subpopulations (p < .05).Small EVs subpopulations (differentiated by the tetraspanin signatures) could discriminate patients with low D-dimer (p < .001) from healthy controls.Differences between the two D-dimer groups were seen in the platelet-derived (large and medium EVs and RCs), RBC-derived mEVs and l EVs and RCs, and lactadherin-positive large EVs and RCs (p < .05).What is the impact? Platelet activation, reflected by increased EVs was associated with blood clotting disturbances. Small EVs signatures revealed changes in the EV subpopulations in association with blood clotting during COVID-19. Such signatures may enable identification of severely ill patients before the increase in coagulation is evident by coagulation parameters, for example, by high D-dimer.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , Células Endoteliais , Plaquetas , Ativação Plaquetária
8.
J Biol Chem ; 298(10): 102394, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988652

RESUMO

Exosomes are small extracellular vesicles of ∼30 to 150 nm that are secreted by all cells, abundant in all biofluids, and play important roles in health and disease. However, details about the mechanism of exosome biogenesis are unclear. Here, we carried out a cargo-based analysis of exosome cargo protein biogenesis in which we identified the most highly enriched exosomal cargo proteins and then followed their biogenesis, trafficking, and exosomal secretion to test different hypotheses for how cells make exosomes. We show that exosome cargo proteins bud from cells (i) in exosome-sized vesicles regardless of whether they are localized to plasma or endosome membranes, (ii) ∼5-fold more efficiently when localized to the plasma membrane, (iii) ∼5-fold less efficiently when targeted to the endosome membrane, (iv) by a stochastic process that leads to ∼100-fold differences in their abundance from one exosome to another, and (v) independently of small GTPase Rab27a, the ESCRT complex-associated protein Alix, or the cargo protein CD63. Taken together, our results demonstrate that cells use a shared, stochastic mechanism to bud exosome cargoes along the spectrum of plasma and endosome membranes and far more efficiently from the plasma membrane than the endosome. Our observations also indicate that the pronounced variation in content between different exosome-sized vesicles is an inevitable consequence of a stochastic mechanism of small vesicle biogenesis, that the origin membrane of exosome-sized extracellular vesicles simply cannot be determined, and that most of what we currently know about exosomes has likely come from studies of plasma membrane-derived vesicles.


Assuntos
Exossomos , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Exossomos/metabolismo , Membranas Intracelulares/metabolismo , Humanos , Proteínas de Transporte Vesicular/metabolismo
9.
Fish Shellfish Immunol ; 143: 109181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871756

RESUMO

Cyprinid herpesvirus type 3 (CyHV-3), also called Koi herpesvirus (KHV), which leads to mass cyprinid mortality and enormous economic losses. To establish an infection, CyHV-3 needs to counteract host antiviral responses. CD81 belongs to the evolutionary conserved tetraspanin family of proteins. Several studies have shown that different members of the tetraspanin superfamily modulates different virus infectious processes. Here we aimed at analysing the role of CD81 in CyHV-3 infection. In this study, we cloned and characterized the CD81 of Common Carp, the open reading frame of CcCD81 gene was 702 bp, which encoded 234 amino acids with four transmembrane domains (TM1 to TM4), a small extracellular loop (SEL), and a large extracellular loop (LEL). Tissue distribution analysis showed that CcCD81 was widely expressed in all the tested tissues with the highest expression in head kidney, followed by a high expression in brain. Subsequently, expression levels of CcCD81 were significantly increased in CCB cells within the first 3h after infection, meanwhile, the expression of viral gene VP136 was reduced after CcCD81 knockdown in CCB cells post CyHV-3 infection. Furthermore, CcCD81 knockdown can significantly reduce the autophagy process and increase the promoter activity of ISRE and IFN-1 in the CCB cells after viral infection, as well as other genes involved in the IFN signaling pathway, including RIG-1、MDA5、MAVS、TBK1 and IRF3. Taking the data together, we revealed that CcCD81 mediates autophagy and blocks RIG-1-mediated antiviral signaling and negatively regulates the promoter activity of type I interferon (IFN) promoting virus replication. These results reveal a new link between autophagy and four-transmembrane-domain protein superfamily and contribute to elucidate the mechanism of CyHV-3 infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Interferon Tipo I , Animais , Infecções por Herpesviridae/veterinária , Carpas/genética , Carpas/metabolismo , Herpesviridae/fisiologia , Interferon Tipo I/genética , Antivirais , Autofagia , Transdução de Sinais , Tetraspaninas , Replicação Viral
10.
Mol Divers ; 27(3): 1309-1322, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35821161

RESUMO

Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Simulação de Acoplamento Molecular , Hepatite C/tratamento farmacológico , Hepatite C/genética , Hepatite C/metabolismo , Hepatócitos/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 28/farmacologia
11.
Cell Biochem Funct ; 41(8): 1503-1513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014564

RESUMO

The role of tetraspanin CD81 in malignant transformation is best studied in colorectal cancer, and it appears that other transcripts beside the fully coding mRNA may also be dysregulated in malignant cells. Recent data from a comprehensive pan-cancer transcriptome analysis demonstrated differential activity of two alternative CD81 gene promoters in malignant versus nonmalignant gut mucosa. The promoter active in gut mucosa gives rise to transcripts CD81-203 and CD81-213, while the promoter active in colon and rectal cancer gives rise to transcripts CD81-205 and CD81-215. Our study aimed to explore the biomarker potential of the transcripts from the alternative CD81 gene promoters in colon cancer, as well as to investigate their structure and potential function using in silico tools. The analysis of the transcripts' expression in several colon cell lines cultivated in 2D and 3D and a set of colon cancer and healthy gut mucosa samples by qPCR and RNA sequencing suggested their low expression and stromal origin. Expression patterns in tumor and nontumor tissue along with in silico data suppose that the transcript CD81-215 may be a noncoding RNA of stromal origin with possible involvement in signaling related to malignant transformation.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Perfilação da Expressão Gênica , Transdução de Sinais , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902179

RESUMO

Severe traumatic brain injury (sTBI) is an intracranial damage triggered by external force, most commonly due to falls and traffic accidents. The initial brain injury can progress into a secondary injury involving numerous pathophysiological processes. The resulting sTBI dynamics makes the treatment challenging and prompts the improved understanding of underlying intracranial processes. Here, we analysed how extracellular microRNAs (miRNAs) are affected by sTBI. We collected thirty-five cerebrospinal fluids (CSF) from five sTBI patients during twelve days (d) after the injury and combined them into d1-2, d3-4, d5-6 and d7-12 CSF pools. After miRNA isolation and cDNA synthesis with added quantification spike-ins, we applied a real-time PCR-array targeting 87 miRNAs. We detected all of the targeted miRNAs, with totals ranging from several nanograms to less than a femtogram, with the highest levels found at d1-2 followed by decreasing levels in later CSF pools. The most abundant miRNAs were miR-451a, miR-16-5p, miR-144-3p, miR-20a-5p, let-7b-5p, miR-15a-5p, and miR-21-5p. After separating CSF by size-exclusion chromatography, most miRNAs were associated with free proteins, while miR-142-3p, miR-204-5p, and miR-223-3p were identified as the cargo of CD81-enriched extracellular vesicles, as characterised by immunodetection and tunable resistive pulse sensing. Our results indicate that miRNAs might be informative about both brain tissue damage and recovery after sTBI.


Assuntos
Lesões Encefálicas Traumáticas , Vesículas Extracelulares , MicroRNAs , Humanos , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Vesículas Extracelulares/metabolismo , MicroRNAs/líquido cefalorraquidiano , MicroRNAs/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
13.
Mol Med ; 28(1): 65, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705919

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that results from widespread immune complex deposition and secondary tissue injury. Hydroxychloroquine (HCQ) has been used clinically to treat SLE, while its exact mechanism has still remained elusive. Some studies have shown that myeloid-derived suppressor cells (MDSCs) play a vital role in the regulation of SLE. In this study, we aimed to explore the effects of HCQ on the apoptosis of MDSCs in lupus mice and its possible molecular regulatory mechanism. METHODS: We constructed the imiquimod (IMQ)-induced lupus model in mice. The proportion and apoptosis of MDSCs were measured by flow cytometry. CD81-overexpressed adeno-associated virus was intraperitoneally injected into the lupus mice. We also transfected the CD81 siRNA into bone marrow-derived MDSCs, and employed qRT-PCR and Western blotting to quantify the level of CD81. RESULTS: The results showed that HCQ ameliorated IMQ-induced lupus symptoms, and simultaneously inhibited the expansion of MDSCs. In particular, HCQ induced the apoptosis of MDSCs, and also up-regulated the expression level of CD81 in MDSCs, which might indicate the relationship between the expression level of CD81 and the apoptosis of MDSCs. CD81 was further confirmed to participate in the apoptosis of MDSCs and lupus disease progression by overexpressing CD81 in vivo. Molecular docking experiment further proved the targeting effect of HCQ on CD81. And then we interfered CD81 in bone marrow derived MDSCs in vitro, and it was revealed that HCQ rescued the decreased expression level of CD81 and relieved the immune imbalance of Th17/Treg cells. CONCLUSION: In summary, HCQ promoted the apoptosis of MDSCs by up-regulating the expression level of CD81 in MDSCs, and ultimately alleviated lupus symptoms. Our results may assist scholars to develop further effective therapies for SLE.


Assuntos
Antirreumáticos , Lúpus Eritematoso Sistêmico , Células Supressoras Mieloides , Animais , Antirreumáticos/uso terapêutico , Apoptose , Hidroxicloroquina/metabolismo , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Camundongos , Simulação de Acoplamento Molecular , Células Supressoras Mieloides/metabolismo , Regulação para Cima
14.
J Clin Immunol ; 42(8): 1672-1684, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35849269

RESUMO

PURPOSE: CD81 deficiency is an extremely rare primary immunodeficiency disease characterized by severe and recurrent infections, IgA-related nephropathy, and profound hypogammaglobulinemia. Only one patient has been reported so far, and the pathogenesis remains unclear. Here, we identified a new case of CD81 deficiency and described its pathogenesis. METHODS: We analyzed the clinical, genetic, and immunological features of the patient with CD81 deficiency, and explored the pathogenesis of her antibody deficiencies. RESULTS: The major manifestation of this patient was unexpectedly not recurrent infections but IgA nephropathy with aberrant serum galactose-deficient IgA1. Whole-exome sequencing revealed novel biallelic mutations in CD81 gene that abolished the surface expression of CD81. B cells from the patient lack membrane CD19 and showed reduced switched memory B cells and transitional B cells. Decreased expression of key molecules pY and pBTK in BCR signaling were demonstrated by confocal microscopy. RNA sequencing revealed that genes associated with BCR signaling and immunoglobulins were downregulated in CD81-deficient B cells. In addition, the patient showed increased frequency of T follicular helper cells that biased to Th1-like subsets. CONCLUSION: We reported the second patient with CD81 deficiency in the world and illustrated aberrant BCR signaling in the patient, therefore helping to unravel the mechanism of antibody deficiency in CD81-deficient patients.


Assuntos
Glomerulonefrite por IGA , Tetraspanina 28 , Feminino , Humanos , Antígenos CD19/metabolismo , Linfócitos B , China , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , Imunoglobulina A/genética , Mutação , Tetraspanina 28/genética
15.
Biochem Biophys Res Commun ; 604: 22-29, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35279442

RESUMO

OBJECTIVE: Cluster of differentiation 81 (CD81) is a tetraspanin membrane protein consisting of 4 transmembrane domains and 2 outer membrane loops. CD81 inhibition is a potential treatment for rheumatoid arthritis (RA). Here, we investigated the therapeutic effects of the cytoplasmic RNA vector expressing anti-CD81 antibodies (the anti-CD81 vector) on the ankle joint synovium in collagen-induced arthritis (CIA) rats. METHODS: Body weight, paw volume, and clinical scores were measured on days 0, 7, and 10 and daily thereafter. On day 28, the ankle joints of the rats were removed and stained with haematoxylin, eosin, and Safranin O. Arthritic changes such as inflammatory cell infiltration, synovial proliferation, articular cartilage destruction, and bone erosion were evaluated by histological scoring. RESULTS: Symptom onset was delayed in the right lower limbs of the rats administered the cytoplasmic RNA vector (CIA + anti-CD81) compared with that in the control group (CIA + control). The CIA + anti-CD81 rats were heavier than the CIA + control rats. The paw volume and clinical scores were significantly lower in the CIA + anti-CD81 than in the CIA + control. The histological scores indicated significantly milder manifestations of RA in the CIA + anti-CD81 than in the CIA + control. CONCLUSIONS: Administration of the cytoplasmic RNA vector expressing anti-CD81 antibodies suppressed arthritis and joint destruction in CIA rats. Our findings suggest that the cytoplasmic RNA vector can be used to treat RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Cartilagem Articular , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/patologia , Cartilagem Articular/metabolismo , RNA/metabolismo , Ratos , Membrana Sinovial/patologia
16.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361424

RESUMO

Extracellular vesicles (EVs) are released by all types of cells as a means of intercellular communication. Their significance lies in the fact that they can alter recipient cell functions, despite their limited capacity for cargo. We have previously demonstrated that herpes simplex virus 1 (HSV-1) infection influences the cargo and functions of EVs released by infected cells and that these EVs negatively impact a subsequent HSV-1 infection. In the present study, we have implemented cutting-edge technologies to further characterize EVs released during HSV-1 infection. We identified distinct EV populations that were separable through a gradient approach. One population was positive for the tetraspanin CD63 and was distinct from EVs carrying components of the endosomal sorting complexes required for transport (ESCRT). Nanoparticle tracking analysis (NTA) combined with protein analysis indicated that the production of CD63+ EVs was selectively induced upon HSV-1 infection. The ExoView platform supported these data and suggested that the amount of CD63 per vesicle is larger upon infection. This platform also identified EV populations positive for other tetraspanins, including CD81 and CD9, whose abundance decreased upon HSV-1 infection. The stimulator of interferon genes (STING) was found in CD63+ EVs released during HSV-1 infection, while viral components were found in ESCRT+ EVs. Functional characterization of these EVs demonstrated that they have opposite effects on the infection, but the dominant effect was negative. Overall, we have identified the dominant population of EVs, and other EV populations produced during HSV-1 infection, and we have provided information about potential roles.IMPORTANCE Extracellular vesicles mediate cell-to-cell communication and convey messages important for cell homeostasis. Pathways of EV biogenesis are often hijacked by pathogens to facilitate their dissemination and to establish a favorable microenvironment for the infection. We have previously shown that HSV-1 infection alters the cargo and functions of the released EVs, which negatively impact the infection. We have built upon our previous findings by developing procedures to separate EV populations from HSV-1-infected cells. We identified the major population of EVs released during infection, which carries the DNA sensor STING and has an antiviral effect. We also identified an EV population that carries selected viral proteins and has a proviral role. This is the first study to characterize EV populations during infection. These data indicate that the complex interactions between the virus and the host are extended to the extracellular environment and could impact HSV-1 dissemination and persistence in the host.


Assuntos
Vesículas Extracelulares/fisiologia , Herpesvirus Humano 1/fisiologia , Antivirais/metabolismo , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exocitose , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/metabolismo , Tetraspanina 30/metabolismo , Tetraspaninas/metabolismo , Proteínas Virais/metabolismo
17.
Int J Med Sci ; 19(9): 1399-1407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035371

RESUMO

Background: We hypothesized that the expression of exosomes under general anaesthesia with an inhalational anaesthetic agent would be changed. The study was designed to confirm the effect of general anesthesia with an inhalational anaesthetic agent on the expression of exosomes in rats. Methods: After intraperitoneal administration for the mixture of ketamine and xylazine, tracheal intubation was performed. Just before the connection to ventilator, Control group and Anaesthesia group, according to anaesthesia with isoflurane, were allocated. The expressions of exosomes were checked in bronchoalveolar lavage (BAL), the blood and the tissues from the lung and the brain. Cytokines in the blood were also assessed. Results: The expressions of cluster of differentiation (CD)63 and CD81 as markers for the exosomes in the blood was increased after anaesthesia with isoflurane (CD63, 0.078 ± 0.057 % in Control group vs. 0.180 ± 0.036 % in Anaesthesia group, p = 0.02; CD81, 0.028 ± 0.034 % in Control group vs. 0.245 ± 0.054 % in Anaesthesia group, p < 0.01). However, the increased expression of them were not checked in BAL, and the tissues from the lung and the brain. The cytokines in the blood did not show any significant difference before and after anaesthesia with isoflurane. Conclusion: General anaesthesia with an inhalational anaesthetic agent increased the expression of exosomes in the blood. However, the change was limited in the blood, not the alveoli and the brain.


Assuntos
Anestésicos Inalatórios , Exossomos , Isoflurano , Anestesia Geral , Animais , Citocinas , Ratos
18.
Immunol Rev ; 282(1): 87-113, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431205

RESUMO

Mast cells (MCs) are innate immune cells that are scattered in tissues throughout the organism being particularly abundant at sites exposed to the environment such as the skin and mucosal surfaces. Generally known for their role in IgE-mediated allergies, they have also important functions in the maintenance of tissue integrity by constantly sensing their microenvironment for signals by inflammatory triggers that can comprise infectious agents, toxins, hormones, alarmins, metabolic states, etc. When triggered their main function is to release a whole set of inflammatory mediators, cytokines, chemokines, and lipid products. This allows them to organize the ensuing innate immune and inflammatory response in tight coordination with resident tissue cells, other rapidly recruited immune effector cells as well as the endocrine and exocrine systems of the body. To complete these tasks, MCs are endowed with a large repertoire of receptors allowing them to respond to multiple stimuli or directly interact with other cells. Here we review some of the receptors expressed on MCs (ie, receptors for Immunoglobulins, pattern recognition receptors, nuclear receptors, receptors for alarmins, and a variety of other receptors) and discuss their functional implication in the immune and inflammatory response focusing on non-IgE-mediated activation mechanisms.


Assuntos
Mastócitos/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Fc/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Microambiente Celular , Citocinas/metabolismo , Humanos , Imunidade Inata , Imunoglobulina E/metabolismo
19.
Histochem Cell Biol ; 156(4): 301-313, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34185148

RESUMO

The adenohypophysis is composed of the anterior and intermediate lobes (AL and IL), and secretes important hormones for growth, sexual development, metabolism, and reproduction. In the marginal cell layer (MCL) facing Rathke's cleft between the IL and AL, cluster of differentiation (CD) 9-, CD81-, S100ß-, and SOX2-quadruple positive (CD9/CD81/S100ß/SOX2-positive) cells in the adult IL are settled as tissue-resident stem/progenitor cells supplying hormone-producing cells to the AL. However, it is unclear how CD9/CD81/S100ß/SOX2-positive cells in the IL-side MCL migrate into the AL across Rathke's cleft. In the present study, we performed chimeric pituitary tissue culture using S100ß/GFP-transgenic rats and Wistar rats, and traced the footprint of S100ß/GFP-expressing cells. We detected IL-side S100ß/GFP-expressing cells in the AL tissue, demonstrating that these cells migrate from the IL to the AL. However, the cells failed to migrate in the opposite direction. Consistently, scanning electron microscopic analysis revealed well-developed cytoplasmic protrusions in the IL-side MCL, but not in the AL-side MCL, suggesting that IL-side CD9/CD81/S100ß/SOX2-positive cells had higher migratory activity. We also searched for a specific marker for IL-side CD9/CD81/S100ß/SOX2-positive cells and identified tetraspanin 1 (TSPAN1) from microarray analysis. Downregulation of Tspan1 by specific siRNA impaired cell migration and significantly reduced expression of snail family transcriptional repressor 2 (Slug), a marker of epithelial-mesenchymal transition (EMT). Therefore, CD9/CD81/S100ß/SOX2-positive cells in the IL-side MCL can be stem/progenitor cells that provide stem/progenitor cells to the AL-side MCL via SLUG-mediated EMT and cell migration.


Assuntos
Células Endócrinas/metabolismo , Adeno-Hipófise/metabolismo , Tetraspanina 29/metabolismo , Animais , Movimento Celular , Masculino , Ratos , Ratos Wistar
20.
Anal Biochem ; 624: 114196, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848501

RESUMO

This paper is aimed at the development of a biosensor for direct detection of Hepatitis C virus (HCV) surface antigen: envelope protein (E2). A recombinant LEL fragment of biological cell receptor CD81 and two short synthetic peptides imitating the fragment of LEL sequence of CD81 (linear and loop-like peptides) capable of specific binding to E2 were tested as molecular recognition elements of the biosensor. For this purpose the selected ligands were immobilized to the surface of a screen-printed electrode utilized as an electrochemical sensor platform. The immobilization parameters such as the ligand concentration and the immobilization time were carefully optimized for each ligand. Differential pulse voltammetry used to evaluate quantitatively binding of E2 to the ligands revealed their similar binding affinity towards E2. Thus, the linear peptide was selected as a less expensive and easily prepared ligand for the HCV biosensor preparation. The resulting HCV biosensor demonstrated selectivity towards E2 in the presence of interfering protein, conalbumin. Moreover, it was found that the prepared biosensor effectively detected E2 bound to hepatitis C virus-mimetic particles (HC VMPs) at LOD value of 2.1∙10-5 mg/mL both in 0.01 M PBS solution (pH 7.4) and in simulated blood plasma.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Hepacivirus/isolamento & purificação , Hepatite C/diagnóstico , Proteínas do Envelope Viral/análise , Antígenos CD/análise , Antígenos CD/metabolismo , Conalbumina/metabolismo , Hepatite C/sangue , Antígenos da Hepatite C/análise , Antígenos da Hepatite C/metabolismo , Humanos , Ligantes , Ligação Proteica , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa