Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
1.
Annu Rev Cell Dev Biol ; 33: 77-101, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28783960

RESUMO

A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.


Assuntos
Polaridade Celular , Saccharomyces cerevisiae/citologia , Actinas/metabolismo , Ciclo Celular , Modelos Biológicos
2.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756590

RESUMO

Successful nuclear migration through constricted spaces between cells or in the extracellular matrix relies on the ability of the nucleus to deform. Little is known about how this takes place in vivo. We have studied confined nuclear migration in Caenorhabditis elegans larval P cells, which is mediated by the LINC complex to pull nuclei towards the minus ends of microtubules. Null mutations of the LINC component unc-84 lead to a temperature-dependent phenotype, suggesting a parallel pathway for P-cell nuclear migration. A forward genetic screen for enhancers of unc-84 identified cgef-1 (CDC-42 guanine nucleotide exchange factor). Knockdown of CDC-42 in the absence of the LINC complex led to a P-cell nuclear migration defect. Expression of constitutively active CDC-42 partially rescued nuclear migration in cgef-1; unc-84 double mutants, suggesting that CDC-42 functions downstream of CGEF-1. The Arp2/3 complex and non-muscle myosin II (NMY-2) were also found to function parallel to the LINC pathway. In our model, CGEF-1 activates CDC-42, which induces actin polymerization through the Arp2/3 complex to deform the nucleus during nuclear migration, and NMY-2 helps to push the nucleus through confined spaces.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Nuclear/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(14): e2219254120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972433

RESUMO

Optogenetics is a technique for establishing direct spatiotemporal control over molecular function within living cells using light. Light application induces conformational changes within targeted proteins that produce changes in function. One of the applications of optogenetic tools is an allosteric control of proteins via light-sensing domain (LOV2), which allows direct and robust control of protein function. Computational studies supported by cellular imaging demonstrated that application of light allosterically inhibited signaling proteins Vav2, ITSN, and Rac1, but the structural and dynamic basis of such control has yet to be elucidated by experiment. Here, using NMR spectroscopy, we discover principles of action of allosteric control of cell division control protein 42 (CDC42), a small GTPase involved in cell signaling. Both LOV2 and Cdc42 employ flexibility in their function to switch between "dark"/"lit" or active/inactive states, respectively. By conjoining Cdc42 and phototropin1 LOV2 domains into the bi-switchable fusion Cdc42Lov, application of light-or alternatively, mutation in LOV2 to mimic light absorption-allosterically inhibits Cdc42 downstream signaling. The flow and patterning of allosteric transduction in this flexible system are well suited to observation by NMR. Close monitoring of the structural and dynamic properties of dark versus "lit" states of Cdc42Lov revealed lit-induced allosteric perturbations that extend to Cdc42's downstream effector binding site. Chemical shift perturbations for lit mimic, I539E, have distinct regions of sensitivity, and both the domains are coupled together, leading to bidirectional interdomain signaling. Insights gained from this optoallosteric design will increase our ability to control response sensitivity in future designs.


Assuntos
Optogenética , Proteínas , Optogenética/métodos , Sítios de Ligação , Transdução de Sinais , Domínios Proteicos
4.
Proc Natl Acad Sci U S A ; 120(4): e2209983120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669109

RESUMO

TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development.


Assuntos
Neocórtex , Animais , Humanos , Camundongos , Células Ependimogliais , Camundongos Knockout
5.
Semin Cell Dev Biol ; 133: 83-95, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35148940

RESUMO

Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fusão Celular , Transdução de Sinais , Feromônios/metabolismo
6.
Dev Biol ; 515: 7-17, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38942110

RESUMO

In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.


Assuntos
Actinas , Actomiosina , Exoesqueleto , Gastrópodes , Morfogênese , Proteína cdc42 de Ligação ao GTP , Animais , Gastrópodes/embriologia , Gastrópodes/metabolismo , Exoesqueleto/metabolismo , Exoesqueleto/crescimento & desenvolvimento , Exoesqueleto/embriologia , Actinas/metabolismo , Actomiosina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Miosina Tipo II/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
7.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36691920

RESUMO

Cellular life exhibits order and complexity, which typically increase over the course of evolution. Cell polarization is a well-studied example of an ordering process that breaks the internal symmetry of a cell by establishing a preferential axis. Like many cellular processes, polarization is driven by self-organization, meaning that the macroscopic pattern emerges as a consequence of microscopic molecular interactions at the biophysical level. However, the role of self-organization in the evolution of complex protein networks remains obscure. In this Review, we provide an overview of the evolution of polarization as a self-organizing process, focusing on the model species Saccharomyces cerevisiae and its fungal relatives. Moreover, we use this model system to discuss how self-organization might relate to evolutionary change, offering a shift in perspective on evolution at the microscopic scale.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Biológicos , Evolução Molecular
8.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039135

RESUMO

During cytokinesis, a series of coordinated events partition a dividing cell. Accurate regulation of cytokinesis is essential for proliferation and genome integrity. In fission yeast, these coordinated events ensure that the actomyosin ring and septum start ingressing only after chromosome segregation. How cytokinetic events are coordinated remains unclear. The GTPase Cdc42 promotes recruitment of certain cell wall-building enzymes whereas the GTPase Rho1 activates these enzymes. We show that Cdc42 prevents early Rho1 activation during fission yeast cytokinesis. Using an active Rho probe, we find that although the Rho1 activators Rgf1 and Rgf3 localize to the division site in early anaphase, Rho1 is not activated until late anaphase, just before the onset of ring constriction. We find that loss of Cdc42 activation enables precocious Rho1 activation in early anaphase. Furthermore, we provide functional and genetic evidence that Cdc42-dependent Rho1 inhibition is mediated by the Cdc42 target Pak1 kinase. Our work proposes a mechanism of Rho1 regulation by active Cdc42 to coordinate timely septum formation and cytokinesis fidelity.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citocinese/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Actomiosina/metabolismo , Quinases Ativadas por p21/genética , Proteínas rho de Ligação ao GTP/metabolismo
9.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37226883

RESUMO

Rac (herein referring to the Rac family) and Cdc42 are Rho GTPases that regulate the formation of lamellipoda and filopodia, and are therefore crucial in processes such as cell migration. Relocation-based biosensors for Rac and Cdc42 have not been characterized well in terms of their specificity or affinity. In this study, we identify relocation sensor candidates for both Rac and Cdc42. We compared their (1) ability to bind the constitutively active Rho GTPases, (2) specificity for Rac and Cdc42, and (3) relocation efficiency in cell-based assays. Subsequently, the relocation efficiency was improved by a multi-domain approach. For Rac1, we found a sensor candidate with low relocation efficiency. For Cdc42, we found several sensors with sufficient relocation efficiency and specificity. These optimized sensors enable the wider application of Rho GTPase relocation sensors, which was showcased by the detection of local endogenous Cdc42 activity at assembling invadopodia. Moreover, we tested several fluorescent proteins and HaloTag for their influence on the recruitment efficiency of the Rho location sensor, to find optimal conditions for a multiplexing experiment. This characterization and optimization of relocation sensors will broaden their application and acceptance.


Assuntos
Podossomos , Proteínas rho de Ligação ao GTP , Movimento Celular , Pseudópodes
10.
Mol Ther ; 32(10): 3669-3682, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39086134

RESUMO

Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Traffic ; 23(10): 478-495, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36068165

RESUMO

Fission yeast cytokinesis is driven by simultaneous septum synthesis, membrane furrowing and actomyosin ring constriction. The septum consists of a primary septum flanked by secondary septa. First, delivery of the glucan synthase Bgs1 and membrane vesicles initiate primary septum synthesis and furrowing. Next, Bgs4 is delivered for secondary septum formation. It is unclear how septum synthesis is coordinated with membrane furrowing. Cdc42 promotes delivery of Bgs1 but not Bgs4. We find that after primary septum initiation, Cdc42 inactivators Rga4 and Rga6 localize to the division site. In rga4Δrga6Δ mutants, Cdc42 activity is enhanced during late cytokinesis and cells take longer to separate. Electron micrographs of the division site in these mutants exhibit malformed septum with irregular membrane structures. These mutants have a larger division plane with enhanced Bgs1 delivery but fail to enhance accumulation of Bgs4 and several exocytic proteins. Additionally, these mutants show endocytic defects at the division site. This suggests that Cdc42 regulates primary septum formation and only certain membrane trafficking events. As cytokinesis progresses Rga4 and Rga6 localize to the division site to decrease Cdc42 activity to allow coupling of Cdc42-independent membrane trafficking events with septum formation for proper septum morphology.


Assuntos
Citocinese , Proteínas Ativadoras de GTPase , Proteínas de Schizosaccharomyces pombe , Actomiosina/metabolismo , Citocinese/genética , Citocinese/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
J Biol Chem ; 299(3): 102947, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707051

RESUMO

Animal cells establish polarity via the partitioning-defective protein system. Although the core of this system comprises only four proteins, a huge number of reported interactions between these members has made it difficult to understand how the system is organized and functions at the molecular level. In a recent JBC article, the Prehoda group has succeeded in reconstituting some of these interactions in vitro, resulting in a much clearer and simpler picture of partitioning-defective complex assembly.


Assuntos
Polaridade Celular , Proteínas , Animais , Proteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo
13.
J Biol Chem ; 299(8): 104983, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390986

RESUMO

The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gßγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C ß3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.


Assuntos
Actinas , Ácidos Araquidônicos , Estruturas da Membrana Celular , Neoplasias , Receptores Eicosanoides , Humanos , Actinas/metabolismo , Neoplasias/metabolismo , Toxina Pertussis/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Estruturas da Membrana Celular/metabolismo , Nanotubos , Receptores Eicosanoides/antagonistas & inibidores , Receptores Eicosanoides/metabolismo , Linhagem Celular Tumoral , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Transdução de Sinais
14.
J Cell Physiol ; 239(1): 36-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877586

RESUMO

Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.


Assuntos
Proteínas do Citoesqueleto , Salmonella typhimurium , Proteínas rho de Ligação ao GTP , Humanos , Actinas/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Salmonella typhimurium/patogenicidade , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
15.
Am J Physiol Gastrointest Liver Physiol ; 327(4): G545-G557, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39104325

RESUMO

Increased intestinal permeability is a manifestation of cystic fibrosis (CF) in people with CF (pwCF) and in CF mouse models. CF transmembrane conductance regulator knockout (Cftr KO) mouse intestine exhibits increased proliferation and Wnt/ß-catenin signaling relative to wild-type mice (WT). Since the Rho GTPase Cdc42 plays a central role in intestinal epithelial proliferation and tight junction remodeling, we hypothesized that Cdc42 may be altered in the Cftr KO crypts. Immunofluorescence showed distinct tight junction localization of Cdc42 in Cftr KO fresh crypts and enteroids, the latter indicating an epithelial-autonomous feature. Quantitative PCR and immunoblots revealed similar expression of Cdc42 in the Cftr KO crypts/enteroids relative to WT, whereas pulldown assays showed increased GTP-bound (active) Cdc42 in proportion to total Cdc42 in Cftr KO enteroids. Cdc42 activity in the Cftr KO and WT enteroids could be reduced by inhibition of the Wnt transducer Disheveled. With the use of a dye permeability assay, Cftr KO enteroids exhibited increased paracellular permeability to 3 kDa dextran relative to WT. Leak permeability and Cdc42 tight junction localization were reduced to a greater extent by inhibition of Wnt/ß-catenin signaling with endo-IWR1 in Cftr KO relative to WT enteroids. Increased proliferation or inhibition of Cdc42 activity with ML141 in WT enteroids had no effect on permeability. In contrast, inhibition of Cdc42 with ML141 increased permeability to both 3 kDa dextran and tight junction impermeant 500 kDa dextran in Cftr KO enteroids. These data suggest that increased constitutive Cdc42 activity may alter the stability of paracellular permeability in Cftr KO crypt epithelium.NEW & NOTEWORTHY Increased tight junction localization and GTP-bound activity of the Rho GTPase Cdc42 was identified in small intestinal crypts and enteroids of cystic fibrosis (CF) transmembrane conductance regulator knockout (Cftr KO) mice. The increase in epithelial Cdc42 activity was associated with increased Wnt signaling. Paracellular flux of an uncharged solute (3 kDa dextran) in Cftr KO enteroids indicated a moderate leak permeability under basal conditions that was strongly exacerbated by Cdc42 inhibition. These findings suggest increased activity of Cdc42 in the Cftr KO intestine underlies alterations in intestinal permeability.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Mucosa Intestinal , Junções Íntimas , Proteína cdc42 de Ligação ao GTP , Animais , Camundongos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Fibrose Cística/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Knockout , Permeabilidade , Junções Íntimas/metabolismo , Via de Sinalização Wnt
16.
J Cell Sci ; 135(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35892293

RESUMO

Stereocilia are F-actin-based protrusions on the apical surface of inner-ear hair cells and are indispensable for hearing and balance perception. The stereocilia of each hair cell are organized into rows of increasing heights, forming a staircase-like pattern. The development and maintenance of stereocilia are tightly regulated, and deficits in these processes lead to stereocilia disorganization and hearing loss. Previously, we showed that the F-BAR protein FCHSD2 is localized along the stereocilia of cochlear hair cells and cooperates with CDC42 to regulate F-actin polymerization and cell protrusion formation in cultured COS-7 cells. In the present work, Fchsd2 knockout mice were established to investigate the role of FCHSD2 in hearing. Our data show that stereocilia maintenance is severely affected in cochlear hair cells of Fchsd2 knockout mice, which leads to progressive hearing loss. Moreover, Fchsd2 knockout mice show increased acoustic vulnerability. Noise exposure causes robust stereocilia degeneration as well as enhanced hearing threshold elevation in Fchsd2 knockout mice. Lastly, Fchsd2/Cdc42 double knockout mice show more severe stereocilia deficits and hearing loss, suggesting that FCHSD2 and CDC42 cooperatively regulate stereocilia maintenance.


Assuntos
Proteínas de Transporte , Perda Auditiva , Proteínas de Membrana , Estereocílios , Animais , Camundongos , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estereocílios/metabolismo
17.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35971979

RESUMO

Cell migration frequently involves the formation of lamellipodia induced by Rac GTPases activating WAVE regulatory complex (WRC) to drive Arp2/3 complex-dependent actin assembly. Previous genome editing studies in B16-F1 melanoma cells solidified the view of an essential, linear pathway employing the aforementioned components. Here, disruption of the WRC subunit Nap1 (encoded by Nckap1) and its paralog Hem1 (encoded by Nckap1l) followed by serum and growth factor stimulation, or active GTPase expression, revealed a pathway to formation of Arp2/3 complex-dependent lamellipodia-like structures (LLS) that requires both Rac and Cdc42 GTPases, but not WRC. These phenotypes were independent of the WRC subunit eliminated and coincided with the lack of recruitment of Ena/VASP family actin polymerases. Moreover, aside from Ena/VASP proteins, LLS contained all lamellipodial regulators tested, including cortactin (also known as CTTN), the Ena/VASP ligand lamellipodin (also known as RAPH1) and FMNL subfamily formins. Rac-dependent but WRC-independent actin remodeling could also be triggered in NIH 3T3 fibroblasts by growth factor (HGF) treatment or by gram-positive Listeria monocytogenes usurping HGF receptor signaling for host cell invasion. Taken together, our studies thus establish the existence of a signaling axis to Arp2/3 complex-dependent actin remodeling at the cell periphery that operates without WRC and Ena/VASP.


Assuntos
Actinas , Pseudópodes , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Movimento Celular/fisiologia , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
18.
Biochem Biophys Res Commun ; 734: 150654, 2024 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-39241623

RESUMO

Blood platelets result from differentiation of megakaryocytes (MKs) into the bone marrow. It culminates with the extension of proplatelets (PPT) through medullar sinusoids and release of platelets in the blood stream. Those processes are regulated by contact with the microenvironment mediated by podosomes. We previously demonstrated that contact of megakaryocytes to Collagen I fibers initiated the formation of linear podosomes required for proplatelets extension and release of mature platelets. MKs linear podosomes have the particularity of displaying mechanical pulling activity but, unlike other linear podosomes, they lack the ability of digesting the extracellular matrix (ECM), as we recently demonstrated. The Cdc42 small GTPase is required for actomyosin-dependent maturation of the demarcation membrane system (DMS), a membrane reservoir for PPT and platelets components. Cdc42 is a known protein of the podosomes core, and is instrumental to accurate platelets release into the sinusoids. Indeed, FRET analysis showed that Cdc42 activity was very high and central to DMS formation. Unexpectedly, even though we found the protein in linear podosomes, almost undetectable Cdc42 activity was detected in those structures. This observation suggests that Cdc42 could also act as scaffold to assemble proteins required for PPT formation/elongation along Collagen I fibers in MKs. Eventually, we demonstrated that linear podosomes appear as points of contact between Collagen I fibers and DMS membranes, to mechanically extend PPT along Collagen bundles, independently of Cdc42 activity.


Assuntos
Plaquetas , Megacariócitos , Podossomos , Proteína cdc42 de Ligação ao GTP , Megacariócitos/metabolismo , Megacariócitos/citologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Plaquetas/metabolismo , Animais , Podossomos/metabolismo , Camundongos , Humanos
19.
Development ; 148(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33323370

RESUMO

The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Raiz Dentária/embriologia , Raiz Dentária/metabolismo , Via de Sinalização Wnt , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Masculino , Mesoderma/embriologia , Camundongos , Camundongos Mutantes , Morfogênese , Odontoblastos/citologia , Odontoblastos/metabolismo , Raiz Dentária/citologia
20.
Mol Carcinog ; 63(3): 430-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983727

RESUMO

LINC00355 is involved in the tumorigenesis of several types of cancer. We verified that LINC00355 is upregulated in gastric cancer (GC) and contributes to GC cells' proliferation and metastasis. RNA sequencing (RNA-seq) and rescue assays suggested that LINC00355 controls gastric carcinogenesis by regulating the expression of cell division cycle 42 (CDC42) guanosine triphosphatase (GTPases), thereby activating their downstream pathways. Most previous studies have shown that LINC00355 acts as a ceRNA by sponging miRNAs to modulate downstream gene expression. Our group focus on epigenetic regulatory potential of LINC00355 in gene expression. Mechanistically, LINC00355 binds to p300 histone acetyltransferase, specifying the histone modification pattern on the CDC42 promoter to activate CDC42 transcription, thereby altering GC cell biology. In addition, HNRNPA2B1, which is upregulated by LINC00355, recognizes the N6-methyladenosine (m6A) sites of CDC42 and enhances the stability of CDC42 mRNA transcripts. Therefore, LINC00355 is mechanistically, functionally, and clinically oncogenic in GC cells.


Assuntos
Adenina/análogos & derivados , MicroRNAs , Neoplasias Gástricas , Humanos , RNA Mensageiro/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa