Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Mol Cell Biol ; 24(1): 21, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37337185

RESUMO

Janus kinase 3 (JAK3) is a member of the JAK family of tyrosine kinase proteins involved in cytokine receptor-mediated intracellular signal transduction through the JAK/STAT signaling pathway. JAK3 was previously shown as differentially expressed in granulosa cells (GC) of bovine pre-ovulatory follicles suggesting that JAK3 could modulate GC function and activation/inhibition of downstream targets. We used JANEX-1, a JAK3 inhibitor, and FSH treatments and analyzed proliferation markers, steroidogenic enzymes and phosphorylation of target proteins including STAT3, CDKN1B/p27Kip1 and MAPK8IP3/JIP3. Cultured GC were treated with or without FSH in the presence or not of JANEX-1. Expression of steroidogenic enzyme CYP11A1, but not CYP19A1, was upregulated in GC treated with FSH and both were significantly decreased when JAK3 was inhibited. Proliferation markers CCND2 and PCNA were reduced in JANEX-1-treated GC and upregulated by FSH. Western blots analyses showed that JANEX-1 treatment reduced pSTAT3 amounts while JAK3 overexpression increased pSTAT3. Similarly, FSH treatment increased pSTAT3 even in JANEX-1-treated GC. UHPLC-MS/MS analyses revealed phosphorylation of specific amino acid residues within JAK3 as well as CDKN1B and MAPK8IP3 suggesting possible activation or inhibition post-FSH or JANEX-1 treatments. We show that FSH activates JAK3 in GC, which could phosphorylate target proteins and likely modulate other signaling pathways involving CDKN1B and MAPK8IP3, therefore controlling GC proliferation and steroidogenic activity.


Assuntos
Hormônio Foliculoestimulante , Janus Quinases , Animais , Bovinos , Feminino , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/metabolismo , Janus Quinase 3/metabolismo , Janus Quinases/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Espectrometria de Massas em Tandem
2.
Autophagy ; 16(12): 2297-2298, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33016184

RESUMO

The tumor suppressor CDKN1B/p27Kip1 binds to and inhibits cyclin-CDK complexes in the nucleus, inducing cell cycle arrest. However, when in the cytoplasm, CDKN1B may promote tumorigenesis. Notably, cytoplasmic CDKN1B was reported to promote macroautophagy/autophagy in response to nutrient shortage by a previously unknown mechanism. In our recent work, we found that during prolonged amino acid starvation, CDKN1B promotes autophagy via an MTORC1-dependent pathway. A fraction of CDKN1B translocates to lysosomes, where it interacts with the Ragulator subunit LAMTOR1, preventing Ragulator assembly, which is required for MTORC1 activation in response to amino acids. Therefore, CDKN1B represses MTORC1 activity, leading to nuclear translocation of the transcription factor TFEB and activation of lysosomal function, enhancing starvation-induced autophagy flux and apoptosis. In contrast, cells lacking CDKN1B survive starvation despite reduced autophagy, due to elevated MTORC1 activation. These findings reveal that, by directly repressing MTORC1 activity, CDKN1B couples the cell cycle and cell growth machineries during metabolic stress.


Assuntos
Autofagia , Serina-Treonina Quinases TOR , Aminoácidos , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27 , Humanos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina
3.
Cell Mol Gastroenterol Hepatol ; 6(2): 181-198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003124

RESUMO

BACKGROUND & AIMS: Oncogenic mutations in KRAS, coupled with inactivation of p53, CDKN2A/p16INK4A, and SMAD4, drive progression of pancreatic ductal adenocarcinoma (PDA). Overexpression of MYC and deregulation of retinoblastoma (RB) further promote cell proliferation and make identifying a means to therapeutically alter cell-cycle control pathways in PDA a significant challenge. We previously showed that the basic helix-loop-helix transcription factor E47 induced stable growth arrest in PDA cells in vitro and in vivo. Here, we identified molecular mechanisms that underlie E47-induced growth arrest in low-passage, patient-derived primary and established PDA cell lines. METHODS: RNA sequencing was used to profile E47-dependent transcriptomes in 5 PDA cell lines. Gene Ontology analysis identified cell-cycle control as the most altered pathway. Small interfering RNA/short hairpin RNA knockdown, small-molecule inhibitors, and viral expression were used to examine the function of E47-dependent genes in cell-cycle arrest. Cell morphology, expression of molecular markers, and senescence-associated ß-galactosidase activity assays identified cellular senescence. RESULTS: E47 uniformly inhibited PDA cell-cycle progression by decreasing expression of MYC, increasing the level of CDKN1B/p27KIP1, and restoring RB tumor-suppressor function. The molecular mechanisms by which E47 elicited these changes included altering both RNA transcript levels and protein stability of MYC and CDKN1B/p27KIP1. At the cellular level, E47 elicited a senescence-like phenotype characterized by increased senescence-associated ß-galactosidase activity and altered expression of senescence markers. CONCLUSIONS: E47 governs a highly conserved network of cell-cycle control genes, including MYC, CDKN1B/p27KIP1, and RB, which can induce a senescence-like program in PDA cells that lack CDKN2A/p16INK4A and wild-type p53. RNA sequencing data are available at the National Center for Biotechnology Information GEO at https://www.ncbi.nlm.nih.gov/geo/; accession number: GSE100327.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa