Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Autoimmun ; 148: 103295, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39141984

RESUMO

OBJECTIVE: This study will explore the function of WTAP, the critical segment of m6A methyltransferase complex, in UC and its regulation on immune response. METHODS: The expression levels of key proteins were detected in colon tissues which were derived from UC patients and mice. Macrophage polarization and CD4+ T cell infiltration were detected by flow cytometry and IF staining. ELISA assay was utilized to analyze the level of the inflammatory cytokines. m6A-RIP-PCR, actinomycin D test, and RIP assays were utilized to detect the m6A level, stability, and bound proteins of CES2 mRNA. A dual luciferase reporter assay was conducted to confirm the transcriptional interactions between genes. A co-culture system of intestinal epithelium-like organs was constructed to detect the primary mouse intestinal epithelial cells (PMIEC) differentiation. The interaction between proteins was detected via Co-IP assay. RESULTS: The expression of WTAP and CES2 in UC tissues was increased and decreased, respectively. Knockdown of WTAP inhibited the progression of UC in mice by inhibiting M1 macrophage polarization and CD4+ T cell infiltration. WTAP combined YTHDF2 to promote the m6A modification of CES2 mRNA and inhibited its expression. CES2 co-expressed with EPHX2 and overexpression of CES2 promoted the differentiation of PMIEC. The inhibitory effect of WTAP knockdown on the progress of UC was partially abrogated by CES2 knockdown. CONCLUSION: WTAP/YTHDF2 silences CES2 by promoting its m6A modification and then promotes the progression of UC. WTAP could be a promoting therapy target of UC.


Assuntos
Colite Ulcerativa , Progressão da Doença , Macrófagos , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/imunologia , Masculino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica , Metiltransferases/metabolismo , Metiltransferases/genética , Feminino
2.
Bioorg Chem ; 153: 107852, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39362081

RESUMO

Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.

3.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G166-G174, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325808

RESUMO

Human carboxylesterase 2 (CES2) has triacylglycerol hydrolase (TGH) activities and plays an important role in lipolysis. In this study, we aim to determine the role of human CES2 in the progression or reversal of steatohepatitis in diet-induced or genetically obese mice. High-fat/high-cholesterol/high-fructose (HFCF) diet-fed C57BL/6 mice or db/db mice were intravenously injected with an adeno-associated virus expressing human CES2 under the control of an albumin promoter. Human CES2 protected against HFCF diet-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6J mice and reversed steatohepatitis in db/db mice. Human CES2 also improved glucose tolerance and insulin sensitivity. Mechanistically, human CES2 reduced hepatic triglyceride (T) and free fatty acid (FFA) levels by inducing lipolysis and fatty acid oxidation and inhibiting lipogenesis via suppression of sterol regulatory element-binding protein 1. Furthermore, human CES2 overexpression improved mitochondrial respiration and glycolytic function, and inhibited gluconeogenesis, lipid peroxidation, apoptosis, and inflammation. Our data suggest that hepatocyte-specific expression of human CES2 prevents and reverses steatohepatitis. Targeting hepatic CES2 may be an attractive strategy for treatment of NAFLD.NEW & NOTEWORTHY Human CES2 attenuates high-fat/cholesterol/fructose diet-induced steatohepatitis and reverses steatohepatitis in db/db mice. Mechanistically, human CES2 induces lipolysis, fatty acid and glucose oxidation, and inhibits hepatic glucose production, inflammation, lipid oxidation, and apoptosis. Our data suggest that human CES2 may be targeted for treatment of non-alcoholic steatohepatitis (NASH).


Assuntos
Carboxilesterase/metabolismo , Hepatócitos/enzimologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/terapia , Ácido 3-Hidroxibutírico/sangue , Ácido 3-Hidroxibutírico/metabolismo , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Animais , Apoptose/fisiologia , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Glicemia , Carboxilesterase/genética , Dieta/efeitos adversos , Hidroxiprolina/sangue , Hidroxiprolina/metabolismo , Metabolismo dos Lipídeos , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Obesidade/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Cell Biochem ; 475(1-2): 107-118, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32779042

RESUMO

Long noncoding RNAs (lncRNAs) have been shown to be implicated in acetaminophen (APAP)-induced liver injury (AILI). We applied this study to investigate the role and functional mechanism of KCNQ1 overlapping transcript 1 (KCNQ1OT1) in AILI. The AILI model was established by APAP treatment in mice. The liver injury was preliminarily evaluated by ALT and AST activities via the detection kits. The quantitative real-time polymerase chain reaction (qRT-PCR) was exploited for detecting the expression of KCNQ1OT1, microRNA-122-5p (miR-122-5p), and carboxylesterase 2 (CES2). Protein levels were analyzed via Western blot. 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay, and flow cytometry were separately applied to determine cell proliferation and apoptosis rate. Inflammation was assessed by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was implemented to testify the intergenic combination. The function of KCNQ1OT1 in vivo was explored through KCNQ1OT1 knockdown in mice. APAP triggered the downregulation of KCNQ1OT1 and CES2 in mice serums. KCNQ1OT1 upregulation could relieve the AILI in HepaRG cells, which were abrogated by CES2 downregulation. KCNQ1OT1 served as a sponge of miR-122-5p and miR-122-5p directly targeted CES2. KCNQ1OT1 overexpression abated the AILI through the miR-122-5p/CES2 axis in HepaRG cells in vitro and mice in vivo. The collective results clarified that KCNQ1OT1 weakened the AILI in vitro and in vivo by the miR-122-5p/CES2 axis, providing an explicit molecular mechanism and selectable therapeutic strategy of AILI.


Assuntos
Acetaminofen/toxicidade , Carboxilesterase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Analgésicos não Narcóticos/toxicidade , Animais , Apoptose/fisiologia , Carboxilesterase/sangue , Carboxilesterase/genética , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Longo não Codificante/sangue
5.
Xenobiotica ; 50(1): 92-100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31601149

RESUMO

The carboxylesterase drug hydrolysis pathway has been used extensively to improve the oral availability of drugs under the assumption that the high capacity and low substrate specificity of hydrolytic enzymes would ensure rapid, complete, and consistent conversion of prodrugs to their active metabolite. However, a growing body of literature indicates that drug hydrolysis is usually catalyzed by one primary enzyme, either carboxylesterase-1 or carboxlylesterase-2, and that there is wide variability in enzyme activity affecting the metabolism of prodrugs to their active metabolites.This review identifies carboxylesterase substrates and describes our current understanding of the influence of genetic polymorphisms on substrate disposition and clinical effects. Several polymorphisms are described in the literature and included in the personalized medicine database PharmGKB, but there are no carboxylesterase genotypes referenced in Food and Drug Administration approved drug labeling. The limited validation of metabolic pathways for drugs undergoing hydrolysis, and the small number of studies evaluating genotype-drug interactions confirm that this is an emerging field of drug metabolism research.The dependence of prodrugs, many with low therapeutic indexes, on carboxylesterase-mediated hydrolysis indicate that genetic variation plays an important role in prodrug activation, and that carboxylesterase genotyping will become an important component of personalized medicine.


Assuntos
Hidrolases de Éster Carboxílico/genética , Medicina de Precisão , Hidrolases de Éster Carboxílico/metabolismo , Interações Medicamentosas , Genótipo , Humanos , Hidrólise , Inativação Metabólica/genética , Taxa de Depuração Metabólica , Polimorfismo Genético , Pró-Fármacos , Especificidade por Substrato
6.
Artigo em Inglês | MEDLINE | ID: mdl-29263072

RESUMO

Isoniazid and rifampin are essential components of first-line antituberculosis (anti-TB) therapy. Understanding the relationship between genetic factors and the pharmacokinetics of these drugs could be useful in optimizing treatment outcomes, but this is understudied in children. We investigated the relationship between N-acetyltransferase type 2 (NAT2) genotypes and isoniazid pharmacokinetics, as well as that between the solute carrier organic anion transporter family member 1B1 (encoded by SLCO1B1) and carboxylesterase 2 (CES2) single nucleotide polymorphisms (SNPs) and rifampin pharmacokinetics in Ghanaian children. Blood samples were collected at times 0, 1, 2, 4, and 8 h postdose in children with tuberculosis on standard first-line therapy for at least 4 weeks. Isoniazid and rifampin concentrations were determined by a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and pharmacokinetic parameters were calculated using noncompartmental analysis. Genotyping of NAT2, SLCO1B1, and CES2 SNPs were performed using validated TaqMan genotyping assays. The Kruskal-Wallis test was used to compare pharmacokinetic parameters among the three genotypic groups and was followed by the Wilcoxon rank sum test for pairwise group comparisons. Genotype status inferred by the NAT2 4-SNP and 7-SNP genotyping panels identified children with a slow acetylator phenotype but not the rapid genotype. For rifampin, only the rare SLCO1B1*1b homozygous variant was associated with rifampin pharmacokinetics. Our findings suggest that NAT2 and SCLCO1B1*1b genotyping may have minimal clinical utility in dosing decisions at the population level in Ghanaian children, but it could be useful at the individual level or in populations that have a high frequency of implicated genotypes. Further studies in other populations are warranted.


Assuntos
Antituberculosos/farmacocinética , Arilamina N-Acetiltransferase/genética , Carboxilesterase/genética , Isoniazida/farmacocinética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Rifampina/farmacocinética , Tuberculose Pulmonar/genética , Antituberculosos/sangue , Antituberculosos/farmacologia , Área Sob a Curva , Arilamina N-Acetiltransferase/metabolismo , Biotransformação , Carboxilesterase/metabolismo , Criança , Pré-Escolar , Esquema de Medicação , Feminino , Expressão Gênica , Genótipo , Humanos , Isoniazida/sangue , Isoniazida/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Rifampina/sangue , Rifampina/farmacologia , Estatísticas não Paramétricas , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
7.
Pharmacol Res ; 128: 122-129, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28827188

RESUMO

We examined whether genetic polymorphisms (SNPs) in the capecitabine activation pathway and CDA enzymatic activity were associated with prognosis, benefit from capecitabine-containing treatment or capecitabine-related toxicities. The study population comprised 188 metastatic breast cancer patients of the ATX trial (EudraCT 2006-006058-83) randomized for first-line paclitaxel and bevacizumab with (ATX) or without capecitabine (AT). Cumulative capecitabine dose until grade ≥2 hand-foot syndrome or until first dose reduction were toxicity endpoints. We genotyped CDA c.-451C>T (rs532545), CDA c.-33delC (rs3215400) and CES2 c.-806C>G (rs11075646). CDA activity in baseline serum was measured with a spectrophotometric assay and values were analyzed using a median cut-off or as continuous variable. CDA c.-33delC was prognostic for overall survival (OS) independent of hormone receptor status. For the predictive analysis, progression-free survival benefit from ATX over AT was observed in patients with a CDA c.-33del/del or del/insC genotype, a CDA c.-451CC or CT genotype, and a CES2 c.-806CC genotype compared with their counterparts. There was a higher response rate for ATX over AT in patients with a CDA c.-451CT or TT genotype. Patients with high CDA enzymatic activity had more benefit from capecitabine, while this was marginally observed in the CDA low group. Toxicity endpoints were not associated with any candidate markers. In conclusion, CDA c.-33delC was associated with OS. Since particular SNPs in CDA and CES2 were associated with benefit from the addition of capecitabine to AT, their predictive value should be explored in a higher number of patients.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Capecitabina/uso terapêutico , Carboxilesterase/genética , Citidina Desaminase/genética , Adulto , Idoso , Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Citidina Desaminase/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Resultado do Tratamento
8.
Xenobiotica ; 46(9): 816-24, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26750665

RESUMO

1. In this study, we report that gambogic acid (GA), a promising anticancer agent, potentiates clopidogrel-induced apoptosis and attenuates CPT-11-induced apoptosis by down-regulating human carboxylesterase (CES) 1 and -2 via ERK and p38 MAPK pathway activation, which provides a molecular explanation linking the effect of drug combination directly to the decreased capacity of hydrolytic biotransformation. 2. The expression levels of CES1 and CES2 decreased significantly in a concentration- and time-dependent manner in response to GA in Huh7 and HepG2 cells; hydrolytic activity was also reduced. 3. The results showed that pretreatment with GA potentiated clopidogrel-induced apoptosis by down-regulating CES1. Moreover, the GA-mediated repression of CES2 attenuated CPT-11-induced apoptosis. 4. Furthermore, the ERK and p38 MAPK pathways were involved in the GA-mediated down-regulation of CES1 and CES2. 5. Taken together, our data suggest that GA is a potent repressor of CES1 and CES2 and that combination with GA will affect the metabolism of drugs containing ester bonds.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carboxilesterase/metabolismo , Ticlopidina/análogos & derivados , Xantonas/farmacologia , Biotransformação , Camptotecina/análogos & derivados , Camptotecina/toxicidade , Clopidogrel , Regulação para Baixo , Irinotecano , Ticlopidina/farmacologia
9.
Xenobiotica ; 46(5): 393-405, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26340669

RESUMO

1. This study investigated the mechanisms of the decreases of carboxylesterases (CES) and cytochrome P4503A4 (CYP3A4) and the enzymatic activities induced by fluoxetine (FLX) in HepG2 cells. We found that FLX decreased the carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) expression and the hydrolytic activity. 2. FLX decreased the pregnane X receptor (PXR) expression which regulated the target genes such as CYP3A4, whereas increased the differentiated embryonic chondrocyte-expressed gene 1 (DEC1) expression. 3. FLX repressed the PXR at transcriptional level. 4. Overexpression of PXR alone increased the expression of CES1, CES2, and CYP3A4 and attenuated the decreases of CES1, CES2, and CYP3A4 induced by FLX. On the contrary, knockdown of PXR alone decreased the expression of CES1, CES2, and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 5. Knockdown of DEC1 alone increased the expression of PXR and CYP3A4 and almost abolished the decreases of CES1, CES2, and CYP3A4 induced by FLX. 6. Taken together, the decreases of CES and CYP3A4 expression and enzymatic activities induced by FLX are through decreasing PXR and increasing DEC1 in HepG2 cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fluoxetina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Células Hep G2 , Humanos , Hidrólise , Receptor de Pregnano X , Interferência de RNA , Receptores de Esteroides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transfecção
10.
Biochem Biophys Res Commun ; 451(3): 382-8, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25101525

RESUMO

In Caenorhabditiselegans, motorneuron apoptosis is regulated via a ces-2-ces-1-egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima
11.
Biochem Pharmacol ; : 116564, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366431

RESUMO

As a biological variable, sex influences the metabolism of and/or response to certain drugs. Vicagrel is being developed as an investigational new drug in China; however, it is unknown whether sex could affect its metabolic activation and platelet responsiveness. This study aimed to determine whether such differences could exist, and to elucidate the mechanisms involved. Orchiectomized (ORX) or ovariectomized (OVX) mouse models were used to investigate the effects of androgen or estrogen on the metabolic activation of and platelet response to vicagrel. Plasma vicagrel active metabolite H4 concentrations, platelet inhibition of vicagrel, and protein levels of intestinal hydrolases Aadac and Ces2 were measured, respectively. Further, p38-MAPK signaling pathway was enriched, whose role was determined using SB202190. Results showed that female mice exhibited significantly elevated systemic exposure of H4 and enhanced platelet responses to vicagrel than males, and protein expression levels of Aadac and Ces2 differed by sex. OVX mice exhibited less changes than sham mice. ORX mice exhibited increases in protein levels of intestinal hydrolases, systemic exposure of H4, and platelet inhibition of vicagrel, but dihydrotestosterone (DHT) reversed these changes in ORX mice and suppressed these changes in OVX mice. Phosphorylated p38 levels were reduced in female or ORX mice but increased in ORX mice by DHT. SB202190 reversed DHT-induced changes observed in ORX mice. We concluded that sex differences exist in metabolic activation of and platelet response to vicagrel in mice through elevation of p38 phosphorylation by androgen, suggesting sex-based vicagrel dosage adjustments for patient care.

12.
Expert Opin Drug Metab Toxicol ; 20(5): 377-397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706437

RESUMO

INTRODUCTION: Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED: This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION: Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.


Assuntos
Hidrolases de Éster Carboxílico , Humanos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Animais , Polimorfismo Genético , Preparações Farmacêuticas/metabolismo , Pró-Fármacos/farmacocinética , Biomarcadores/metabolismo , Carboxilesterase
13.
Res Vet Sci ; 175: 105314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823354

RESUMO

Over the course of the last twenty years, there has been a growing recognition of the pig's potential as a valuable model for studying human drug metabolism. This study aimed to investigate the expression, enzymatic activity, inhibitory susceptibility, and cellular localization of carboxylesterases (CES) in porcine lung tissue not yet explored. Our results showed that CESs hydrolysis activity followed Michaelis-Menten kinetics in both cytosolic and microsomal fractions of porcine lung tissues (N = 8), with comparable hydrolysis rates for tested substrates, namely 4-nitrophenyl acetate (pNPA), 4-methylumbelliferyl acetate (4-MUA), and fluorescein diacetate (FD). We also determined the CESs hydrolysis activity in a representative sample of the porcine liver that, as expected, displayed higher activity than the lung ones. The study demonstrated variable levels of enzyme activities and interindividual variability in both porcine lung fractions. Inhibition studies used to assess the CESs' involvement in the hydrolysis of pNPA, 4-MUA, and FD suggested that CESs may be the enzymes primarily involved in the metabolism of ester compounds in the pig lung tissue. Overall, this study provides insight into the distribution and diversity of CES isoforms involved in substrate hydrolysis across different cellular fractions (cytosol and microsomes) in porcine lungs.


Assuntos
Hidrolases de Éster Carboxílico , Pulmão , Animais , Pulmão/enzimologia , Pulmão/metabolismo , Suínos , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Microssomos/enzimologia , Nitrofenóis/metabolismo , Umbeliferonas/metabolismo , Fluoresceínas , Hidrólise , Citosol/enzimologia , Fígado/enzimologia
14.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540686

RESUMO

Low efficacy of treatments and chemoresistance are challenges in addressing refractory hepatocellular carcinoma (HCC). SPINK1, an oncogenic protein, is frequently overexpressed in many HCC cases. However, the impact of SPINK1 on HCC treatment resistance remains poorly understood. Here, we elucidate the functions of SPINK1 on HCC therapy resistance. Analysis of SPINK1 protein level reveals a correlation between elevated SPINK1 expression and unfavorable prognosis. Furthermore, intercellular variations in SPINK1 expression levels are observed. Subsequent examination of single cell RNA-sequencing data from two HCC cohorts further suggest that SPINK1-high cells exhibit heightened activity in drug metabolic pathways compared to SPINK1-low HCC cells. High SPINK1 expression is associated with reduced sensitivities to both chemotherapy drugs and targeted therapies. Moreover, spatial transcriptomics data indicate that elevated SPINK1 expression correlates with non-responsive phenotype during treatment with targeted therapy and immune checkpoint inhibitors. This is attributed to increased levels of drug metabolic regulators, especially CES2 and CYP3A5, in SPINK1-high cells. Experimental evidence further demonstrates that SPINK1 overexpression induces the expression of CES2 and CYP3A5, consequently promoting chemoresistance to sorafenib and oxaliplatin. In summary, our study unveils the predictive role of SPINK1 on HCC treatment resistance, identifying it as a potential therapeutic target for refractory HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidor da Tripsina Pancreática de Kazal/genética , Inibidor da Tripsina Pancreática de Kazal/metabolismo , Inibidor da Tripsina Pancreática de Kazal/uso terapêutico , Citocromo P-450 CYP3A/genética , Perfilação da Expressão Gênica , RNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
15.
Infect Dis (Lond) ; 56(4): 308-319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315168

RESUMO

BACKGROUND: Rifampicin, a key drug against tuberculosis (TB), displays wide between-patient pharmacokinetics variability and concentration-dependent antimicrobial effect. We investigated variability in plasma rifampicin concentrations and the role of SLCO1B1, ABCB1, arylacetamide deacetylase (AADAC) and carboxylesterase 2 (CES-2) genotypes in Ethiopian patients with TB. METHODS: We enrolled adult patients with newly diagnosed TB (n = 119) who had received 2 weeks of rifampicin-based anti-TB therapy. Venous blood samples were obtained at three time points post-dose. Genotypes for SLCO1B1 (c.388A > G, c.521T > C), ABCB1 (c.3435C > T, c.4036A > G), AADACc.841G > A and CES-2 (c.269-965A > G) were determined. Rifampicin plasma concentration was quantified using LC-MS/MS. Predictors of rifampicin Cmax and AUC0-7 h were analysed. RESULTS: The median rifampicin Cmax and AUC0-7 were 6.76 µg/mL (IQR 5.37-8.48) and 17.05 µg·h/mL (IQR 13.87-22.26), respectively. Only 30.3% of patients achieved the therapeutic efficacy threshold (Cmax>8 µg/mL). The allele frequency for SLCO1B1*1B (c.388A > G), SLCO1B1*5 (c.521T > C), ABCB1 c.3435C > T, ABCB1c.4036A > G, AADAC c.841G > A and CES-2 c.269-965A > G were 2.2%, 20.2%, 24.4%, 14.6%, 86.1% and 30.6%, respectively. Sex, rifampicin dose and ABCB1c.4036A > G, genotypes were significant predictors of rifampicin Cmax and AUC0-7. AADACc.841G > A genotypes were significant predictors of rifampicin Cmax. There was no significant influence of SLCO1B1 (c.388A > G, c.521T > C), ABCB1c.3435C > T and CES-2 c.269-965A > G on rifampicin plasma exposure variability. CONCLUSIONS: Subtherapeutic rifampicin plasma concentrations occurred in two-thirds of Ethiopian TB patients. Rifampicin exposure varied with sex, dose and genotypes. AADACc.841G/G and ABCB1c.4036A/A genotypes and male patients are at higher risk of lower rifampicin plasma exposure. The impact on TB treatment outcomes and whether high-dose rifampicin is required to improve therapeutic efficacy requires further investigation.


Assuntos
Rifampina , Tuberculose , Adulto , Humanos , Masculino , Rifampina/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Genótipo , Tuberculose/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carboxilesterase/genética
16.
Cell Metab ; 35(7): 1261-1279.e11, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37141889

RESUMO

There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.


Assuntos
Diabetes Mellitus , Secretoma , Camundongos , Animais , Proteômica , Proteínas , Obesidade
17.
Drug Metab Pharmacokinet ; 50: 100497, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037169

RESUMO

Caco-2 cells are widely used as an in vitro intestinal model. However, the expression levels of the drug-metabolizing enzymes CYP3A4 and UGT1A1 are lower in these cells than in intestinal cells. Furthermore, the majority of prodrugs in use today are ester-containing, and carboxylesterase (CES) 1 and CES2 are among the enzymes that process the prodrugs into drugs. In the human small intestine, CES1 is hardly expressed while CES2 is highly expressed, but the CES expression pattern in Caco-2 cells is the opposite. In this study, we generated CYP3A4-POR-UGT1A1-CES2 knock-in (KI) and CES1 knock-out (KO) Caco-2 (genome-edited Caco-2) cells using a PITCh system. Genome-edited Caco-2 cells were shown to express functional CYP3A4, POR, UGT1A1 and CES2 while the expression of the CES1 protein was completely knocked out. We performed transport assays using temocapril. The Papp value of temocapril in genome-edited Caco-2 cells was higher than that in WT Caco-2 cells. Interestingly, the amount of temocaprilat on the apical side in genome-edited Caco-2 cells was lower than that in WT Caco-2 cells. These results suggest that genome-edited Caco-2 cells are more suitable than WT Caco-2 cells as a model for predicting intestinal drug absorption and metabolism.


Assuntos
Carboxilesterase , Pró-Fármacos , Humanos , Células CACO-2 , Carboxilesterase/genética , Carboxilesterase/metabolismo , Citocromo P-450 CYP3A/genética , Pró-Fármacos/metabolismo
18.
Mol Metab ; 65: 101600, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113774

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is characterized by high recurrence and metastasis and places a heavy burden on societies worldwide. Cancer cells thrive in a changing microenvironment by reprogramming lipidomic metabolic processes to provide nutrients and energy, activate oncogenic signaling pathways, and manage redox homeostasis to avoid lipotoxicity. The mechanism by which OSCC cells maintain lipid homeostasis during malignant progression is unclear. METHODS: The altered expression of fatty acid (FA) metabolism genes in OSCC, compared with that in normal tissues, and in OSCC patients with or without recurrence or metastasis were determined using public data from the TCGA and GEO databases. Immunohistochemistry was performed to examine the carboxylesterase 2 (CES2) protein level in our own cohort. CCK-8 and Transwell assays and an in vivo xenograft model were used to evaluate the biological functions of CES2. Mass spectrometry and RNA sequencing were performed to determine the lipidome and transcriptome alterations induced by CES2. Mitochondrial mass, mtDNA content, mitochondrial membrane potential, ROS levels, and oxygen consumption and apoptosis rates were evaluated to determine the effects of CES2 on mitochondrial function in OSCC. RESULTS: CES2 was downregulated in OSCC patients, especially those with recurrence or metastasis. CES2high OSCC patients showed better overall survival than CES2low OSCC patients. Restoring CES2 expression reduced OSCC cell viability and suppressed their migration and invasion in vitro, and it inhibited OSCC tumor growth in vivo. CES2 reprogrammed lipid metabolism in OSCC cells by hydrolyzing neutral lipid diacylglycerols (DGs) to release free fatty acids and reduce the membrane structure lipid phospholipids (PLs) synthesis. Free FAs were converted to acyl-carnitines (CARs) and transferred to mitochondria for oxidation, which induced reactive oxygen species (ROS) accumulation, mitochondrial damage, and apoptosis activation. Furthermore, the reduction in signaling lipids, e.g., DGs, PLs and substrates, suppressed PI3K/AKT/MYC signaling pathways. Restoring MYC rescued the diminished cell viability, suppressed migratory and invasive abilities, damaged mitochondria and reduced apoptosis rate induced by CES2. CONCLUSIONS: We demonstrated that CES2 downregulation plays an important role in OSCC by maintaining lipid homeostasis and reducing lipotoxicity during tumor progression and may provide a potential therapeutic target for OSCC.


Assuntos
Carboxilesterase/metabolismo , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Hidrolases de Éster Carboxílico/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , DNA Mitocondrial/uso terapêutico , Diglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Homeostase , Humanos , Mitocôndrias/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Proteínas Proto-Oncogênicas c-myc/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
19.
Mol Metab ; 56: 101426, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971802

RESUMO

OBJECTIVE: Intra-tumoral expression of the serine hydrolase carboxylesterase 2 (CES2) contributes to the activation of the pro-drug irinotecan in pancreatic ductal adenocarcinoma (PDAC). Given other potential roles of CES2, we assessed its regulation, downstream effects, and contribution to tumor development in PDAC. METHODS: Association between the mRNA expression of CES2 in pancreatic tumors and overall survival was assessed using The Cancer Genome Atlas. Cell viability, clonogenic, and anchorage-independent growth assays as well as an orthotopic mouse model of PDAC were used to evaluate the biological relevance of CES2 in pancreatic cancer. CES2-driven metabolic changes were determined by untargeted and targeted metabolomic analyses. RESULTS: Elevated tumoral CES2 mRNA expression was a statistically significant predictor of poor overall survival in PDAC patients. Knockdown of CES2 in PDAC cells reduced cell viability, clonogenic capacity, and anchorage-independent growth in vitro and attenuated tumor growth in an orthotopic mouse model of PDAC. Mechanistically, CES2 was found to promote the catabolism of phospholipids resulting in HNF4α activation through a soluble epoxide hydrolase (sEH)-dependent pathway. Targeting of CES2 via siRNA or small molecule inhibitors attenuated HNF4α protein expression and reduced gene expression of classical/progenitor markers and increased basal-like markers. Targeting of the CES2-sEH-HNF4α axis using small molecule inhibitors of CES2 or sEH reduced cell viability. CONCLUSIONS: We establish a novel regulatory loop between CES2 and HNF4α to sustain the progenitor subtype and promote PDAC progression and highlight the potential utility of CES2 or sEH inhibitors for the treatment of PDAC as part of non-irinotecan-containing regimens.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/genética , Animais , Carboxilesterase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Epóxido Hidrolases/genética , Epóxido Hidrolases/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
20.
J Mass Spectrom Adv Clin Lab ; 25: 27-35, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35721272

RESUMO

Introduction: Remdesivir (GS-5734) is a nucleoside analog prodrug with antiviral activity against several single-stranded RNA viruses, including the novel severe respiratory distress syndrome virus 2 (SARS-CoV-2). It is currently the only FDA-approved antiviral agent for the treatment of individuals with COVID-19 caused by SARS-CoV-2. However, remdesivir pharmacokinetics/pharmacodynamics (PK/PD) and toxicity data in humans are extremely limited. It is imperative that precise analytical methods for the quantification of remdesivir and its active metabolite, GS-441524, are developed for use in further studies. We report, herein, the first validated anti-viral paper spray-mass spectrometry (PS-MS/MS) assay for the quantification of remdesivir and GS-441524 in human plasma. We seek to highlight the utility of PS-MS/MS technology and automation advancements for its potential future use in clinical research and the clinical laboratory setting. Methods: Calibration curves for remdesivir and GS-441524 were created utilizing seven plasma-based calibrants of varying concentrations and two isotopic internal standards of set concentrations. Four plasma-based quality controls were prepared in a similar fashion to the calibrants and utilized for validation. No sample preparation was needed. Briefly, plasma samples were spotted on a paper substrate contained within pre-manufactured plastic cassette plates, and the spots were dried for 1 h. The samples were then analyzed directly for 1.2 min utilizing PS-MS/MS. All experiments were performed on a Thermo Scientific Altis triple quadrupole mass spectrometer utilizing automated technology. Results: The calibration ranges were 20 - 5000 and 100 - 25000 ng/mL for remdesivir and GS-441524, respectively. The calibration curves for the two antiviral agents showed excellent linearity (average R2 = 0.99-1.00). The inter- and intra-day precision (%CV) across validation runs at four QC levels for both analytes was less than 11.2% and accuracy (%bias) was within ± 15%. Plasma calibrant stability was assessed and degradation for the 4 °C and room temperature samples were seen beginning at Day 7. The plasma calibrants were stable at -20 °C. No interference, matrix effects, or carryover was discovered during the validation process. Conclusions: PS-MS/MS represents a useful methodology for rapidly quantifying remdesivir and GS-441524, which may be useful for clinical PK/PD, therapeutic drug monitoring (TDM), and toxicity assessment, particularly during the current COVID-19 pandemic and future viral outbreaks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa