Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pharmacol Res ; 191: 106776, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084858

RESUMO

The paucity of medications with novel mechanisms for pain treatment combined with the severe adverse effects of opioid analgesics has led to an imperative pursuit of non-opioid analgesia and a better understanding of pain mechanisms. Here, we identify the putative glutamatergic inputs from the paraventricular thalamic nucleus to the nucleus accumbens (PVTGlut→NAc) as a novel neural circuit for pain sensation and non-opioid analgesia. Our in vivo fiber photometry and in vitro electrophysiology experiments found that PVTGlut→NAc neuronal activity increased in response to acute thermal/mechanical stimuli and persistent inflammatory pain. Direct optogenetic activation of these neurons in the PVT or their terminals in the NAc induced pain-like behaviors. Conversely, inhibition of PVTGlut→NAc neurons or their NAc terminals exhibited a potent analgesic effect in both naïve and pathological pain mice, which could not be prevented by pretreatment of naloxone, an opioid receptor antagonist. Anterograde trans-synaptic optogenetic experiments consistently demonstrated that the PVTGlut→NAc circuit bi-directionally modulates pain behaviors. Furthermore, circuit-specific molecular profiling and pharmacological studies revealed dopamine receptor 3 as a candidate target for pain modulation and non-opioid analgesic development. Taken together, these findings provide a previously unknown neural circuit for pain sensation and non-opioid analgesia and a valuable molecular target for developing future safer medication.


Assuntos
Analgesia , Analgésicos não Narcóticos , Camundongos , Animais , Núcleos da Linha Média do Tálamo , Núcleo Accumbens/fisiologia , Dor/tratamento farmacológico
2.
Purinergic Signal ; 19(1): 135-144, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167016

RESUMO

The choroid plexus (CP) is one of the key gateways regulating the entry of peripheral immune cells into the CNS. However, the neuromodulatory mechanisms of maintaining its gateway activity are not fully understood. Here, we identified adenosine A2A receptor (A2AR) activity as a regulatory signal for the activity of CP gateway under physiological conditions. In association with a tightly closed CP gateway, we found that A2AR was present at low density in the CP. The RNA-seq analysis revealed that the A2AR antagonist KW6002 affected the expression of the cell adhesion molecules' (CAMs) pathway and cell response to IFN-γ in the CP. Furthermore, blocking or activating A2AR signaling in the CP resulted in a decreased and an increased, respectively, expression of lymphocyte trafficking determinants and disruption of the tight junctions (TJs). Furthermore, A2AR signaling regulates the CP permeability. Thus, A2AR activity in the CP may serve as a therapeutic target for remodeling the immune homeostasis in the CNS with implications for the treatment of neuroimmunological disorders.


Assuntos
Plexo Corióideo , Receptor A2A de Adenosina , Receptor A2A de Adenosina/metabolismo , Plexo Corióideo/metabolismo , Adenosina/metabolismo , Transdução de Sinais
3.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684466

RESUMO

BACKGROUND: Membrane cholesterol dysregulation has been shown to alter the activity of the adenosine A2A receptor (A2AR), a G protein-coupled receptor, thereby implicating cholesterol levels in diseases such as Alzheimer's and Parkinson's. A limited number of A2AR crystal structures show the receptor interacting with cholesterol, as such molecular simulations are often used to predict cholesterol interaction sites. METHODS: Here, we use experimental methods to determine whether a specific interaction between amino acid side chains in the cholesterol consensus motif (CCM) of full length, wild-type human A2AR, and cholesterol modulates activity of the receptor by testing the effects of mutational changes on functional consequences, including ligand binding, G protein coupling, and downstream activation of cyclic AMP. RESULTS AND CONCLUSIONS: Our data, taken with previously published studies, support a model of receptor state-dependent binding between cholesterol and the CCM, whereby cholesterol facilitates both G protein coupling and downstream signaling of A2AR.


Assuntos
Adenosina , Receptor A2A de Adenosina , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Proteínas de Transporte , Colesterol/metabolismo , AMP Cíclico/metabolismo , Humanos , Receptor A2A de Adenosina/metabolismo
4.
FASEB J ; 33(6): 7555-7562, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30866652

RESUMO

Osteoblast differentiation and proliferation are regulated by several modulators, among which are adenosine A2A receptors (A2ARs) and Wingless/Integrated-ß-catenin pathways. Cytosolic ß-catenin stabilization promotes its nuclear translocation and transcriptional activity. In the present study, we seek to determine whether there is a connection between A2AR stimulation and cellular ß-catenin levels in osteoblasts. Osteoblast precursor cell line (MC3T3-E1) and primary murine osteoblasts were treated with CGS21680, a highly selective A2AR agonist. We analyzed cellular content and nuclear translocation of phosphorylated (p)-serine 552 (S552) ß-catenin in response to A2AR stimulation in MC3T3-E1 cells, in both wild-type and A2AR knockout (A2AKO) mice. Moreover, we measured cellular ß-catenin levels in MC3T3-E1 cells transfected with scrambled or protein kinase B (Akt) small interfering RNA following A2AR activation. CGS21680 (1 µM) stimulated an increase in both the cellular content and nuclear translocation of p-S552 ß-catenin after 15 min of incubation. A2AR activation had no tangible effect on the cellular ß-catenin level either in A2AKO mice or in osteoblasts with diminished Akt content. Our findings demonstrate an interaction between A2AR, ß-catenin, and Akt signaling in osteoblasts. The existence of such a crosstalk has significant repercussions in the development of novel therapeutic approaches targeting medical conditions associated with reduced bone density.-Borhani, S., Corciulo, C., Larranaga-Vera, A., Cronstein, B. N. Adenosine A2A receptor (A2AR) activation triggers Akt signaling and enhances nuclear localization of ß-catenin in osteoblasts.


Assuntos
Núcleo Celular/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Transdução de Sinais , beta Catenina/metabolismo , Células 3T3 , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenetilaminas/farmacologia , Fosforilação , Receptor A2A de Adenosina/genética
5.
J Cell Physiol ; 234(7): 10500-10511, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30417358

RESUMO

Endoplasmic reticulum (ER) stress is one of the main molecular events underlying pancreatic beta cell (PBC) failure, apoptosis, and a decrease in insulin secretion. Recent studies have highlighted the fundamental role of A2a adenosine receptor (A2aR) in potentiation of insulin secretion and proliferation of PBCs. However, possible protective effects of A2aR signaling against ER stress have not been elucidated yet. Thus, in the present study, we aimed to investigate the effects of A2aR activation in MIN6 beta cells undergoing tunicamycin (TM)-mediated ER stress. A2aR expression and activity were evaluated using real-time polymerase chain reaction and measurement of the cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), phospho-protein kinase B or Akt (p-Akt)/Akt, and phospho-Cyclic adenosine monophosphate response element-binding protein/CREB levels in response to a specific agonist (CGS 21680). Survival and proliferation in TM and CGS 21680 cotreated cells were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), annexin V-fluorescein isothiocyanate (FITC)/propidium iodide staining, colony formation, and 5-bromo-2'-deoxyuridine (Brdu) assays. In addition, the effects of A2aR stimulation on insulin secretion were evaluated using the enzyme-linked immunosorbent assay. B-cell lymphoma 2 (Bcl-2), phospho-eukaryotic Initiation Factor 2α (p-eIF2α)/eIF2α, growth arrest and DNA-damage-inducible 34 (GADD34), X-box binding protein 1 (XBP-1), spliced X-box binding protein 1 (XBP-1s), immunoglobulin heavy-chain-binding protein (BIP), and CCAAT-enhancer-binding protein homologous protein (CHOP) levels were evaluated using western blotting. Our results showed a decrease in A2aR expression and p-Akt/Akt and p-CREB/CREB levels in TM-pretreated cells. We also mentioned that CGS 21680 effectively increased cell survival, proliferation, and insulin secretion in TM-treated cells. The antiapoptotic effects were possibly mediated through Bcl-2 upregulation. Our western blotting results indicated that A2aR effectively downregulated p-eIF2α/eIF2α, XBP-1, XBP-1s, BIP, and CHOP levels, whereas GADD34 was upregulated. Altogether, the present study revealed that A2aR signaling through PKA/Akt/CREB mediators alleviated TM cytotoxicity effects in MIN6 beta cells. Thus, the stimulation of this receptor was seen as a new approach to control ER stress in the PBC cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A2A de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Pharmacol Res ; 139: 337-347, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472462

RESUMO

An increasing number of G protein-coupled receptors (GPCRs) have been reported to be expressed in the plasma membrane as dimers. Since most ligand binding data are currently fitted by classical equations developed only for monomeric receptors, the interpretation of data could be misleading in the presence of GPCR dimers. On the other hand, the equations developed from dimer receptor models assuming the existence of two orthosteric binding sites within the dimeric molecule offer the possibility to directly calculate macroscopic equilibrium dissociation constants for the two sites, an index of cooperativity (DC) that reflects the molecular communication within the dimer and, importantly, a constant of radioligand-competitor allosteric interaction (KDAB) in competitive assays. Here, we provide a practical way to fit competitive binding data that allows the interpretation of apparently anomalous results, such as competition curves that could be either bell-shaped, monophasic or biphasic depending on the assay conditions. The consideration of a radioligand-competitor allosteric interaction allows fitting these curve patterns both under simulation conditions and in real radioligand binding experiments, obtaining competitor affinity parameters closer to the actual values. Our approach is the first that, assuming the formation of receptor homodimers, is able to explain several experimental results previously considered erroneous due to their impossibility to be fitted. We also deduce the radioligand concentration responsible for the conversion of biphasic to monophasic or to bell-shaped curves in competitive radioligand binding assays. In conclusion, bell-shaped curves in competitive binding experiments constitute evidence for GPCR homodimerization.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Ligação Competitiva , Encéfalo , Membrana Celular , Multimerização Proteica , Ensaio Radioligante , Ovinos
7.
Handb Exp Pharmacol ; 253: 359-381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28646346

RESUMO

The classic endogenous somnogen adenosine promotes sleep via A1 and A2A receptors. In this chapter, we present an overview of the current knowledge regarding the regulation of adenosine levels, adenosine receptors, and available pharmacologic and genetic tools to manipulate the adenosine system. This is followed by a summary of current knowledge of the role of adenosine and its receptors in the regulation of sleep and wakefulness. Despite strong data implicating numerous brain areas, including the basal forebrain, the tuberomammillary nucleus, the lateral hypothalamus, and the nucleus accumbens, in the adenosinergic control of sleep, the complete neural circuitry in the brain involved in the sleep-promoting effects of adenosine remains unclear. Moreover, the popular demand for natural sleep aids has led to a search for natural compounds that can promote sleep via adenosine receptor activation. Finally, we discuss the effects of caffeine in man and the possible use of more selective adenosine receptor drugs for the treatment of sleep disorders.


Assuntos
Adenosina , Sono , Adenosina/metabolismo , Encéfalo/fisiologia , Vigília/fisiologia
8.
Brain Behav Immun ; 69: 470-479, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29366930

RESUMO

Central neuropathic pain is a debilitating outcome of spinal cord injury (SCI) and current treatments to alleviate this pain condition are ineffective. A growing body of literature suggests that activating adenosine A2A receptors (A2ARs) decreases the production of proinflammatory cytokines and increases the production of anti-inflammatory cytokines. Here, the effect of administering intrathecal A2AR agonists on central neuropathic pain was measured using hindpaw mechanical allodynia in a rat model of SCI termed spinal neuropathic avulsion pain (SNAP). Other models of SCI cause extensive damage to the spinal cord, resulting in paralysis and health problems. SNAP rats with unilateral low thoracic (T13)/high lumbar (L1) dorsal root avulsion develop below-level bilateral allodynia, without concomitant motor or health problems. A single intrathecal injection of the A2AR agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine HCl (CGS21680) reversed SCI-induced allodynia for at least 6 weeks. The reversal is likely in part mediated by interleukin (IL)-10, as intrathecally administering neutralizing IL-10 antibodies 1 week after CGS21680 abolished the anti-allodynic effect of CGS21680. Dorsal spinal cord tissue from the ipsilateral site of SCI (T13/L1) was assayed 1 and 6 weeks after CGS21680 for IL-10, CD11b, and tumor necrosis factor (TNF) gene expression. CGS21680 treatment did not change IL-10 gene expression but did significantly decrease CD11b and TNF gene expression at both timepoints. A second A2AR agonist, 4-(3-(6-amino-9-(5-cyclopropylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl)prop-2-ynyl)piperidine-1-carboxylic acid methyl ester (ATL313), was also able to significantly prevent and reverse SCI-induced allodynia for several weeks after a single intrathecal injection, providing converging lines of evidence of A2AR involvement. The enduring pain reversal after a single intrathecal injection of A2AR agonists suggests that A2AR agonists could be exciting new candidates for treating SCI-induced central neuropathic pain.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Adenosina/análogos & derivados , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Fenetilaminas/uso terapêutico , Traumatismos da Medula Espinal/complicações , Adenosina/uso terapêutico , Animais , Anticorpos Neutralizantes/farmacologia , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Interleucina-10/imunologia , Masculino , Neuralgia/etiologia , Neuralgia/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia
9.
J Headache Pain ; 19(1): 41, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802484

RESUMO

BACKGROUND: Migraine is considered a neurovascular disorder, but its pathophysiological mechanisms are not yet fully understood. Adenosine has been shown to increase in plasma during migraine attacks and to induce vasodilation in several blood vessels; however, it remains unknown whether adenosine can interact with the trigeminovascular system. Moreover, caffeine, a non-selective adenosine receptor antagonist, is included in many over the counter anti-headache/migraine treatments. METHODS: This study used the rat closed cranial window method to investigate in vivo the effects of the adenosine A2A receptor antagonists with varying selectivity over A1 receptors; JNJ-39928122, JNJ-40529749, JNJ-41942914, JNJ-40064440 or JNJ-41501798 (0.3-10 mg/kg) on the vasodilation of the middle meningeal artery produced by either CGS21680 (an adenosine A2A receptor agonist) or endogenous CGRP (released by periarterial electrical stimulation). RESULTS: Regarding the dural meningeal vasodilation produced neurogenically or pharmacologically, all JNJ antagonists: (i) did not affect neurogenic vasodilation but (ii) blocked the vasodilation produced by CGS21680, with a blocking potency directly related to their additional affinity for the adenosine A1 receptor. CONCLUSIONS: These results suggest that vascular adenosine A2A (and, to a certain extent, also A1) receptors mediate the CGS21680-induced meningeal vasodilation. These receptors do not appear to modulate prejunctionally the sensory release of CGRP. Prevention of meningeal arterial dilation might be predictive for anti-migraine drugs, and since none of these JNJ antagonists modified per se blood pressure, selective A2A receptor antagonism may offer a novel approach to antimigraine therapy which remains to be investigated in clinical trials.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/análogos & derivados , Artérias Meníngeas/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Fenetilaminas/farmacologia , Vasodilatação/efeitos dos fármacos , Adenosina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Masculino , Transtornos de Enxaqueca/fisiopatologia , Ratos , Ratos Sprague-Dawley
10.
J Mol Cell Cardiol ; 90: 30-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26654777

RESUMO

Adenosine A2A receptor (A2AAR) activation plays a major role in the regulation of coronary flow (CF). Recent studies from our laboratory and others have suggested that A2AAR expression and/or signaling is altered in disease conditions. However, the coronary response to AR activation, in particular A2AAR, in diabetes is not fully understood. In this study, we use an STZ mouse model of type 1 diabetes (T1D) to look at CF responses to the nonspecific AR agonist NECA and the A2AAR specific agonist CGS 21680 in-vivo and ex-vivo. Using immunofluorescence, we also explored the effect of diabetes on A2AAR expression in coronary arteries. NECA mediated increase in CF was significantly increased in hearts isolated from STZ-induced diabetic mice. In addition, both in in-vivo and ex-vivo responses to A2AAR activation using CGS 21680 were significantly higher in diabetic mice when compared to their controls. Immunohistochemistry showed an upregulation of A2AAR in both coronary smooth muscle and endothelial cells (~160% and ~140%, respectively). Our data suggest that diabetes resulted in an increased A2AAR expression in coronary arteries which resulted in enhanced A2AAR-mediated increase in CF observed in diabetic hearts. This is the first report implying that A2AAR has a role in the regulation of CF in diabetes, supporting recent studies suggesting that the use of adenosine and its A2A selective agonist (regadenoson, Lexiscan®) may not be appropriate for the detection of coronary artery diseases in T1D and the estimation of coronary reserve.


Assuntos
Circulação Coronária/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/efeitos dos fármacos , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Técnicas de Cultura de Órgãos , Fenetilaminas/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
11.
J Neurochem ; 138(2): 254-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27127992

RESUMO

In this study, the functional role of individual striatal receptors for adenosine (A2AR), dopamine (D2R), and the metabotropic glutamate receptor mGlu5R in regulating rat basal ganglia activity was characterized in vivo using dual-probe microdialysis in freely moving rats. In particular, intrastriatal perfusion with the D2R agonist quinpirole (10 µM, 60 min) decreased ipsilateral pallidal GABA and glutamate levels, whereas intrastriatal CGS21680 (A2AR agonist; 1 µM, 60 min) was ineffective on either pallidal GABA and glutamate levels or the quinpirole-induced effects. Intrastriatal perfusion with the mGlu5R agonist (RS)-2-chloro-5-hydroxyphenylglycine (600 µM, 60 min), by itself ineffective on pallidal GABA and glutamate levels, partially counteracted the effects of quinpirole. When combined with CGS21680 (1 µM, 60 min), (RS)-2-chloro-5-hydroxyphenylglycine (CHPG; 600 µM, 60 min) fully counteracted the quinpirole (10 µM, 60 min)-induced reduction in ipsilateral pallidal GABA and glutamate levels. These effects were fully counteracted by local perfusion with the mGlu5R antagonist MPEP (300 µM) or the A2AR antagonist ZM 241385 (100 nM). These results suggest that A2ARs and mGlu5Rs interact synergistically in modulating the D2R-mediated control of striatopallidal GABA neurons. Using dual-probe microdialysis, we characterized the functional role of striatal adenosine A2A receptor (A2AR), dopamine D2 receptor (D2R), and metabotropic glutamate receptor 5 (mGluR5) interactions in regulating rat basal ganglia activity. The results suggest the possible usefulness of using an A2AR antagonist and mGluR5 antagonist combination in the treatment of Parkinson's disease to increase the inhibitory D2 signaling on striatopallidal GABA neurons.


Assuntos
Corpo Estriado/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Ácido Glutâmico/farmacologia , Masculino , Microdiálise/métodos , Neostriado/metabolismo , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
12.
FASEB J ; 29(4): 1577-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25573752

RESUMO

Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 µM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 µM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 µM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Receptor A2A de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Contagem de Células , Dipiridamol/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Fenetilaminas/farmacologia
13.
Brain Behav Immun ; 46: 50-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25653191

RESUMO

A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in two different models of neuropathic pain in addition to downregulating glial activation markers in the spinal cord. We aimed to determine whether a single intrathecal administration of an A2AR agonist was able to attenuate motor symptoms induced by experimental autoimmune encephalopathy. Two A2AR agonists (CGS21680 and ATL313) significantly attenuated progression of motor symptoms following a single intrathecal administration at the onset of motor symptoms. OX-42, a marker of microglial activation, was significantly attenuated in the lumbar spinal cord following A2AR administration compared to vehicle. Therefore, A2AR agonists attenuate motor symptoms of EAE by acting on A2AR in the spinal cord.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Paralisia/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/uso terapêutico , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Masculino , Microglia/efeitos dos fármacos , Fenetilaminas/farmacologia , Fenetilaminas/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Ratos
14.
Br J Pharmacol ; 181(19): 3779-3795, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38877785

RESUMO

BACKGROUND AND PURPOSE: The adenosine A2A receptor (A2AR) is involved in various physiological and pathological processes in the eye; however, the role of the A2AR signalling in corneal epithelial wound healing is not known. Here, the expression, therapeutic effects and signalling mechanism of A2AR in corneal epithelial wound healing were investigated using the A2AR agonist CGS21680. EXPERIMENTAL APPROACH: A2AR localization and expression during wound healing in the murine cornea were determined by immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The effect of CGS21680 on corneal epithelial wound healing in the lesioned corneal and cultured human corneal epithelial cells (hCECs) by modulating cellular proliferation and migration was critically evaluated. The role of Hippo-YAP signalling in mediating the CGS21680 effect on wound healing by pharmacological inhibition of YAP signalling was explored. KEY RESULTS: A2AR expression was up-regulated after corneal epithelial injury. Topical administration of CGS21680 dose-dependently promoted corneal epithelial wound healing in the injured corneal epithelium by promoting cellular proliferation. Furthermore, CGS21680 accelerated the cellular proliferation and migration of hCECs in vitro. A2AR activation promoted early up-regulation and later down-regulation of YAP signalling molecules, and pharmacological inhibition of YAP signalling reverted CGS21680-mediated wound healing effect in vivo and in vitro. CONCLUSION AND IMPLICATIONS: A2AR activation promotes wound healing by enhancing cellular proliferation and migration through the YAP signalling pathway. A2ARs play an important role in the maintenance of corneal epithelium integrity and may represent a novel therapeutic target for facilitating corneal epithelial wound healing.


Assuntos
Adenosina , Epitélio Corneano , Fenetilaminas , Receptor A2A de Adenosina , Transdução de Sinais , Cicatrização , Proteínas de Sinalização YAP , Cicatrização/efeitos dos fármacos , Animais , Fenetilaminas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Receptor A2A de Adenosina/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Humanos , Camundongos , Agonistas do Receptor A2 de Adenosina/farmacologia , Movimento Celular/efeitos dos fármacos , Masculino , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia
15.
Pharmacol Res ; 76: 157-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23969284

RESUMO

Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.


Assuntos
Astrócitos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Lipopolissacarídeos/imunologia , Receptor A1 de Adenosina/imunologia , Receptor A3 de Adenosina/imunologia , Adenosina/imunologia , Animais , Astrócitos/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/imunologia , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia
16.
Pharmacol Res ; 76: 182-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23994158

RESUMO

Adenosine (ADO) is a retaliatory metabolite that is expressed in conditions of injury or stress. During these conditions ATP is released at the extracellular level and is metabolized to adenosine. For this reason, adenosine is defined as a "danger signal" for cells and organs, in addition to its important role as homeostatic regulator. Its physiological functions are mediated through interaction with four specific transmembrane receptors called ADORA1, ADORA2A, ADORA2B and ADORA3. In the lungs of mice and humans all four adenosine receptors are expressed with different roles, having pro- and anti-inflammatory roles, determining bronchoconstriction and regulating lung inflammation and airway remodeling. Adenosine receptors can also promote differentiation of lung fibroblasts into myofibroblasts, typical of the fibrotic event. This last function suggests a potential involvement of adenosine in the fibrotic lung disease processes, which are characterized by different degrees of inflammation and fibrosis. Idiopathic pulmonary fibrosis (IPF) is the pathology with the highest degree of fibrosis and is of unknown etiology and burdened by lack of effective treatments in humans.


Assuntos
Adenosina/imunologia , Pulmão/patologia , Fibrose Pulmonar/patologia , Receptores Purinérgicos P1/imunologia , Adenosina/metabolismo , Animais , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Receptores Purinérgicos P1/metabolismo
17.
Psychopharmacology (Berl) ; 240(3): 547-559, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36129491

RESUMO

RATIONALE: Adenosine A2A receptors (A2AR) in the dorsal striatum have been implicated in goal-directed behaviour. While activation of these receptors with several methods has resulted in an insensitivity to outcome devaluation, particular explanations for how they disrupt behaviour have not been explored. We both confirm a role for A2A receptors in goal-directed responding and evaluate additional behavioural aspects of goal-directed control to more fully understand the role of A2A receptors in instrumental behaviour. OBJECTIVES: To examine the effects of the adenosine A2A agonist CGS-21680 in the DMS on response-outcome encoding, updating representations of outcome value and on the ability to inhibit behaviour when reward is not available. METHODS: Male rats were trained to lever press for food reward. The A2AR agonist CGS-21680 was infused into the dorsomedial striatum either before an outcome devaluation test, prior to training with two distinct response-outcome associations or prior to a test of discriminative stimulus control over instrumental performance. RESULTS: Intra-DMS administration of CGS-21680 impaired sensitivity to outcome devaluation. CGS-21680 treatment did not impair acquisition of specific response-outcome associations, selective control of responding based on the presence of stimuli that signaled when reward was or was not available, discrimination between stimuli or lever choices nor did it influence the effect of devaluation on the amounts of food eaten in a consumption test. CONCLUSIONS: CGS-21680 impairs the ability to modulate responding based on recent changes to outcome value, an effect that is not accounted for by impairments in behavioural inhibition, discrimination, encoding the specific outcome of a response or the effectiveness of specific satiety.


Assuntos
Condicionamento Operante , Objetivos , Ratos , Masculino , Animais , Corpo Estriado , Neostriado , Adenosina/farmacologia
18.
Front Pharmacol ; 13: 840134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387355

RESUMO

Continuous illumination induces the degeneration of photoreceptors. This animal model of light-induced retinal degeneration resembles many characteristics of human degenerative diseases of the outer retina, such as age-related macular degeneration. This work aimed to evaluate the potential neuroprotective effect of the modulation of adenosine A2A receptor in the model of light-induced retinal degeneration. Sprague-Dawley rats were intravitreally injected in the right eye with either CGS 21680, an adenosine A2A receptor agonist, or SCH 58261, an adenosine A2A receptor antagonist. Contralateral eyes were injected with respective vehicles as control. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h. Retinas were processed by glial fibrillary acidic protein (GFAP) immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technique, Western blotting (WB), and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Another group of rats was subjected to functional studies by electroretinography. Animals treated with CGS21680 showed a significant increase of apoptotic nuclei in the outer nuclear layer and a significant increase of GFAP immunoreactive area of the retinas but did not alter WB nor electroretinography results. qRT-PCR showed that CGS 21680 significantly increased the expression of interleukin-1ß. On the opposite, SCH 58261 significantly decreased apoptotic nuclei in the outer nuclear layer and GFAP immunoreactive area of the retinas. It also significantly decreased GFAP and activated caspase-3 levels as measured by WB and preserved retinal function, as treated eyes showed significantly greater amplitudes of a- and b-waves and oscillatory potentials. qRT-PCR revealed that SCH 58261 significantly decreased the expression of tumor necrosis factor-α. These results show that the blockade of the A2A receptor before the start of the pathogenic process is neuroprotective, as it prevents light-induced retinal damage. The use of A2A receptor antagonists deserves to be evaluated in retinal degenerative diseases.

19.
J Mol Neurosci ; 72(4): 802-811, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35041190

RESUMO

Adenosine A2A receptors are Golf-coupled receptors and are predominantly expressed in the striatum of mammalian brains. As a mostly postsynaptic receptor, A2A receptors are implicated in the regulation of a variety of intracellular signaling pathways in striatopallidal output neurons and are linked to the pathogenesis of various neuropsychiatric and neurological disorders. This study investigated the possible role of A2A receptors in the modulation of the Src family kinase (SFK) in the adult rat striatum. In acutely prepared striatal slices, adding the A2A receptor agonist PSB-0777 induced a significant increase in phosphorylation of SFKs at a conserved autophosphorylation site (Y416) in the caudate putamen (CPu). This increase was also seen in the nucleus accumbens (NAc). Another A2A agonist CGS-21680 showed the similar ability to elevate SFK Y416 phosphorylation in the striatum. Treatment with the A2A receptor antagonist KW-6002 blocked the effect of PSB-0777 on SFK Y416 phosphorylation. In addition, PSB-0777 enhanced kinase activity of two key SFK members (Src and Fyn) immunoprecipitated from the striatum. These data demonstrate a positive linkage from A2A receptors to the SFK signaling pathway in striatal neurons. Activation of A2A receptors leads to the upregulation of phosphorylation of SFKs (Src and Fyn) at an activation-associated autophosphorylation site and kinase activity of these SFK members.


Assuntos
Corpo Estriado , Receptor A2A de Adenosina , Quinases da Família src , Adenosina/metabolismo , Animais , Corpo Estriado/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Regulação para Cima , Quinases da Família src/metabolismo
20.
Neural Regen Res ; 16(10): 2030-2040, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33642391

RESUMO

An antagonistic communication exists between adenosinergic and dopaminergic signaling in the basal ganglia, which suggests that the suppression of adenosine A2A receptors-cyclic adenosine monophosphate pathway may be able to restore the disrupted dopamine transmission that results in motor symptoms in Parkinson's disease (PD). Arbutin is a natural glycoside that possesses antioxidant, anti-inflammatory, and neuroprotective properties. The purpose of this study was to investigate whether arbutin could ameliorate the symptoms of PD and to examine the underlying mechanism. In this study, Swiss albino mouse models of PD were established by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine for 4 successive days, with the concurrent intraperitoneal administration of arbutin (50 and 100 mg/kg) for 7 days. The results showed that arbutin significantly reduced lipid peroxidation, total nitrite levels, and inflammation in the substantia nigra and striatum of PD mouse models. In addition, arbutin decreased the activity of endogenous antioxidants, reduced the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and γ-aminobutyric acid, and minimized neurodegeneration in the striatum. Arbutin also reduced the abnormal performance of PD mouse models in the open field test, bar test, pole test, and rotarod test. The therapeutic efficacy of arbutin was similar to that of madopar. The intraperitoneal injection of the A2AR agonist CGS21680 (0.5 mg/kg) attenuated the therapeutic effects of arbutin, whereas the intraperitoneal injection of forskolin (3 mg/kg) enhanced arbutin-mediated improvements. These findings suggest that arbutin can improve the performance of PD mouse models by inhibiting the function of the A2AR and enhancing the effects of cyclic adenosine monophosphate. This study was approved by the Institutional Animal Ethics Committee (1616/PO/Re/S/12/CPCSEA) on November 17, 2019 (approval No. IAEC/2019/010).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa