RESUMO
Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.
RESUMO
Genetic screens can identify synthetic lethal (SL) interactions and uncover potential anticancer therapeutic targets. However, most SL screens have utilized knockout or knockdown approaches that do not accurately mimic chemical inhibition of a target protein. Here, we test whether missense mutations can be utilized as a model for a type of protein inhibition that creates a dominant gain-of-function cytotoxicity. We expressed missense mutations in the FEN1 endonuclease and the replication-associated helicase, CHL1, that inhibited enzymatic activity but retained substrate binding, and found that these mutations elicited a dominant SL phenotype consistent with the generation of cytotoxic protein-DNA or protein-protein intermediates. Genetic screens with nuclease-defective hFEN1 and helicase-deficient yCHL1 captured dominant SL interactions, in which ectopic expression of the mutant form, in the presence of the wild-type form, caused SL in specific mutant backgrounds. Expression of nuclease-defective hFEN1 in yeast elicited DNA binding-dependent dominant SL with homologous recombination mutants. In contrast, dominant SL interactions with helicase-deficient yCHL1 were observed in spindle-associated, Ctf18-alternative replication factor C (Ctf18-RFC) clamp loader complex, and cohesin mutant backgrounds. These results highlight the different mechanisms underlying SL interactions that occur in the presence of an inhibited form of the target protein and point to the utility of modeling trapping mutations in pursuit of more clinically relevant SL interactions.
Assuntos
DNA/metabolismo , Endonucleases Flap/metabolismo , Mutação de Sentido Incorreto , Mutações Sintéticas Letais , Antineoplásicos/toxicidade , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , Desenvolvimento de Medicamentos/métodos , Endonucleases Flap/genética , Técnicas Genéticas , Humanos , Ligação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
BACKGROUND: Melanoma, a severe form of skin cancer, poses significant health risks due to its aggressive nature and potential for metastasis. The role of two-pore channel 2 (TPC2) in the development and progression of melanoma remains poorly understood. This study aims to investigate the impact of TPC2 knockout (KO) on melanoma-derived tumors, focusing on tumour growth and related toxicity in the organism. METHODS: The study utilized CHL-1 and B16 melanoma cell lines with TPC2 KO to assess the changes in proliferation dynamics. Methods included real-time monitoring of cell proliferation using the xCELLigence system, in vivo tumour growth assays in mice, histopathological analyses, inflammation marker assessment, and quantitative PCR (qPCR) for gene expression analysis RESULTS: TPC2 KO was found to significantly alter the proliferation dynamics of CHL-1 and B16 melanoma cells. The in vivo studies demonstrated reduced tumor growth in TPC2 KO cell-derived tumors. However, a notable increase in tumor-related toxicity in affected organs, such as the liver and spleen, was observed, indicating a complex role of TPC2 in melanoma pathology. CONCLUSIONS: The loss of TPC2 function in melanoma cells leads to reduced tumour growth but exacerbates tumour-related toxicity in the organism. These findings highlight the dual role of TPC2 in melanoma progression and its potential as a therapeutic target. Further research is needed to fully understand the mechanisms underlying these effects and to explore TPC2 as a treatment target in melanoma.
RESUMO
BACKGROUND: Close Homolog of L1 (CHL1) is a member of the L1 family of cell adhesion molecules. CHL1 gene is located on human chromosome 3 and has been linked to several pathologies, including 3p deletion syndrome, schizophrenia, and tumor growth and metastasis. OBJECTIVE: The goal of the present study was to determine which region of the CHL1 promoter is most competent in driving CHL1 gene expression. Methods: Five candidate DNA fragments in the promoter regions were selected by screening across six species for evolutionary conserved sequences. The activity of these five promoter regions was quantitatively evaluated using a GFP reporter gene in transfection experiments, performed in C6 glioma cells. RESULTS: Of the five promoter regions tested, three drove reporter GFP expression, with the conserved region 6 (CR6, Gene ID AC066595.5, 25851-26850) being the most active for transcription. CONCLUSION: The identification of the CR6 activity provides a better understanding of the regulatory mechanisms underlying CHL1 expression. It may help future discovery of therapeutic strategies that involve influencing critical promoter regions to drive transcriptional regulation of the mammalian CHL1 gene.HIGHLIGHTSConserved regions of CHL1 promoter sequences were identified by in-silico analysis.Five conserved regions were tested for gene regulatory activity using a reporter assay.Conserved regions CR5, CR6 and CR7 show gene regulatory function in a reporter assay.Co-transfection of CR5 and CR6 yielded the highest reporter activity.The core region of CR6 (CR6core) was identified as a cis-acting element.In-tandem promoter CR5core-CR6core was the best in a reporter assay.
Assuntos
Moléculas de Adesão Celular , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , HumanosRESUMO
As an ATP-dependent DNA helicase, human ChlR1/DDX11 (Chl1 in yeast) can unwind both DNA:RNA and DNA:DNA substrates in vitro. Studies have demonstrated that ChlR1 plays a vital role in preserving genome stability by participating in DNA repair and sister chromatid cohesion, whereas the ways in which the biochemical features of ChlR1 function in DNA metabolism are not well understood. Here, we illustrate that Chl1 localizes to double-strand DNA break (DSB) sites and restrains DNA:RNA hybrid accumulation at these loci. Mutation of Chl1 strongly impairs DSB repair capacity by homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways, and deleting RNase H further reduces DNA repair efficiency, which indicates that the enzymatic activities of Chl1 are needed in Schizosaccharomyces pombe. In addition, we found that the Rpc37 subunit of RNA polymerase III (RNA Pol III) interacts directly with Chl1 and that deletion of Chl1 has no influence on the localization of Rpc37 at DSB site, implying the role of Rpc37 in the recruitment of Chl1 to this site.
Assuntos
DNA Helicases , Schizosaccharomyces , Moléculas de Adesão Celular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Instabilidade Genômica , Humanos , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismoRESUMO
Melanoma is an aggressive skin cancer with a high rate of metastasis to other organs. Recent studies specified the overexpression of V-domain Ig suppressor of T-cell activation (VISTA) and Aryl Hydrocarbon Receptor (AHR) in melanoma. Metformin shows anti-tumor activities in several cancer types. However, the mechanism is unclear. This study aims to investigate the inhibitory effect of metformin on VISTA via AHR in melanoma cells (CHL-1, B16) and animal models. VISTA and AHR levels were assessed by qPCR, Western blot, immunofluorescence microscope, flow cytometry, and immunohistochemistry. Here, metformin significantly decreased VISTA and AHR levels in vitro and in vivo. Furthermore, metformin inhibited all AHR-regulated genes. VISTA levels were dramatically inhibited by AHR modulations using shRNA and αNF, confirming the central role of AHR in VISTA. Finally, melanoma cells were xenografted in C57BL/6 and nude mice. Metformin significantly reduced the tumor volume and growth rate. Likewise, VISTA and AHR-regulated protein levels were suppressed in both models. These findings demonstrate for the first time that VISTA is suppressed by metformin and identified a new regulatory mechanism through AHR. The data suggest that metformin could be a new potential therapeutic strategy to treat melanoma patients combined with targeted immune checkpoint inhibitors.
RESUMO
Plants cannot fix nitrogen directly; they must absorb it from the soil through their roots, or in rare cases, form associations with nitrogen-fixing bacteria. The efficiency of nitrogen use in most domesticated crops is low, and more than half of the available nitrogen in the soil can leach into the environment. Understanding the nitrogen signaling pathways is essential for maximizing the efficiency of nitrogen use in crops. In the present study, we characterized the Myeloblastosis (Myb)-like gene NITROGEN RESPONSE DEFICIENCY 1 (NID1). We observed that the growth performance of nid1 knockout (KO) mutant Arabidopsis plants was better than that of wild-type Col-0 plants under very low-nitrate conditions, leading to improved growth performance in the nid1 KO plants. The results of chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that NID1 binds to the promoter of the NITRATE TRANSPORTER (NRT)1.1 gene. Furthermore, nid1 KO plants exhibited similar growth performance to the nid1 KO/chl1-5 (nrt1.1 KO) double mutant and chl1-5 (nrt1.1 KO) plants in response to low-nitrate conditions. We suggest that NID1 plays a crucial role as a transcription factor in optimizing plant growth by modulating the transcript abundance of the nitrate transceptor CHL1, leading to enhanced ABA accumulation in low-nitrate conditions.
Assuntos
Proteínas de Transporte de Ânions/genética , Arabidopsis/crescimento & desenvolvimento , Nitratos/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
PURPOSE: The pathogenesis of idiopathic hypogonadotropic hypogonadism (IHH) is genetically complex. The aims of this study were to investigate the genetic profile and clinical manifestation of IHH in a Chinese pedigree and to discover new IHH-associated genes. METHODS: The first step was to follow up the clinical phenotype and therapeutic outcomes of the pedigree in university hospital. The second step was that mutation screening was performed in this pedigree and 100 healthy controls. The third step was to further verify the pathogenicity of the discovered rare sequencing variant (RSV) by functional experiments. Whole exome sequencing, Sanger sequencing, testicular volume (TV), semen analysis, assessment of cell migration and necroptosis were performed. RESULTS: One heterozygous RSV (p.G517E) in CHL1 was identified in two male IHH patients and their mother in the pedigree, but not in healthy controls. All the three individuals exhibited olfactory impairment. hCG/hMG treatment significantly improved TV, serum testosterone and/or semen parameters of the two male patients. Functional analysis indicated that CHL1 significantly regulated GnRH neuronal cell line (GN11 cells) migration and necroptosis, with alteration of ERK1/2 activation, calcium loading, and transcription of RIPK3 and MLKL. However, the above processes were negatively influenced by the CHL1 RSV. CONCLUSIONS: Our study reports the genetic relevance of CHL1 in IHH, and characterizes the phenotypic and therapeutic profiles in patients carrying the CHL1 RSV. CHL1 may act as a new IHH-associated gene, and should be taken into consideration in future investigations for this field.
Assuntos
Moléculas de Adesão Celular/genética , Hipogonadismo , Adulto , Ensaios de Migração Celular/métodos , Células Cultivadas , Correlação de Dados , Estudos de Associação Genética , Hormônio Liberador de Gonadotropina/sangue , Humanos , Hipogonadismo/epidemiologia , Hipogonadismo/genética , Hipogonadismo/fisiopatologia , Hipogonadismo/terapia , Masculino , Mutação , Necroptose , Linhagem , Análise do Sêmen/métodos , Resultado do Tratamento , Sequenciamento do Exoma/métodosRESUMO
Endometrial cancer (EC) is deemed to be the most typical gynecologic malignant tumor. Despite the incidence of EC being lower in Asia than that in western countries, substantial increased incidence has been observed in the past few decades in Asia. Although various molecular testing methods and genomic science have developed, the overall prognosis is still disappointing. LncRNAs have been found to influence the progression of various cancers. CHL1-AS1 has been found to be upregulated in ovarian endometriosis, nevertheless, the molecular mechanism and biological function of CHL1-AS1 in EC have not been explored. In our exploration, both CHL1-AS1 and CHL1 were upregulated in EC cells. Knockdown of CHL1-AS1 or CHL1 inhibited cell proliferation and migration in EC. Furthermore, microRNA-6076 (miR-6076) could bind with CHL1-AS1 or CHL1, and regulate the expression of CHL1. Finally, absence of miR-6076 or overexpression of CHL1 can partially rescue the effect of CHL1-AS1 knockdown or miR-6076 upregulation on cell proliferation and migration, respectively. All in all, our research was the first endeavor to study the underlying mechanism of CHL1-AS1 in EC and confirmed that CHL1-AS1 regulated EC progression via targeting the miR-6076/CHL1 axis, offering new insight into treating EC.
Assuntos
Biomarcadores Tumorais/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias do Endométrio/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose , Biomarcadores Tumorais/genética , Moléculas de Adesão Celular/genética , Movimento Celular , Proliferação de Células , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Células Tumorais CultivadasRESUMO
Cell adhesion molecule L1-like protein (CHL1) is a member of neural recognition molecules of immunoglobulin superfamily primarily expressing in the nervous system. CHL1 regulates neuronal migration, axonal growth, and dendritic projection. Downregulation of CHL1 has been reported in ß cells of patients with type 2 diabetes (T2DM). However, the detailed role of CHL1 in ß cells has not been characterized. In this study, Real-Time PCR and Western blot were applied to investigate the tissue/cell distribution and expression of CHL1. Gain- or loss-of function studies were conducted in MIN6 cells to determine the effects of CHL1 on cell proliferation, apoptosis, cell cycle, and insulin secretion. Following silencing of CHL1 in MIN6 cells (si-CHL1), insulin secretion and the number of insulin secretary granules <50 nm from the cell membrane decreased in response to 20 mM glucose. Besides, silencing of CHL1 induced cell proliferation, reduced apoptosis, and prolonged S phase and shortened G1 phase of the cell cycle, contrary to overexpressing of CHL1. The inhibitor of ERK1/2MAPK eliminated the effect of CHL1 deficiency on the proliferation of MIN6 cells. In addition, high-fat diet could result in increased islet volume and ß cell proliferation, decreased CHL1 expression and activation of ERK pathway in mice islets. Consequently, CHL1 expression was decreased in islets of high-fat induced mice, which resulted in cell proliferation via ERK pathway and regulation of the cell cycle through p53 pathway. These mechanisms may contribute to pancreatic ß cell compensatory hyperplasia in obesity-induced pre-diabetes.
Assuntos
Moléculas de Adesão Celular/metabolismo , Proliferação de Células/genética , Secreção de Insulina/genética , Ilhotas Pancreáticas/metabolismo , Animais , Apoptose/genética , Moléculas de Adesão Celular/genética , Ciclo Celular/genética , Dieta Hiperlipídica , Inativação Gênica , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Regulação para CimaRESUMO
BACKGROUND: While Miller-Dieker syndrome critical region deletions are well known delineated anomalies, submicroscopic duplications in this region have recently emerged as a new distinctive syndrome. So far, only few cases have been described overlapping 17p13.3 duplications. METHODS: In this study, we report on clinical and cytogenetic characterization of two new cases involving 17p13.3 and 3p26 chromosomal regions in two sisters with familial history of lissencephaly. Fluorescent In Situ Hybridization and array Comparative Genomic Hybridization were performed. RESULTS: A deletion including the critical region of the Miller-Dieker syndrome of at least 2,9 Mb and a duplication of at least 3,6 Mb on the short arm of chromosome 3 were highlighted in one case. The opposite rearrangements, 17p13.3 duplication and 3p deletion, were observed in the second case. This double chromosomal aberration is the result of an adjacent 1:1 meiotic segregation of a maternal reciprocal translocation t(3,17)(p26.2;p13.3). CONCLUSIONS: 17p13.3 and 3p26 deletions have a clear range of phenotypic features while duplications still have an uncertain clinical significance. However, we could suggest that regardless of the type of the rearrangement, the gene dosage and interactions of CNTN4, CNTN6 and CHL1 in the 3p26 and PAFAH1B1, YWHAE in 17p13.3 could result in different clinical spectrums.
Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Lisencefalia/genética , Neurônios/patologia , Translocação Genética/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Proteínas 14-3-3/genética , Moléculas de Adesão Celular/genética , Movimento Celular/genética , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 3/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Hibridização Genômica Comparativa , Contactinas/genética , Feminino , Dosagem de Genes/genética , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Lisencefalia/diagnóstico , Lisencefalia/fisiopatologia , Meiose/genética , Proteínas Associadas aos Microtúbulos/genética , Neurônios/metabolismo , Fenótipo , Trissomia/genéticaRESUMO
The immunoglobulin superfamily adhesion molecule close homolog of L1 (CHL1) plays important roles during nervous system development. Here, we identified the hedgehog receptor patched-1 (PTCH1) as a novel CHL1-binding protein and showed that CHL1 interacts with the first extracellular loop of PTCH1 via its extracellular domain. Colocalization and co-immunoprecipitation of CHL1 with PTCH1 suggest an association of CHL1 with this major component of the hedgehog signaling pathway. The trans-interaction of CHL1 with PTCH1 promotes neuronal survival in cultures of dissociated cerebellar granule cells and of organotypic cerebellar slices. An inhibitor of the PTCH1-regulated hedgehog signal transducer, smoothened (SMO), and inhibitors of RhoA and Rho-associated kinase (ROCK) 1 and 2 prevent CHL1-dependent survival of cultured cerebellar granule cells and survival of cerebellar granule and Purkinje cells in organotypic cultures. In histological sections from 10- and 14-day-old CHL1-deficient mice, enhanced apoptosis of granule, but not Purkinje, cells was observed. The results of the present study indicate that CHL1 triggers PTCH1-, SMO-, RhoA- and ROCK-dependent signal transduction pathways to promote neuronal survival after cessation of the major morphogenetic events during mouse cerebellar development.
Assuntos
Apoptose , Moléculas de Adesão Celular/metabolismo , Receptor Patched-1/metabolismo , Células de Purkinje/metabolismo , Transdução de Sinais , Animais , Moléculas de Adesão Celular/genética , Camundongos , Camundongos Knockout , Receptor Patched-1/genéticaRESUMO
Objective: To investigate the effect and mechanisms of CHL1 gene overexpression on cell viability, invasiveness and apoptosis in neuroblastoma cells. Methods: The empty plasmid (pcDNA3.1 group) and CHL1 recombinant plasmid (pcDNA3.1-CHL1 group) were transfected into SK-N-SH human neuroblastoma cells, and the untransfected cells were used as blank control. Forty-eight hours after transfection, the protein expressions of CHL1, PCNA, MMP-2, Bax, STAT3 and p-STAT3 were detected by western blot. Meanwhile, cell viability, invasion and apoptosis were detected by MTT, transwell and flow cytometry assays, respectively. Results: The expression level of CHL1 protein in pcDNA3.1-CHL1 group was 0.612±0.052, which was higher than that of pcDNA3.1 group 0.122±0.014 and blank control group 0.120±0.013, with statistically significant difference (P<0.05). After 24, 48 and 72 hours of transfection, the absorbance (A) values of SK-N-SH cells in the pcDNA3.1-CHL1 group were 0.328±0.035, 0.502±0.051 and 0.688±0.064, respectively, whereas those in the pcDNA3.1 group were 0.562±0.050, 0.796±0.065 and 0.973±0.077, respectively. The differences were statistically significant (P<0.05). The invaded cells in the pcDNA3.1-CHL1 group were 104.9±3.7, which were lower than that in the pcDNA3.1 group (175.6±4.6), with statistically significant difference (P<0.05). Additionally, the apoptotic rate of pcDNA3.1-CHL1 cells was (23.46±1.22)%, which was higher than that in pcDNA3.1 group (3.45±0.20)%(P<0.05). Furthermore, the levels of PCNA, MMP-2, Bax and p-STAT3 proteins in pcDNA3.1-CHL1 group were 0.156±0.018, 0.122±0.015, 0.285±0.032 and 0.023±0.004, respectively, whereas those in pcDNA3.1 group were 0.542±0.053, 0.196±0.021, 0.073±0.009 and 0.057±0.007, respectively. There were statistically significant differences between two groups (P<0.05). Conclusion: Overexpression of CHL1 inhibits the cell viability and invasion, as well as induces apoptosis of neuroblastoma cells, which is related to the inhibition of STAT3 signaling pathway.
Assuntos
Apoptose , Proliferação de Células , Sobrevivência Celular , Invasividade Neoplásica , Neuroblastoma/patologia , Proteínas Supressoras de Tumor/metabolismo , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Humanos , Transfecção , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologiaRESUMO
BACKGROUND: This study aims to investigate the effect of miR-21-5p on process of colon adenocarcinoma (COAD) cells and its connection with neural cell adhesion molecule L1 (CHL1). METHODS: Different expressions of mRNAs and miRNAs were calculated with microarray analysis. QRT-PCR and western blot were performed to quantify miR-21-5p and CHL1 expression. Flow Cytometry, MTT assay, colony formation assay, transwell assay and ELISA were performed to evaluate propagation and invasiveness of COAD cells. Dual luciferase reporter assay was employed to scrutinize the relationship between miR-21-5P and CHL1. We performed in vivo experiment to detect the impact of miR-21-5p and CHL1 on COAD tumor growth. RESULTS: Expression level of miR-21-5p increased in both COAD tissues and cells. MTT and Cell cycle assay showed that overexpression of miR-21-5p accelerated proliferation of COAD cells. Transwell assay indicated that miR-21-5p promoted cell invasion. The result of dual luciferase reporter assay indicated that miR-21-5p targeted CHL1 directly and inhibited its expression. The result of in vivo experiments showed that down-regulation of miR-21-5p decreased the volume and weight of tumor, while knockdown of CHLI stimulated tumor growth. CONCLUSIONS: The overexpression of miR-21-5p can promote propagation and invasiveness of COAD cells through inhibiting the expression of CHL1.
Assuntos
Adenocarcinoma , Moléculas de Adesão Celular , Neoplasias do Colo , MicroRNAs , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade NeoplásicaRESUMO
Close homolog of L1 (CHL1) and its truncated form mainly play crucial roles in mouse brain development and neural functions. Herein, we newly identified that truncated form of CHL1 is produced and released from lung tumor tissue in a mouse model expressing human EML4-ALK fusion gene. Both western blot and direct ELISA analysis revealed that mouse CHL1 level in serum (including serum extracellular vesicles) was significantly elevated in EML4-ALK transgenic mice. The correlation between the tumor size and the amount of CHL1 secretion could be examined in this study, and showed a significant positive correlation in a tumor size-dependent manner. Considering these results, the measurement of circulating CHL1 level may contribute to assess a tumor progression in human lung tumor patients.
Assuntos
Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/metabolismo , Neoplasias Pulmonares/sangue , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Carga TumoralRESUMO
BACKGROUND AND OBJECTIVES: Hürthle cell carcinoma (HCC) is an unusual and relatively rare type of differentiated thyroid cancer. Currently, cytologic analysis of fine-needle aspiration biopsy is limited in distinguishing benign Hürthle cell neoplasms from malignant ones. The aim of this study was to determine whether differences in the expression of specific genes could differentiate HCC from benign Hürthle cell nodules by evaluating differential gene expression in Hürthle cell disease. METHODS: Eighteen benign Hürthle cell nodules and seven HCC samples were analyzed by whole-transcriptome sequencing. Bioinformatics analysis was carried out to identify candidate differentially expressed genes. Expression of these candidate genes was re-examined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was quantified by immunohistochemistry. RESULTS: Close homolog of L1 (CHL1) was identified as overexpressed in HCC. CHL1 was found to have greater than 15-fold higher expression in fragments per kilobase million in HCC compared with benign Hurthle cell tumors. This was confirmed by qRT-PCR. Moreover, the immunoreactivity score of the CHL1 protein was significantly higher in HCC compared with benign Hürthle cell nodules. CONCLUSIONS: CHL1 expression may represent a novel and useful prognostic biomarker to distinguish HCC from benign Hürthle cell disease.
Assuntos
Adenoma Oxífilo/metabolismo , Moléculas de Adesão Celular/biossíntese , Neoplasias da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/metabolismo , Adenoma Oxífilo/diagnóstico , Adenoma Oxífilo/patologia , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/patologiaRESUMO
Excessive application of the long-term herbicide chlorimuron-ethyl has resulted in series of environmental problems. Bioaugmentation usually a useful method in contaminated-environment remediation. In this study, the strain Methanolivorans CHL1T with highly chlorimuron-ethyl degrading efficiency was employed to assess its remediation effects on chlorimuron-ethyl-contaminated soil. The chlorimuron-ethyl residues in the soils and the survival condition of strain CHL1T were detected. Meanwhile, the shifts of soil microbial catabolic profile were investigated by MicroResp™ analysis for the first time. The results indicated that strain CHL1T significantly shorten the half-life (6-17 days) of chlorimuron-ethyl and removed 95-100% of chlorimuron-ethyl by the end of the experiment. Meanwhile, the strain CHL1 could inhabit in soil steadily (4.2-4.7â¯×â¯107 per g dry soil) for a long time. The inoculation with strain CHL1 significantly shorten and relieved the disturbance effects of chlorimuron-ethyl on soil CLPPs. After inoculation with strain CHL1 60 days, the basal respiration rates and Shannon-Wiener indices of groups S10+ and S30+ had recovered to the control level. Even in the high chlorimuron-ethyl-treated groups (S100), the basal respiration rates and Shannon-Wiener indices were significantly higher in S100+ than that in S100-. These results show the outstanding remediation effects of strain CHL1 and provide new insights into the assessment of the remediation process of chlorimuron-ethyl contaminated soils.
Assuntos
Alphaproteobacteria/metabolismo , Herbicidas/metabolismo , Pirimidinas/metabolismo , Poluentes do Solo/metabolismo , Compostos de Sulfonilureia/metabolismo , Recuperação e Remediação AmbientalRESUMO
The serotonergic system plays important roles in multiple functions of the nervous system and its malfunctioning leads to neurological and psychiatric disorders. Here, we show that the cell adhesion molecule close homolog of L1 (CHL1), which has been linked to mental disorders, binds to a peptide stretch in the third intracellular loop of the serotonin 2c (5-HT2c) receptor through its intracellular domain. Moreover, we provide evidence that CHL1 deficiency in mice leads to 5-HT2c-receptor-related reduction in locomotor activity and reactivity to novelty, and that CHL1 regulates signaling pathways triggered by constitutively active isoforms of the 5-HT2c receptor. Furthermore, we found that the 5-HT2c receptor and CHL1 colocalize in striatal and hippocampal GABAergic neurons, and that 5-HT2c receptor phosphorylation and its association with phosphatase and tensin homolog (PTEN) and ß-arrestin 2 is regulated by CHL1. Our results demonstrate that CHL1 regulates signal transduction pathways through constitutively active 5-HT2c receptor isoforms, thereby altering 5-HT2c receptor functions and implicating CHL1 as a new modulator of the serotonergic system.
Assuntos
Comportamento Animal/fisiologia , Moléculas de Adesão Celular/metabolismo , Neurônios GABAérgicos/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Moléculas de Adesão Celular/genética , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Neurônios GABAérgicos/citologia , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Receptor 5-HT2C de Serotonina/genéticaRESUMO
During their sessile mode of life, plants need to endure variations in their environment such as a drastic variability in the nutrient concentration in soil solution. It is almost trivial to say that such fluctuations in the soil modify plant growth, development and phase transitions. However, the signaling pathways underlying the connections between nitrogen related signaling and hormonal signaling controlling growth are still poorly documented. This review is meant to present how nitrate/nitrogen controls hormonal pathways. Furthermore, it is very interesting to highlight the increasing evidence that the hormonal signaling pathways themselves seem to feed back control of the nitrate/nitrogen transport and assimilation to adapt nutrition to growth. This thus defines a feed-forward cycle that finely coordinates plant growth and nutrition.
Assuntos
Nitratos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transporte Biológico , Modelos Biológicos , Transdução de SinaisRESUMO
The cell adhesion molecule close homolog of L1 (CHL1) plays important functional roles in the developing and adult nervous system. In search of the binding partners that mediate the diverse and sometimes opposing functions of CHL1, the extracellular matrix-associated proteins vitronectin and plasminogen activator inhibitor-2 (PAI-2) were identified as novel CHL1 interaction partners and tested for involvement in CHL1-dependent functions during mouse cerebellar development. CHL1-induced cerebellar neurite outgrowth and cell migration at postnatal days 6-8 were inhibited by a CHL1-derived peptide comprising the integrin binding RGD motif, and by antibodies against vitronectin or several integrins, indicating a vitronectin-dependent integrin-mediated pathway. A PAI-2-derived peptide, or antibodies against PAI-2, urokinase type plasminogen activator (uPA), uPA receptor, and several integrins reduced cell migration. CHL1 colocalized with vitronectin, PAI-2, and several integrins in cerebellar granule cells, suggesting an association among these proteins. Interestingly, at the slightly earlier age of 4-5 d, cerebellar neurons did not depend on CHL1 for neuritogenesis and cell migration. However, differentiation of progenitor cells into neurons at this stage was dependent on homophilic CHL1-CHL1 interactions. These observations indicate that homophilic CHL1 trans-interactions regulate differentiation of neuronal progenitor cells at early postnatal stages, while heterophilic trans-interactions of CHL1 with vitronectin, integrins, and the plasminogen activator system regulate neuritogenesis and neuronal cell migration at a later postnatal stage of cerebellar morphogenesis. Thus, within very narrow time windows in postnatal cerebellar development, distinct types of molecular interactions mediated by CHL1 underlie the diverse functions of this protein.