Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cell ; 182(5): 1140-1155.e18, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814015

RESUMO

The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fusão de Membrana/fisiologia , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Células HeLa , Humanos , Polimerização , Transporte Proteico/fisiologia
2.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546617

RESUMO

Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.


Assuntos
Proteínas de Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte , Células Germinativas , Células-Tronco , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B , Citocinese/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo , Células-Tronco/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(17): e2317680121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635626

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery constitutes multisubunit protein complexes that play an essential role in membrane remodeling and trafficking. ESCRTs regulate a wide array of cellular processes, including cytokinetic abscission, cargo sorting into multivesicular bodies (MVBs), membrane repair, and autophagy. Given the versatile functionality of ESCRTs, and the intricate organizational structure of the ESCRT machinery, the targeted modulation of distinct ESCRT complexes is considerably challenging. This study presents a pseudonatural product targeting IST1-CHMP1B within the ESCRT-III complexes. The compound specifically disrupts the interaction between IST1 and CHMP1B, thereby inhibiting the formation of IST1-CHMP1B copolymers essential for normal-topology membrane scission events. While the compound has no impact on cytokinesis, MVB sorting, or biogenesis of extracellular vesicles, it rapidly inhibits transferrin receptor recycling in cells, resulting in the accumulation of transferrin in stalled sorting endosomes. Stalled endosomes become decorated by lipidated LC3, suggesting a link between noncanonical LC3 lipidation and inhibition of the IST1-CHMP1B complex.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Endossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Corpos Multivesiculares/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(31): e2221522120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487085

RESUMO

Cataract is a leading ocular disease causing global blindness. The mechanism of cataractogenesis has not been well defined. Here, we demonstrate that the heat shock protein 90ß (HSP90ß) plays a fundamental role in suppressing cataractogenesis. HSP90ß is the most dominant HSP in normal lens, and its constitutive high level of expression is largely derived from regulation by Sp1 family transcription factors. More importantly, HSP90ß is significantly down-regulated in human cataract patients and in aging mouse lenses, whereas HSP90ß silencing in zebrafish causes cataractogenesis, which can only be rescued by itself but not other HSP90 genes. Mechanistically, HSP90ß can directly interact with CHMP4B, a newly-found client protein involved in control of cytokinesis. HSP90ß silencing causes upregulation of CHMP4B and another client protein, the tumor suppressor p53. CHMP4B upregulation or overexpression induces excessive division of lens epithelial cells without proper differentiation. As a result, these cells were triggered to undergo apoptosis due to activation of the p53/Bak-Bim pathway, leading to cataractogenesis and microphthalmia. Silence of both HSP90ß and CHMP4B restored normal phenotype of zebrafish eye. Together, our results reveal that HSP90ß is a critical inhibitor of cataractogenesis through negative regulation of CHMP4B and the p53-Bak/Bim pathway.


Assuntos
Catarata , Proteínas de Choque Térmico HSP90 , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Envelhecimento/genética , Catarata/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Corpos Multivesiculares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Brain ; 147(1): 109-121, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37639327

RESUMO

We have recently identified the aberrant nuclear accumulation of the ESCRT-III protein CHMP7 as an initiating event that leads to a significant injury to the nuclear pore complex (NPC) characterized by the reduction of specific nucleoporins from the neuronal NPC in sporadic amyotrophic lateral sclerosis (sALS) and C9orf72 ALS/frontotemporal dementia (FTD)-induced pluripotent stem cell-derived neurons (iPSNs), a phenomenon also observed in post-mortem patient tissues. Importantly, this NPC injury is sufficient to contribute to TDP-43 dysfunction and mislocalization, a common pathological hallmark of neurodegenerative diseases. However, the molecular mechanisms and events that give rise to increased nuclear translocation and/or retention of CHMP7 to initiate this pathophysiological cascade remain largely unknown. Here, using an iPSN model of sALS, we demonstrate that impaired NPC permeability barrier integrity and interactions with the LINC complex protein SUN1 facilitate CHMP7 nuclear localization and the subsequent 'activation' of NPC injury cascades. Collectively, our data provide mechanistic insights in the pathophysiological underpinnings of ALS/FTD and highlight SUN1 as a potent contributor to and modifier of CHMP7-mediated toxicity in sALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Neurônios/metabolismo , Proteínas de Membrana , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares , Complexos Endossomais de Distribuição Requeridos para Transporte
6.
Am J Respir Cell Mol Biol ; 70(4): 295-307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207123

RESUMO

The role of autophagy in pulmonary microvascular endothelial cells (PMVECs) is controversial in LPS-induced acute lung injury (ALI). Mixed lineage kinase domain-like pseudokinase (MLKL) has recently been reported to maintain cell survival by facilitating autophagic flux in response to starvation rather than its well-recognized role in necroptosis. Using a mouse PMVEC and LPS-induced ALI model, we showed that in PMVECs, MLKL was phosphorylated (p-MLKL) and autophagic flux was accelerated at the early stage of LPS stimulation (1-3 h), manifested by increases in concentrations of lipidated MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 ß; LC3-II), decreases in concentrations of SQSTM1/p62 (sequestosome 1), and fusion of the autophagosome and lysosome by pHluorin-mKate2-human LC3 assay, which were all reversed by either MLKL inhibitor or siRNA MLKL. In mice, the inhibition of MLKL increased vascular permeability and aggravated mouse ALI upon 3-hour LPS stimulation. The p-MLKL induced by short-term LPS formed multimers to facilitate the closure of the phagophore by HaloTag-LC3 autophagosome completion assay. The charged multivesicular body protein 2A (CHMP2A) is essential in the process of phagophore closure into the nascent autophagosome. In agreement with the p-MLKL change, CHMP2A concentrations markedly increased during 1-3-hour LPS stimulation. CHMP2A knockdown blocked autophagic flux upon LPS stimulation, whereas CHMP2A overexpression boosted autophagic flux and attenuated mouse ALI even in the presence of MLKL inhibitor. We propose that the activated MLKL induced by short-term LPS facilitates autophagic flux by accelerating the closure of the phagophore via CHMP2A, thus protecting PMVECs and alleviating LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Células Endoteliais , Humanos , Lesão Pulmonar Aguda/metabolismo , Autofagia/genética , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Proteínas Quinases/genética
7.
Curr Issues Mol Biol ; 46(2): 1398-1412, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392208

RESUMO

Some charged multivesicular body protein 2B (CHMP2B) mutations are associated with autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTDALS7). The main aim of this study is to clarify the relationship between the expression of mutated CHMP2B protein displaying FTD symptoms and defective neuronal differentiation. First, we illustrate that the expression of CHMP2B with the Asp148Tyr (D148Y) mutation, which preferentially displays FTD phenotypes, blunts neurite process elongation in rat primary cortical neurons. Similar results were observed in the N1E-115 cell line, a model that undergoes neurite elongation. Second, these effects were also accompanied by changes in neuronal differentiation marker protein expression. Third, wild-type CHMP2B protein was indeed localized in the endosomal sorting complexes required to transport (ESCRT)-like structures throughout the cytoplasm. In contrast, CHMP2B with the D148Y mutation exhibited aggregation-like structures and accumulated in the Golgi body. Fourth, among currently known Golgi stress regulators, the expression levels of Hsp47, which has protective effects on the Golgi body, were decreased in cells expressing CHMP2B with the D148Y mutation. Fifth, Arf4, another Golgi stress-signaling molecule, was increased in mutant-expressing cells. Finally, when transfecting Hsp47 or knocking down Arf4 with small interfering (si)RNA, cellular phenotypes in mutant-expressing cells were recovered. These results suggest that CHMP2B with the D148Y mutation, acting through Golgi stress signaling, is negatively involved in the regulation of neuronal cell morphological differentiation, providing evidence that a molecule controlling Golgi stress may be one of the potential FTD therapeutic targets at the molecular and cellular levels.

8.
J Exp Bot ; 75(8): 2372-2384, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206130

RESUMO

Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Triticum , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Triticum/genética , Melhoramento Vegetal , Endossomos/metabolismo , Pólen/genética
9.
J Virol ; 96(3): e0162421, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34851141

RESUMO

Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno , Ubiquitinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Infecções por Flavivirus/transmissão , Humanos , Modelos Biológicos , Proteólise , Carrapatos/virologia , Replicação Viral
10.
J Neurochem ; 160(3): 412-425, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855215

RESUMO

Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas do Tecido Nervoso/genética , Sinapses/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Demência Frontotemporal/patologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Receptores Pré-Sinápticos/metabolismo
11.
Acta Neurol Scand ; 145(5): 529-540, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34997757

RESUMO

OBJECTIVES: Chromosome 3-linked frontotemporal dementia (FTD-3) is caused by a c.532-1G > C mutation in the CHMP2B gene. It is extensively studied in a Danish family comprising one of the largest families with an autosomal dominantly inherited frontotemporal dementia (FTD). This retrospective cohort study utilizes demographics to identify risk factors for onset, progression, life expectancy, and death in CHMP2B-mediated FTD. The pedigree of 528 individuals in six generations is provided, and clinical descriptions are presented. Choices of genetic testing are evaluated. MATERIALS AND METHODS: Demographic and lifestyle factors were assessed in survival analysis in all identified CHMP2B mutation carriers (44 clinically affected FTD-3 patients and 16 presymptomatic CHMP2B mutation carriers). Predictors of onset and progression included sex, parental disease course, education, and vascular risk factors. Life expectancy was established by matching CHMP2B mutation carriers with average life expectancies in Denmark. RESULTS: Disease course was not correlated to parental disease course and seemed unmodified by lifestyle factors. Diagnosis was recognized at an earlier age in members with higher levels of education, probably reflecting an early dysexecutive syndrome, unmasked earlier in people with higher work-related requirements. Carriers of the CHMP2B mutation had a significant reduction in life expectancy of 13 years. Predictive genetic testing was chosen by 20% of at-risk family members. CONCLUSIONS: CHMP2B-mediated FTD is substantiated as an autosomal dominantly inherited disease of complete penetrance. The clinical phenotype is a behavioral variant FTD. The disease course is unpredictable, and life expectancy is reduced. The findings may be applicable to other genetic FTD subtypes.


Assuntos
Demência Frontotemporal , Estudos de Coortes , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Estudos Retrospectivos
12.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163252

RESUMO

Developing effective treatments for neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) requires understanding of the underlying pathomechanisms that contribute to the motor neuron loss that defines the disease. As it causes the largest fraction of familial ALS cases, considerable effort has focused on hexanucleotide repeat expansions in the C9ORF72 gene, which encode toxic repeat RNA and dipeptide repeat (DPR) proteins. Both the repeat RNA and DPRs interact with and perturb multiple elements of the nuclear transport machinery, including shuttling nuclear transport receptors, the Ran GTPase and the nucleoporin proteins (nups) that build the nuclear pore complex (NPC). Here, we consider recent work that describes changes to the molecular composition of the NPC in C9ORF72 model and patient neurons in the context of quality control mechanisms that function at the nuclear envelope (NE). For example, changes to NPC structure may be caused by the dysregulation of a conserved NE surveillance pathway mediated by the endosomal sorting complexes required for the transport protein, CHMP7. Thus, these studies are introducing NE and NPC quality control pathways as key elements in a pathological cascade that leads to C9ORF72 ALS, opening entirely new experimental avenues and possibilities for targeted therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica/genética , Homeostase/genética , Poro Nuclear/genética , Transporte Ativo do Núcleo Celular/fisiologia , Humanos , Neurônios Motores/fisiologia
13.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886850

RESUMO

The evolutionary conserved ESCRT-III complex is a device for membrane remodelling in various cellular processes, such as the formation of intraluminal vesicles (ILVs), cytokinesis, and membrane repair. The common theme of all these processes is the abscission of membrane away from the cytosol. At its heart in Drosophila is Shrub, CHMP4 in humans, which dynamically polymerises into filaments through electrostatic interactions among the protomers. For the full activity, Shrub/CHMP4 requires physical interaction with members of the Lgd protein family. This interaction is mediated by the odd-numbered DM14 domains of Lgd, which bind to the negative interaction surface of Shrub. While only one Lgd and one Shrub exist in the genome of Drosophila, mammals have two Lgd orthologs, LGD1/CC2D1B and LGD2/CC2D1A, as well as three CHMP4s in their genomes, CHMP4A, CHMP4B, and CHMP4C. The rationale for the diversification of the ESCRT components is not understood. We here use Drosophila as a model system to analyse the activity of the human orthologs of Shrub and Lgd at an organismal level. This enabled us to use the plethora of available techniques available for Drosophila. We present evidence that CHMP4B is the true ortholog of Shrub, while CHMP4A and CHMP4C have diverging activities. Nevertheless, CHMP4A and CHMP4C can enhance the activity of CHMP4B, raising the possibility that they can form heteropolymers in vivo. Our structure-function analysis of the LGD1 and LGD2 indicates that the C2 domain of the LGD proteins has a specific function beyond protein stability and subcellular localisation. Moreover, our data specify that CHMP4B interacts more efficiently with LGD1 than with LGD2.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Complexos Endossomais de Distribuição Requeridos para Transporte , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas do Tecido Nervoso , Proteínas Repressoras/genética
14.
Neurobiol Dis ; 147: 105144, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144171

RESUMO

Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum.


Assuntos
Esclerose Lateral Amiotrófica/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Animais , Humanos , Mutação
15.
Biochem Biophys Res Commun ; 551: 140-147, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33740620

RESUMO

Cell migration is a complex and important process in cancer progression. Vimentin has pivotal roles in cancer cell migration, and various signaling pathways including the AKT pathway are involved in cancer cell migration via vimentin regulation. Recent studies have revealed that voltage-gated potassium (Kv) channels have important functions in cancer cell migration; however, the exact mechanism is still unclear. In the present study, we focused on Kv3 channels with vimentin in cancer migration using human cervical cancer cells (HeLa) and canine mammary tumor cells (CHMp). Cancer cell migration was significantly inhibited, and vimentin expression was significantly decreased by Kv3 blocker, BDS-II. The Kv3 blocker also inactivated the AKT pathway in HeLa cells. In addition, reduced expressions of vimentin and Kv3.4 were observed in HeLa cells when treated with AKT blocker, MK2206. These results suggest that Kv3 channels play important roles in cancer cell migration by regulating vimentin and having closely related with the AKT pathway in human cervical cancer cells.


Assuntos
Movimento Celular , Neoplasias/metabolismo , Neoplasias/patologia , Canais de Potássio Shaw/metabolismo , Vimentina/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Cães , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Potássio Shaw/antagonistas & inibidores , Vimentina/biossíntese
16.
J Neuroinflammation ; 18(1): 257, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740380

RESUMO

BACKGROUND: Activation of the absent in melanoma 2 (AIM2) inflammasome and impaired autophagosome clearance in neurons contribute significantly to cardiac arrest and return of spontaneous circulation (CA-ROSC) injury, while the mechanism by which the AIM2 inflammasome is regulated and relationship between the processes remain poorly understood. Recently, charged multivesicular body protein 2A (CHMP2A), a subunit of endosomal sorting complex required for transport (ESCRT), was shown to regulate phagophore closure, and its depletion led to the accumulation of autophagosomes and induced cell death. Here, we investigated whether CHMP2A-mediated autophagy was an underlying mechanism of AIM2-associated inflammation after CA-ROSC and explored the potential link between the AIM2 inflammasome and autophagy under ischemic conditions. METHODS: AIM2 inflammasome activation and autophagic flux in the cortex were assessed in the CA-ROSC rat model. We injected LV-Vector or LV-CHMP2A virus into the motor cortex with stereotaxic coordinates and divided the rats into four groups: Sham, CA, CA+LV-Vector, and CA+LV-CHMP2A. Neurologic deficit scores (NDSs), balance beam tests, histopathological injury of the brain, and expression of the AIM2 inflammasome and proinflammatory cytokines were analyzed. RESULTS: AIM2 inflammasome activation and increased interleukin 1 beta (IL-1ß) and IL-18 release were concurrent with reduced levels of CHMP2A-induced autophagy in CA-ROSC rat neurons. In addition, silencing CHMP2A resulted in autophagosome accumulation and decreased autophagic degradation of the AIM2 inflammasome. In parallel, a reduction in AIM2 contributed to autophagy activation and mitigated oxygen-glucose deprivation and reperfusion (OGD-Rep)-induced inflammation. Notably, CHMP2A overexpression in the cortex hindered neuroinflammation, protected against ischemic brain damage, and improved neurologic outcomes after CA. CONCLUSIONS: Our results support a potential link between autophagy and AIM2 signaling, and targeting CHMP2A may provide new insights into neuroinflammation in the early phase during CA-ROSC.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Parada Cardíaca/complicações , Doenças Neuroinflamatórias/metabolismo , Animais , Autofagia/fisiologia , Isquemia Encefálica/etiologia , Parada Cardíaca/metabolismo , Doenças Neuroinflamatórias/etiologia , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo
17.
J Biomed Sci ; 28(1): 19, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750401

RESUMO

BACKGROUND: The bile salt export pump (BSEP) is a pivotal apical/canalicular bile salt transporter in hepatocytes that drives the bile flow. Defects in BSEP function and canalicular expression could lead to a spectrum of cholestatic liver diseases. One prominent manifestation of BSEP-associated cholestasis is the defective canalicular localization and cytoplasmic retention of BSEP. However, the etiology of impaired BSEP targeting to the canalicular membrane is not fully understood. Our goal was to discover what molecule could interact with BSEP and affect its post-Golgi sorting. METHODS: The human BSEP amino acids (a.a.) 491-630 was used as bait to screen a human fetal liver cDNA library through yeast two-hybrid system. We identified a BSEP-interacting candidate and showed the interaction and colocalization in the co-immunoprecipitation in hepatoma cell lines and histological staining in human liver samples. Temperature shift assays were used to study the post-Golgi trafficking of BSEP. We further determine the functional impacts of the BSEP-interacting candidate on BSEP in vitro. A hydrodynamically injected mouse model was established for in vivo characterizing the long-term impacts on BSEP. RESULTS: We identified that charged multivesicular body protein 5 (CHMP5), a molecule of the endosomal protein complex required for transport subcomplex-III (ESCRT-III), interacted and co-localized with BSEP in the subapical compartments (SACs) in developing human livers. Cholestatic BSEP mutations in the CHMP5-interaction region have defects in canalicular targeting and aberrant retention at the SACs. Post-Golgi delivery of BSEP and bile acid secretion were impaired in ESCRT-III perturbation or CHMP5-knockdown hepatic cellular and mouse models. This ESCRT-III-mediated BSEP sorting preceded Rab11A-regulated apical cycling of BSEP. CONCLUSIONS: Our results showed the first example that ESCRT-III is essential for canalicular trafficking of apical membrane proteins, and provide new targets for therapeutic approaches in BSEP associated cholestasis.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Pré-Escolar , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Lactente , Recém-Nascido , Fígado , Masculino , Camundongos , Transporte Proteico
18.
Adv Exp Med Biol ; 1287: 31-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034024

RESUMO

The endosomal pathway plays a pivotal role upon signal transduction in the Notch pathway. Recent work on lethal (2) giant discs (lgd) points to an additional critical role in avoiding uncontrolled ligand-independent signalling during trafficking of the Notch receptor through the endosomal pathway to the lysosome for degradation. In this chapter, we will outline the journey of Notch through the endosomal system and present an overview of the current knowledge about Lgd and its mammalian orthologs Lgd1/CC2D1b and Lgd2/CC2D1a. We will then discuss how Notch is activated in the absence of lgd function in Drosophila and ask whether there is evidence that a similar ligand-independent activation of the Notch pathway can also happen in mammals if the orthologs are inactivated.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Neoplasias/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Endossomos/metabolismo , Humanos
19.
Proc Natl Acad Sci U S A ; 115(38): E8900-E8908, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181294

RESUMO

Cytokinetic abscission facilitates the irreversible separation of daughter cells. This process requires the endosomal-sorting complexes required for transport (ESCRT) machinery and is tightly regulated by charged multivesicular body protein 4C (CHMP4C), an ESCRT-III subunit that engages the abscission checkpoint (NoCut) in response to mitotic problems such as persisting chromatin bridges within the midbody. Importantly, a human polymorphism in CHMP4C (rs35094336, CHMP4CT232) increases cancer susceptibility. Here, we explain the structural and functional basis for this cancer association: The CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, impairs binding to the early-acting ESCRT factor ALIX, and disrupts the abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased levels of DNA damage and are sensitized to several conditions that increase chromosome missegregation, including DNA replication stress, inhibition of the mitotic checkpoint, and loss of p53. Our data demonstrate the biological importance of the abscission checkpoint and suggest that dysregulation of abscission by CHMP4CT232 may synergize with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Predisposição Genética para Doença/genética , Instabilidade Genômica/genética , Neoplasias/genética , Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Cristalografia por Raios X , Dano ao DNA/genética , Replicação do DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Mitose/genética , Fosforilação , Polimorfismo Genético , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
BMC Biol ; 18(1): 200, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33349255

RESUMO

BACKGROUND: A major task of the endosomal sorting complex required for transport (ESCRT) machinery is the pinching off of cargo-loaded intraluminal vesicles (ILVs) into the lumen of maturing endosomes (MEs), which is essential for the complete degradation of transmembrane proteins in the lysosome. The ESCRT machinery is also required for the termination of signalling through activated signalling receptors, as it separates their intracellular domains from the cytosol. At the heart of the machinery lies the ESCRT-III complex, which is required for an increasing number of processes where membrane regions are abscised away from the cytosol. The core of ESCRT-III, comprising four members of the CHMP protein family, organises the assembly of a homopolymer of CHMP4, Shrub in Drosophila, that is essential for abscission. We and others identified the tumour-suppressor lethal (2) giant discs (Lgd)/CC2D1 as a physical interactor of Shrub/CHMP4 in Drosophila and mammals, respectively. RESULTS: Here, we show that the loss of function of lgd constitutes a state of reduced activity of Shrub/CHMP4/ESCRT-III. This hypomorphic shrub mutant situation causes a slight decrease in the rate of ILV formation that appears to result in incomplete incorporation of Notch into ILVs. We found that the forced incorporation in ILVs of lgd mutant MEs suppresses the uncontrolled and ligand-independent activation of Notch. Moreover, the analysis of Su(dx) lgd double mutants clarifies their relationship and suggests that they are not operating in a linear pathway. We could show that, despite prolonged lifetime, the MEs of lgd mutants have a similar ILV density as wild-type but less than rab7 mutant MEs, suggesting the rate in lgd mutants is slightly reduced. The analysis of the MEs of wild-type and mutant cells in the electron microscope revealed that the ESCRT-containing electron-dense microdomains of ILV formation at the limiting membrane are elongated, indicating a change in ESCRT activity. Since lgd mutants can be rescued to normal adult flies if extra copies of shrub (or its mammalian ortholog CHMP4B) are added into the genome, we conclude that the net activity of Shrub is reduced upon loss of lgd function. Finally, we show that, in solution, CHMP4B/Shrub exists in two conformations. LGD1/Lgd binding does not affect the conformational state of Shrub, suggesting that Lgd is not a chaperone for Shrub/CHMP4B. CONCLUSION: Our results suggest that Lgd is required for the full activity of Shrub/ESCRT-III. In its absence, the activity of the ESCRT machinery is reduced. This reduction causes the escape of a fraction of cargo, among it Notch, from incorporation into ILVs, which in turn leads to an activation of this fraction of Notch after fusion of the ME with the lysosome. Our results highlight the importance of the incorporation of Notch into ILV not only to assure complete degradation, but also to avoid uncontrolled activation of the pathway.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Masculino , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa