Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Curr Issues Mol Biol ; 46(2): 1398-1412, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392208

RESUMO

Some charged multivesicular body protein 2B (CHMP2B) mutations are associated with autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTDALS7). The main aim of this study is to clarify the relationship between the expression of mutated CHMP2B protein displaying FTD symptoms and defective neuronal differentiation. First, we illustrate that the expression of CHMP2B with the Asp148Tyr (D148Y) mutation, which preferentially displays FTD phenotypes, blunts neurite process elongation in rat primary cortical neurons. Similar results were observed in the N1E-115 cell line, a model that undergoes neurite elongation. Second, these effects were also accompanied by changes in neuronal differentiation marker protein expression. Third, wild-type CHMP2B protein was indeed localized in the endosomal sorting complexes required to transport (ESCRT)-like structures throughout the cytoplasm. In contrast, CHMP2B with the D148Y mutation exhibited aggregation-like structures and accumulated in the Golgi body. Fourth, among currently known Golgi stress regulators, the expression levels of Hsp47, which has protective effects on the Golgi body, were decreased in cells expressing CHMP2B with the D148Y mutation. Fifth, Arf4, another Golgi stress-signaling molecule, was increased in mutant-expressing cells. Finally, when transfecting Hsp47 or knocking down Arf4 with small interfering (si)RNA, cellular phenotypes in mutant-expressing cells were recovered. These results suggest that CHMP2B with the D148Y mutation, acting through Golgi stress signaling, is negatively involved in the regulation of neuronal cell morphological differentiation, providing evidence that a molecule controlling Golgi stress may be one of the potential FTD therapeutic targets at the molecular and cellular levels.

2.
J Neurochem ; 160(3): 412-425, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855215

RESUMO

Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas do Tecido Nervoso/genética , Sinapses/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Demência Frontotemporal/patologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Receptores Pré-Sinápticos/metabolismo
3.
Acta Neurol Scand ; 145(5): 529-540, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34997757

RESUMO

OBJECTIVES: Chromosome 3-linked frontotemporal dementia (FTD-3) is caused by a c.532-1G > C mutation in the CHMP2B gene. It is extensively studied in a Danish family comprising one of the largest families with an autosomal dominantly inherited frontotemporal dementia (FTD). This retrospective cohort study utilizes demographics to identify risk factors for onset, progression, life expectancy, and death in CHMP2B-mediated FTD. The pedigree of 528 individuals in six generations is provided, and clinical descriptions are presented. Choices of genetic testing are evaluated. MATERIALS AND METHODS: Demographic and lifestyle factors were assessed in survival analysis in all identified CHMP2B mutation carriers (44 clinically affected FTD-3 patients and 16 presymptomatic CHMP2B mutation carriers). Predictors of onset and progression included sex, parental disease course, education, and vascular risk factors. Life expectancy was established by matching CHMP2B mutation carriers with average life expectancies in Denmark. RESULTS: Disease course was not correlated to parental disease course and seemed unmodified by lifestyle factors. Diagnosis was recognized at an earlier age in members with higher levels of education, probably reflecting an early dysexecutive syndrome, unmasked earlier in people with higher work-related requirements. Carriers of the CHMP2B mutation had a significant reduction in life expectancy of 13 years. Predictive genetic testing was chosen by 20% of at-risk family members. CONCLUSIONS: CHMP2B-mediated FTD is substantiated as an autosomal dominantly inherited disease of complete penetrance. The clinical phenotype is a behavioral variant FTD. The disease course is unpredictable, and life expectancy is reduced. The findings may be applicable to other genetic FTD subtypes.


Assuntos
Demência Frontotemporal , Estudos de Coortes , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Estudos Retrospectivos
4.
Neurobiol Dis ; 147: 105144, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144171

RESUMO

Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum.


Assuntos
Esclerose Lateral Amiotrófica/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Animais , Humanos , Mutação
5.
Neurobiol Dis ; 144: 105047, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32801000

RESUMO

Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. It represents part of the FTD-Amyotrophic Lateral Sclerosis (ALS) spectrum, a continuum of genetically and pathologically overlapping disorders. FTD-causing mutations in CHMP2B, a gene encoding a core component of the heteromeric ESCRT-III Complex, lead to perturbed endosomal-lysosomal and autophagic trafficking with impaired proteostasis. While CHMP2B mutations are rare, dysfunctional endosomal-lysosomal signalling is common across the FTD-ALS spectrum. Using our established Drosophila and mammalian models of CHMP2BIntron5 induced FTD we demonstrate that the FDA-approved compound Ursodeoxycholic Acid (UDCA) conveys neuroprotection, downstream of endosomal-lysosomal dysfunction in both Drosophila and primary mammalian neurons. UDCA exhibited a dose dependent rescue of neuronal structure and function in Drosophila pan-neuronally expressing CHMP2BIntron5. Rescue of CHMP2BIntron5 dependent dendritic collapse and apoptosis with UDCA in rat primary neurons was also observed. UDCA failed to ameliorate aberrant accumulation of endosomal and autophagic organelles or ubiquitinated neuronal inclusions in both models. We demonstrate the neuroprotective activity of UDCA downstream of endosomal-lysosomal and autophagic dysfunction, delineating the molecular mode of action of UDCA and highlighting its potential as a therapeutic for the treatment of FTD-ALS spectrum disorders.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Drosophila/genética , Demência Frontotemporal/genética , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sinapses/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Proteínas de Transporte Vesicular/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/patologia , Modelos Animais de Doenças , Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/patologia , Cultura Primária de Células , Ratos , Sinapses/patologia , Proteínas Ubiquitinadas/efeitos dos fármacos , Proteínas Ubiquitinadas/metabolismo
6.
Neurobiol Dis ; 136: 104710, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837425

RESUMO

Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with currently no cure. These two diseases share a clinical continuum with overlapping genetic causes. Mutations in the CHMP2B gene are found in patients with ALS, FTD and ALS-FTD. To highlight deregulated mechanisms occurring in ALS-FTD linked to the CHMP2B gene, we performed a whole transcriptomic study on lumbar spinal cord from CHMP2Bintron5 mice, a model that develops progressive motor alterations associated with dementia symptoms reminiscent of both ALS and FTD. To gain insight into the transcriptomic changes taking place during disease progression this study was performed at three stages: asymptomatic, symptomatic and end stage. We showed that before appearance of motor symptoms, the major disrupted mechanisms were linked with the immune system/inflammatory response and lipid metabolism. These processes were progressively replaced by alterations of neuronal electric activity as motor symptoms appeared, alterations that could lead to motor neuron dysfunction. To investigate overlapping alterations in gene expression between two ALS-causing genes, we then compared the transcriptome of symptomatic CHMP2Bintron5 mice with the one of symptomatic SOD1G86R mice and found the same families deregulated providing further insights into common underlying dysfunction of biological pathways, disrupted or disturbed in ALS. Altogether, this study provides a database to explore potential new candidate genes involved in the CHMP2Bintron5-based pathogenesis of ALS, and provides molecular clues to further understand the functional consequences that diseased neurons expressing CHMP2B mutant may have on their neighbor cells.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Proteínas do Tecido Nervoso/genética , Superóxido Dismutase-1/genética , Transcriptoma/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Medula Espinal/metabolismo , Medula Espinal/patologia
7.
J Cell Sci ; 132(4)2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29967034

RESUMO

Endosomal sorting complexes required for transport (ESCRT)-III family proteins catalyze membrane remodeling processes that stabilize and constrict membrane structures. It has been proposed that stable ESCRT-III complexes containing CHMP2B could establish diffusion barriers at the post-synaptic spine neck. In order to better understand this process, we developed a novel method based on fusion of giant unilamellar vesicles to reconstitute ESCRT-III proteins inside GUVs, from which membrane nanotubes are pulled. The new assay ensures that ESCRT-III proteins polymerize only when they become exposed to physiologically relevant membrane topology mimicking the complex geometry of post-synaptic spines. We establish that CHMP2B, both full-length and with a C-terminal deletion (ΔC), preferentially binds to membranes containing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Moreover, we show that CHMP2B preferentially accumulates at the neck of membrane nanotubes, and provide evidence that CHMP2B-ΔC prevents the diffusion of PI(4,5)P2 lipids and membrane-bound proteins across the tube neck. This indicates that CHMP2B polymers formed at a membrane neck may function as a diffusion barrier, highlighting a potential important function of CHMP2B in maintaining synaptic spine structures.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana/metabolismo , Lipossomas Unilamelares/metabolismo , Pareamento Cromossômico/fisiologia , Difusão , Escherichia coli , Proteínas do Tecido Nervoso/metabolismo , Coluna Vertebral/metabolismo
8.
Dement Geriatr Cogn Disord ; 49(6): 533-538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33626531

RESUMO

INTRODUCTION: The potential of neurofilament light (NfL) as a blood-based biomarker is currently being investigated in autosomal dominant neurodegenerative disease. This study explores the clinical utility of serum-NfL in frontotemporal dementia due to CHMP2B mutation (FTD-3). METHODS: This cross-sectional study included serum and CSF data from 38 members of the Danish FTD-3 family: 12 affected CHMP2B mutation carriers, 10 presymptomatic carriers, and 16 noncarriers. Serum-NfL levels measured by single-molecule array (Simoa) technology were tested for associations with the clinical groups and clinical parameters. Serum and CSF data were compared, and CSF/serum-albumin ratio was included as a measure of blood-brain barrier (BBB) function. RESULTS: Serum-NfL concentrations were significantly increased in symptomatic CHMP2B mutation carriers compared to presymptomatic carriers and in both groups compared to healthy family controls. Serum-NfL levels appear to increase progressively with age in presymptomatic carriers, and this is perhaps followed by a change in trajectory when patients become symptomatic. Measurements of NfL in serum and CSF were highly correlated and fold-changes in serum and CSF between clinical groups were similar. Increase in serum-NFL levels was correlated with reduced ACE-score. Higher CSF/serum-albumin ratios were demonstrated in FTD-3 patients, but this did not affect the significant associations between serum-NfL and clinical groups. CONCLUSION: Serum-NfL could be utilized as an accurate surrogate marker of CSF levels to segregate symptomatic CHMP2B carriers, presymptomatic carriers, and non-carriers. The observed indication of BBB dysfunction in FTD-3 patients did not confound this use of serum-NfL. The results support the occurrence of mutation-related differences in NfL dynamics in familial FTD.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/sangue , Demência Frontotemporal/genética , Mutação , Proteínas de Neurofilamentos/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Filamentos Intermediários , Masculino , Pessoa de Meia-Idade
9.
Int J Mol Sci ; 19(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890743

RESUMO

Frontotemporal dementia (FTD) is the second most common senile neurodegenerative disease. FTD is a heterogeneous disease that can be classified into several subtypes. A mutation in CHMP2B locus (CHMP2Bintron5), which encodes a component of endosomal sorting complex required for transport-III (ESCRT-III), is associated with a rare hereditary subtype of FTD linked to chromosome 3 (FTD-3). ESCRT is involved in critical cellular processes such as multivesicular body (MVB) formation during endosomal⁻lysosomal pathway and autophagy. ESCRT mutants causes diverse physiological defects primarily due to accumulation of endosomes and defective MVBs resulting in misregulation of signaling pathways. Charged multivesicular body protein 2B (CHMP2B) is important for neuronal physiology which especially rely on precise regulation of protein homeostasis due to their post-mitotic status. Drosophila has proven to be an excellent model for charaterization of mechanistic underpinning of neurodegenerative disorders including FTD. In this review, current understanding of various FTD-related mutations is discussed with a focus on Drosophila models of CHMP2Bintron5-associated FTD.


Assuntos
Drosophila melanogaster/genética , Endossomos/metabolismo , Demência Frontotemporal/genética , Lisossomos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Mutação/genética
10.
Acta Neuropathol ; 130(4): 511-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358247

RESUMO

Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The aggregates are an early and progressive pathology that occur at 3 months of age and increase in both size and number over time. These autofluorescent aggregates are not observed in mice expressing wild-type CHMP2B, or in non-transgenic controls, indicating that they are a specific pathology caused by mutant CHMP2B. Ultrastructural analysis and immuno- gold labelling confirmed that they are derived from the endolysosomal system. Consistent with these findings, CHMP2B mutation patient brains contain morphologically similar autofluorescent aggregates. These aggregates occur significantly more frequently in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Demência Frontotemporal/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Mutação , Neurônios/metabolismo , Neurônios/patologia , Multimerização Proteica
11.
J Neurogenet ; 28(1-2): 30-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24506814

RESUMO

Increasing evidence suggests that frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) share some clinical, pathological, and molecular features as part of a common neurodegenerative spectrum disorder. In recent years, enormous progress has been made in identifying both pathological proteins and genetic mutations associated with FTD-ALS. However, the molecular pathogenic mechanisms of disease onset and progression remain largely unknown. Recent studies have uncovered unexpected links between FTD-ALS and multiple aspects of RNA metabolism, setting the stage for further understanding of the disorder. Here, the authors will focus on microRNAs and review the emerging roles of these small RNAs in several aspects of FTD-ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , MicroRNAs/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Humanos , MicroRNAs/metabolismo , Mutação/genética
12.
Arch Biochem Biophys ; 545: 83-91, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24440309

RESUMO

The multivesicular body (MVB) sorting pathway is a mechanism for delivering transmembrane proteins into the lumen of the lysosome for degradation. ESCRT-III is the final complex in the pathway that assembles on endosomes and executes membrane scission of intraluminal vesicles. In addition, proteins of this complex are involved in other topologically similar processes such as cytokinesis, virus egress and autophagy. Here we show that protein kinase CK2α is involved in the phosphorylation of the ESCRT-III subunits CHMP3 and CHMP2B, as well as of VPS4B/SKD1, an ATPase that mediates ESCRT-III disassembly. This phosphorylation is observed both in vitro and in cells. While we do not observe recruitment of CK2α to endosomes, we demonstrate the localization of CK2α to midbodies during cytokinesis. Phosphomimetic and non-phosphorylatable mutants of ESCRT-III proteins can still bind endosomes and localize to midbodies, indicating that CK2α does not regulate ESCRT-III localization. Finally, we analyzed two cellular functions where CHMP3, CHMP2B and VPS4 are known to be involved, epidermal growth factor degradation and cytokinetic abscission. We demonstrate that the former is impaired by CK2α downregulation whereas the latter is not affected. Taken together, our results indicate that CK2α regulates the function of ESCRT-III proteins in MVB sorting.


Assuntos
Adenosina Trifosfatases/metabolismo , Caseína Quinase II/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/análise , Caseína Quinase II/análise , Caseína Quinase II/genética , Regulação para Baixo , Complexos Endossomais de Distribuição Requeridos para Transporte/análise , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilação
13.
Mol Genet Genomic Med ; 11(8): e2222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37272767

RESUMO

BACKGROUND: Frontotemporal dementia (FTD) has genetic heterogeneity, and the endosomal ESCRTIII-complex subunit CHMP2B variant is a rare cause of FTD. The mutations in CHMP2B were first identified in a large Danish pedigree with autosomal dominant FTD, and have also been found in several individuals from Belgium, France, the United States, and Türkiye. In the Chinese population, cases of CHMP2B variant-associated FTD have never been reported. METHODS: The spectrum of clinical symptoms and the genetic analysis of the presented patient were identified and investigated. Besides this case, we assessed previously reported cases with CHMP2B gene mutations. RESULTS: This study presents a Chinese patient harboring a novel heterozygous A-to-T variant (NM_014043:c.532-2A>T) in CHMP2B with a phenotype compatible with FTD. Although previous reports suggested cases of CHMP2B variant-associated FTD initially presented with personality changes and stereotypical movements at the age of 50, this case was characterized by psychosis involving delusion of persecution, auditory hallucination, and suspiciousness at the earlier onset age of 44. Minigene splicing assay revealed that the splice-site variant could result in the retention of intron 5. CONCLUSION: This is the first case of CHMP2B variant-associated FTD reported in the Chinese population. The novel c.532-2A>T variant in the acceptor splice site of exon 6 retaining intron 5 was predicted to cause truncated protein and protein conformation changes. This discovery may expand the genetic and phenotypic spectrum of CHMP2B variant-associated FTD.


Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Proteínas do Tecido Nervoso/genética , Mutação , Fenótipo , China , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
14.
Neurol Int ; 15(3): 980-993, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606396

RESUMO

Frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTD/ALS7) is an autosomal dominant neurodegenerative disorder characterized by the onset of FTD and/or ALS, mainly in adulthood. Patients with some types of mutations, including the Thr104Asn (T104N) mutation of charged multivesicular body protein 2B (CHMP2B), have predominantly ALS phenotypes, whereas patients with other mutations have predominantly FTD phenotypes. A few mutations result in patients having both phenotypes approximately equally; however, the reason why phenotypes differ depending on the position of the mutation is unknown. CHMP2B comprises one part of the endosomal sorting complexes required for transport (ESCRT), specifically ESCRT-III, in the cytoplasm. We describe here, for the first time, that CHMP2B with the T104N mutation inhibits neuronal process elongation in the N1E-115 cell line, a model line undergoing neuronal differentiation. This inhibitory phenotype was accompanied by changes in marker protein expression. Of note, CHMP2B with the T104N mutation, but not the wild-type form, was preferentially accumulated in the Golgi body. Of the four major Golgi stress signaling pathways currently known, the pathway through Arf4, the small GTPase, was specifically upregulated in cells expressing CHMP2B with the T104N mutation. Conversely, knockdown of Arf4 with the cognate small interfering (si)RNA recovered the neuronal process elongation inhibited by the T104N mutation. These results suggest that the T104N mutation of CHMP2B inhibits morphological differentiation by triggering Golgi stress signaling, revealing a possible therapeutic molecular target for recovering potential molecular and cellular phenotypes underlying FTD/ALS7.

15.
F1000Res ; 12: 884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635943

RESUMO

Charged multivesicular body protein 2B is a subunit of the endosomal sorting complex required for transport III (ESRCT-III), a complex implicated in the lysosomal degradation pathway and formation of multivesicular bodies. Mutations to the CHMP2B gene can result in abnormal protein aggregates in neurons and is therefore predicted to be associated in neurodegenerative diseases, including across the ALS-FTD spectrum. Through our standardized experimental protocol which compares read-outs in knockout cell lines and isogenic parental controls, this study aims to enhance the reproducibility of research on this target by characterizing eight commercial antibodies against charged multivesicular body protein 2b using Western Blot, immunoprecipitation, and immunofluorescence. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Corpos Multivesiculares , Reprodutibilidade dos Testes , Western Blotting , Imunofluorescência , Imunoprecipitação , Anticorpos
16.
Cancer Commun (Lond) ; 43(5): 582-612, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37005481

RESUMO

BACKGROUND: Nuclear Yes1-associated transcriptional regulator (YAP1) promotes tumor progression. However, the function of cytoplasmic YAP1 in breast cancer cells and its impact on the survival of breast cancer patients remain unclear. Our research aimed to explore the biological function of cytoplasmic YAP1 in breast cancer cells and the possibility of cytoplasmic YAP1 as a predictive marker of breast cancer survival. METHODS: We constructed cell mutant models, including NLS-YAP15SA (nuclear localized), YAP1S94A (incapable of binding to the TEA domain transcription factor family) and YAP1S127D (cytoplasmic localized), and used Cell Counting Kit-8 (CCK-8) assays, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays, and Western blotting (WB) analysis to detect cell proliferation and apoptosis. The specific mechanism of cytoplasmic YAP1-mediated endosomal sorting complexes required for transport III (ESCRT-III) assembly was studied by co-immunoprecipitation, immunofluorescence staining, and WB analysis. Epigallocatechin gallate (EGCG) was used to simulate YAP1 retention in the cytoplasm in in vitro and in vivo experiments to study the function of cytoplasmic YAP1. YAP1 binding to NEDD4-like E3 ubiquitin protein ligase (NEDD4L) was identified using mass spectrometry and was verified in vitro. Breast tissue microarrays were used to analyze the relationship between cytoplasmic YAP1 expression and the survival of breast cancer patients. RESULTS: YAP1 was mainly expressed in the cytoplasm in breast cancer cells. Cytoplasmic YAP1 promoted autophagic death of breast cancer cells. Cytoplasmic YAP1 bound to the ESCRT-III complex subunits charged multivesicular body protein 2B (CHMP2B) and vacuolar protein sorting 4 homolog B (VPS4B), promoting assembly of CHMP2B-VPS4B and activating autophagosome formation. EGCG retained YAP1 in the cytoplasm, promoting the assembly of CHMP2B-VPS4B to promote autophagic death of breast cancer cells. YAP1 bound to NEDD4L, and NEDD4L mediated ubiquitination and degradation of YAP1. Breast tissue microarrays revealed that high levels of cytoplasmic YAP1 were beneficial to the survival of breast cancer patients. CONCLUSIONS: Cytoplasmic YAP1 mediated autophagic death of breast cancer cells by promoting assembly of the ESCRT-III complex; furthermore, we established a new breast cancer survival prediction model based on cytoplasmic YAP1 expression.


Assuntos
Morte Celular Autofágica , Neoplasias da Mama , Feminino , Humanos , Citoplasma/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição/genética
17.
Acta Neuropathol Commun ; 10(1): 169, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414997

RESUMO

Chromosome 3-linked frontotemporal dementia (FTD3) is caused by a gain-of-function mutation in CHMP2B, resulting in the production of a truncated toxic protein, CHMP2BIntron5. Loss-of-function mutations in spastin are the most common genetic cause of hereditary spastic paraplegias (HSP). How these proteins might interact with each other to drive pathology remains to be explored. Here we found that spastin binds with greater affinity to CHMP2BIntron5 than to CHMP2BWT and colocalizes with CHMP2BIntron5 in p62-positive aggregates. In cultured cells expressing CHMP2BIntron5, spastin level in the cytoplasmic soluble fraction is decreased while insoluble spastin level is increased. These pathological features of spastin are validated in brain neurons of a mouse model of FTD3. Moreover, genetic knockdown of spastin enhances CHMP2BIntron5 toxicity in a Drosophila model of FTD3, indicating the functional significance of their association. Thus, our study reveals that the enhanced association between mutant CHMP2B and spastin represents a novel potential pathological link between FTD3 and HSP.


Assuntos
Proteínas de Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte , Demência Frontotemporal , Doença de Pick , Paraplegia Espástica Hereditária , Espastina , Animais , Camundongos , Drosophila/metabolismo , Proteínas de Drosophila/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/patologia , Paraplegia Espástica Hereditária/genética , Espastina/genética , Espastina/metabolismo , Humanos
18.
J Cardiovasc Transl Res ; 15(4): 740-753, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235147

RESUMO

Impaired autophagic flux induces aging-related ischemia vulnerability, which is the hallmark pathology in cardiac aging. Our previous work has confirmed that the accumulation of charged multivesicular body protein 2B (CHMP2B), a subunit of the ESCRT-III complex, in the heart can impair autophagy flux. However, whether CHMP2B accumulation contributes to aging-related intolerance to ischemia/reperfusion (I/R) injury and the regulatory mechanism for CHMP2B in aged heart remain elusive. The cardiac CHMP2B level was significantly higher in aged human myocardium than that in young myocardium. Increased CHMP2B were shown to inhibit autophagic flux leading to the deterioration of MI/R injury in aged mice hearts. Interestingly, a negative correlation was observed between SIRT6 and CHMP2B expression in human heart samples. Specific activation of SIRT6 suppressed CHMP2B accumulation and ameliorated autophagy flux in aged hearts. Using myocardial-specific SIRT6 heterozygous knockout mice and recovery experiments confirmed that SIRT6 regulated myocardial CHMP2B levels. Finally, activation of SIRT6 decreased acetylation of FoxO1 to promote its transcriptional function on Atrogin-1, a muscle-specific ubiquitin ligase, which subsequently enhanced the degradation of CHMP2B by Atrogin-1. This is a novel mechanism for SIRT6 against aging-related myocardial ischemia vulnerability, particularly by preventing excessive accumulation of autophagy key factors.


Assuntos
Traumatismo por Reperfusão Miocárdica , Sirtuínas , Camundongos , Animais , Humanos , Idoso , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Autofagia , Miocárdio/patologia , Camundongos Knockout , Envelhecimento/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Miócitos Cardíacos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo
19.
Autophagy ; 18(2): 254-282, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34057020

RESUMO

Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Autofagia/fisiologia , Demência Frontotemporal/genética , Humanos , Proteostase , Resposta a Proteínas não Dobradas
20.
Front Aging Neurosci ; 13: 714220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588974

RESUMO

A rare cause of inherited frontotemporal dementia (FTD) is a mutation in the CHMP2B gene on chromosome 3 leading to the autosomal dominantly inherited FTD (CHMP2B-FTD). Since CHMP2B-FTD is clinically well-characterized, and patients show a distinct pattern of executive dysfunction, the condition offers possible insight in the early electroencephalographic (EEG) changes in the cortical networks. Specifically, EEG microstate analysis parses the EEG signals into topographies believed to represent discrete network activations. We investigated the EEG dynamics in patients with symptomatic CHMP2B-FTD (n = 5) as well as pre-symptomatic mutation carriers (n = 5) compared to non-carrier family members (n = 6). The data was parsed into four archetypal microstates and global power was calculated. A trend was found for lower occurrence in microstate D in CHMP2B-FTD (p-value = 0.177, F-value = 2.036). Patients with recent symptom onset (<1 year) showed an increased duration of microstate D, whereas patients who had been symptomatic for longer periods (>2 years) showed decreased duration. Patients with CHMP2B-FTD present with executive dysfunction, and microstate D has previously been shown to be associated with the fronto-parietal network. The biphasic pattern may represent the pathophysiological changes in brain dynamics during neurodegeneration, which may apply to other neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa