RESUMO
Ubiquitylation is catalyzed by coordinated actions of E3 and E2 enzymes. Molecular principles governing many important E3-E2 partnerships remain unknown, including those for RING-family GID/CTLH E3 ubiquitin ligases and their dedicated E2, Ubc8/UBE2H (yeast/human nomenclature). GID/CTLH-Ubc8/UBE2H-mediated ubiquitylation regulates biological processes ranging from yeast metabolic signaling to human development. Here, cryoelectron microscopy (cryo-EM), biochemistry, and cell biology reveal this exquisitely specific E3-E2 pairing through an unconventional catalytic assembly and auxiliary interactions 70-100 Å away, mediated by E2 multisite phosphorylation. Rather than dynamic polyelectrostatic interactions reported for other ubiquitylation complexes, multiple Ubc8/UBE2H phosphorylation sites within acidic CK2-targeted sequences specifically anchor the E2 C termini to E3 basic patches. Positions of phospho-dependent interactions relative to the catalytic domains correlate across evolution. Overall, our data show that phosphorylation-dependent multivalency establishes a specific E3-E2 partnership, is antagonistic with dephosphorylation, rigidifies the catalytic centers within a flexing GID E3-substrate assembly, and facilitates substrate collision with ubiquitylation active sites.
Assuntos
Saccharomyces cerevisiae , Enzimas de Conjugação de Ubiquitina , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosforilação , Microscopia Crioeletrônica , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
The diabetes-cancer association remains underexplained. Here, we describe a glucose-signaling axis that reinforces glucose uptake and glycolysis to consolidate the Warburg effect and overcome tumor suppression. Specifically, glucose-dependent CK2 O-GlcNAcylation impedes its phosphorylation of CSN2, a modification required for the deneddylase CSN to sequester Cullin RING ligase 4 (CRL4). Glucose, therefore, elicits CSN-CRL4 dissociation to assemble the CRL4COP1 E3 ligase, which targets p53 to derepress glycolytic enzymes. A genetic or pharmacologic disruption of the O-GlcNAc-CK2-CSN2-CRL4COP1 axis abrogates glucose-induced p53 degradation and cancer cell proliferation. Diet-induced overnutrition upregulates the CRL4COP1-p53 axis to promote PyMT-induced mammary tumorigenesis in wild type but not in mammary-gland-specific p53 knockout mice. These effects of overnutrition are reversed by P28, an investigational peptide inhibitor of COP1-p53 interaction. Thus, glycometabolism self-amplifies via a glucose-induced post-translational modification cascade culminating in CRL4COP1-mediated p53 degradation. Such mutation-independent p53 checkpoint bypass may represent the carcinogenic origin and targetable vulnerability of hyperglycemia-driven cancer.
Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glucose , Ubiquitina-Proteína Ligases/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genéticaRESUMO
Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.
Assuntos
Neoplasias Encefálicas , Carcinogênese , Proteínas de Ciclo Celular , Glioblastoma , Fatores de Troca do Nucleotídeo Guanina , Mitose/efeitos da radiação , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/efeitos da radiação , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Mitose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.
Assuntos
Síndrome de Cockayne , DNA Helicases , Enzimas Reparadoras do DNA , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Humanos , Animais , Camundongos , DNA Helicases/metabolismo , DNA Helicases/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Transcrição Gênica , Fosforilação , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Camundongos Knockout , Dano ao DNA , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Cromatina/metabolismo , Ubiquitinação , Reparo por ExcisãoRESUMO
DNA replication is initiated by assembly of the kinase cell division cycle 7 (CDC7) with its regulatory activation subunit, activator of S-phase kinase (ASK), to activate DNA helicase. However, the mechanism underlying regulation of CDC7-ASK complex is unclear. Here, we show that ADP generated from CDC7-mediated MCM phosphorylation binds to an allosteric region of CDC7, disrupts CDC7-ASK interaction, and inhibits CDC7-ASK activity in a feedback way. EGFR- and ERK-activated casein kinase 2α (CK2α) phosphorylates nuclear phosphoglycerate kinase (PGK) 1 at S256, resulting in interaction of PGK1 with CDC7. CDC7-bound PGK1 converts ADP to ATP, thereby abrogating the inhibitory effect of ADP on CDC7-ASK activity, promoting the recruitment of DNA helicase to replication origins, DNA replication, cell proliferation, and brain tumorigenesis. These findings reveal an instrumental self-regulatory mechanism of CDC7-ASK activity by its kinase reaction product ADP and a nonglycolytic role for PGK1 in abrogating this negative feedback in promoting tumor development.
Assuntos
Difosfato de Adenosina/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Replicação do DNA , Fosfoglicerato Quinase/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Caseína Quinase II/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , DNA Helicases/genética , DNA Helicases/metabolismo , Feminino , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfoglicerato Quinase/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Origem de ReplicaçãoRESUMO
Wnt signaling plays an essential role in developmental and regenerative myelination in the central nervous system. The Wnt signaling pathway is composed of multiple regulatory layers; thus, how these processes are coordinated to orchestrate oligodendrocyte (OL) development remains unclear. Here, we show CK2α, a Wnt/ß-catenin signaling Ser/Thr kinase, phosphorylates Daam2, inhibiting its function and Wnt activity during OL development. Intriguingly, we found Daam2 phosphorylation differentially impacts distinct stages of OL development, accelerating early differentiation followed by decelerating maturation and myelination. Application toward white matter injury revealed CK2α-mediated Daam2 phosphorylation plays a protective role for developmental and behavioral recovery after neonatal hypoxia, while promoting myelin repair following adult demyelination. Together, our findings identify a unique regulatory node in the Wnt pathway that regulates OL development via protein phosphorylation-induced signaling complex instability and highlights a new biological mechanism for myelin restoration.
Assuntos
Substância Branca , Fosforilação , Bainha de Mielina , Via de Sinalização WntRESUMO
Homologous recombination (HR) plays a key role in maintaining genomic stability, and the efficiency of the HR system is closely associated with tumor response to chemotherapy. Our previous work reported that CK2 kinase phosphorylates HIV Tat-specific factor 1 (HTATSF1) Ser748 to facilitate HTATSF1 interaction with TOPBP1, which in turn, promotes RAD51 recruitment and HR repair. However, the clinical implication of the CK2-HTATSF1-TOPBP1 pathway in tumorigenesis and chemotherapeutic response remains to be elucidated. Here, we report that the CK2-HTATSF1-TOPBP1 axis is generally hyperactivated in multiple malignancies and renders breast tumors less responsive to chemotherapy. In contrast, deletion mutations of each gene in this axis, which also occur in breast and lung tumor samples, predict higher HR deficiency scores, and tumor cells bearing a loss-of-function mutation of HTATSF1 are vulnerable to poly(ADP-ribose) polymerase inhibitors or platinum drugs. Taken together, our study suggests that the integrity of the CK2-HTATSF1-TOPBP1 axis is closely linked to tumorigenesis and serves as an indicator of tumor HR status and modulates chemotherapy response.
Assuntos
Proteínas de Transporte , Caseína Quinase II , Proteínas de Ligação a DNA , Transdução de Sinais , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Transdução de Sinais/efeitos dos fármacos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologiaRESUMO
MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in Caenorhabditis elegans, two conserved serine/threonine kinases - casein kinase 1 alpha 1 (CK1A1) and casein kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.
Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Inativação Gênica , Serina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
AIMS/HYPOTHESIS: Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS: We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS: We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION: These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.
Assuntos
Caseína Quinase II , Células Secretoras de Glucagon , Glucagon , Proteínas de Homeodomínio , Animais , Humanos , Camundongos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Linhagem Celular , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Insulina/metabolismo , Transativadores/metabolismo , Transativadores/genéticaRESUMO
Among the various components of the protozoan Plasmodium mitochondrial respiratory chain, only Complex III is a validated cellular target for antimalarial drugs. The compound CK-2-68 was developed to specifically target the alternate NADH dehydrogenase of the malaria parasite respiratory chain, but the true target for its antimalarial activity has been controversial. Here, we report the cryo-EM structure of mammalian mitochondrial Complex III bound with CK-2-68 and examine the structure-function relationships of the inhibitor's selective action on Plasmodium. We show that CK-2-68 binds specifically to the quinol oxidation site of Complex III, arresting the motion of the iron-sulfur protein subunit, which suggests an inhibition mechanism similar to that of Pf-type Complex III inhibitors such as atovaquone, stigmatellin, and UHDBT. Our results shed light on the mechanisms of observed resistance conferred by mutations, elucidate the molecular basis of the wide therapeutic window of CK-2-68 for selective action of Plasmodium vs. host cytochrome bc1, and provide guidance for future development of antimalarials targeting Complex III.
Assuntos
Antimaláricos , Plasmodium , Animais , Antimaláricos/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium/metabolismo , Citocromos/metabolismo , Mamíferos/metabolismoRESUMO
BACKGROUND: Protein kinase CK2 is a ubiquitous and highly conserved protein Ser/Thr kinase with diverse cell functions. CK2 is upregulated in various cancers and affects numerous aspects of their underlying pathobiology. The important role of microRNAs (miRNAs) referred to as oncomirs is also recognized in various cancers. Elevation of both CK2 and altered miRNA expression in cancers raised the question whether there was a connection between CK2 function and oncomirs in cancer. METHODS: PCR array analysis was used to examine the effects of CK2 siRNA-mediated downregulation on miRNA levels in C4-2 prostate cancer cells. We employed prostate cancer, breast cancer, and head and neck squamous cell carcinoma (HNSCC) cells as well as a prostate cancer xenograft orthotopic tumor model to examine the effects of CK2 siRNA-mediated downregulation or chemical inhibition on oncomir cluster miR-17 ~ 92 and miR-106b ~ 25 constituent miRNAs by quantitative reverse-transcriptase stem-loop PCR. Pri-miRNAs were measured in cancer cell lines by quantitative reverse-transcriptase PCR. Protein levels were assessed by western blot. PC3-LN4 prostate cancer orthotopic xenograft tumors and blood were collected from nude mice following repeated treatments with tenfibgen ligand nanocapsules containing RNAi-CK2 or RNAi-Control cargoes. RESULTS: PCR array analysis demonstrated effect on a subset of miRNAs following CK2 downregulation; we focused our investigation on CK2 regulation of miR-17 ~ 92 and 106b ~ 25 oncomir clusters. Chemical inhibition or molecular downregulation of CK2 greatly reduced expression of miR-17 ~ 92 and 106b ~ 25 in prostate, breast and head and neck cancer cells in vitro. CK2α and CK2α´ protein levels were significantly correlated with many of the miR-17 ~ 92 and some of the miR-106b ~ 25 constituent members in prostate cancer cells. Decreased pri-miRNA levels for the miR-17 ~ 92 gene cluster transcript were observed for 5 of 6 cancer cell lines tested following CK2 downregulation. Nanocapsule-mediated delivery of RNAi-CK2 reduced CK2 protein expression in orthotopic prostate xenograft tumors and decreased intra-tumoral and serum levels of the oncomirs. CONCLUSIONS: Targeting CK2 for the development of new cancer therapies is under active investigation in many laboratories and pharmaceutical companies. Our data suggest a new role for CK2 in cell signaling and survival in multiple cancer types through maintenance of miR-17 ~ 92 and 106b ~ 25 biogenesis.
Assuntos
Neoplasias da Mama , Caseína Quinase II , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias da Próstata , Humanos , Masculino , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Caseína Quinase II/antagonistas & inibidores , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Camundongos , Regulação para Baixo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , RNA Interferente Pequeno/genéticaRESUMO
Diabetes is a chronic disease characterized by perturbed glucose and lipid metabolism, resulting in high blood glucose levels. Many complications induced by endothelial dysfunction can cause disability and even death of diabetic patients. Here, we found that the protein level of casein kinase 2α (CK2α) was increased in the endothelium of mice with type I diabetes (T1D) induced by streptozotocin (STZ) injection. Although a potential correlation between the protein level of CK2α and endothelial dysfunction in diabetes was established, the contribution of CK2α to the progression of endothelial dysfunction in diabetes remained largely unknown. By using CX4945 (a selective CK2α antagonist) and Si-csnk2a1 (small interfering RNA targeting CK2α), we found that inhibition of CK2α accelerated skin wound healing in T1D mice by promoting proliferation of endothelial cells. Administration of CX4945 or Si-csnk2a1 rescued the impaired Hedgehog signaling pathway in high glucose-treated human umbilical vein endothelial cells (HUVECs). Exploration of the underlying molecular mechanism revealed that the protective effect of CK2α inhibition on angiogenesis, which contributes to skin wound healing in diabetic mice, was blocked by administration of GANT61 (an inhibitor targeting the Hedgehog signaling pathway). Our findings establish CK2α as a regulator of endothelial dysfunction in diabetes and demonstrate that inhibition of CK2α accelerates skin wound healing in T1D mice by promoting endothelial cell proliferation via the Hedgehog signaling pathway.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Humanos , Animais , Camundongos , Proteínas Hedgehog , Caseína Quinase II , Proliferação de Células , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana , CicatrizaçãoRESUMO
The autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS: OMIM #617062) is a rare neurodevelopmental disorder first described in 2016. Features include developmental delay (DD), intellectual disability (ID), behavioral problems, hypotonia, language deficits, congenital heart abnormalities, and non-specific dysmorphic facial features. OCNDS is caused by heterozygous pathogenic variants in CSNK2A1 (OMIM *115440; NM_177559.3). To date, 160 patients have been diagnosed worldwide. The number will likely increase due to the growing use of exome sequencing (ES) and genome sequencing (GS). Here, we describe a novel OCNDS patient carrying a CSNK2A1 variant (NM_177559.3:c.140G>A; NP_808227.1:p.Arg47Gln). Phenotypically, he presented with DD, ID, generalized hypotonia, speech delay, short stature, microcephaly, and dysmorphic features such as low-set ears, hypertelorism, thin upper lip, and a round face. The patient showed several signs not yet described that may extend the phenotypic spectrum of OCNDS. These include prenatal bilateral clubfeet, exotropia, and peg lateral incisors. However, unlike the majority of descriptions, he did not present sleep disturbance, seizures or gait difficulties. A literature review shows phenotypic heterogeneity for OCNDS, whether these patients have the same variant or not. This case report is an opportunity to refine the phenotype of this syndrome and raise the question of the genotype-phenotype correlation.
Assuntos
Caseína Quinase II , Transtornos do Neurodesenvolvimento , Criança , Humanos , Masculino , Caseína Quinase II/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/diagnóstico , FenótipoRESUMO
Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-ß1 (TGF-ß1), SB431542 (a TGF-ß1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-ß1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-ß1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-ß1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.
Assuntos
Benzamidas , Proteínas que Contêm Bromodomínio , Caseína Quinase II , Cicatriz , Dioxóis , AVC Isquêmico , Animais , Ratos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Fibroblastos/metabolismo , Fibrose , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Proteínas Nucleares , Fosforilação , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas que Contêm Bromodomínio/efeitos dos fármacos , Proteínas que Contêm Bromodomínio/metabolismoRESUMO
BACKGROUND: Lung cancer constitutes the leading cause of cancer mortality. High levels of endothelin-1 (ET-1), its cognate receptor ETAR and its activating enzyme, the endothelin-converting enzyme-1 (ECE-1), have been reported in several cancer types, including lung cancer. ECE-1 comprises four isoforms, which only differ in their cytoplasmic N-terminus. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE-1c, increasing its stability and leading to enhanced invasiveness in glioblastoma and colorectal cancer cells, which is believed to be mediated by the amino acid residue Lys-6, a conserved putative ubiquitination site neighboring the CK2-phosphorylated residues Ser-18 and Ser-20. Whether Lys-6 is linked to the acquisition of a cancer stem cell (CSC)-like phenotype and aggressiveness in human non-small cell lung cancer (NSCLC) cells has not been studied. METHODS: In order to establish the role of Lys-6 in the stability of ECE-1c and its involvement in lung cancer aggressiveness, we mutated this residue to a non-ubiquitinable arginine and constitutively expressed the wild-type (ECE-1cWT) and mutant (ECE-1cK6R) proteins in A549 and H1299 human NSCLC cells by lentiviral transduction. We determined the protein stability of these clones alone or in the presence of the CK2 inhibitor silmitasertib, compared to ECE-1cWT and mock-transduced cells. In addition, the concentration of secreted ET-1 in the growth media was determined by ELISA. Expression of stemness genes were determined by Western blot and RT-qPCR. Chemoresistance to cisplatin was studied by MTS viability assay. Migration and invasion were measured through transwell and Matrigel assays, respectively, and the side-population was determined using flow cytometry. RESULTS: ECE-1cK6R displayed higher stability in NSCLC cells compared to ECE-1cWT-expressing cells, but ET-1 secreted levels showed no difference up to 48 h. Most importantly, ECE-1cK6R promoted expression of the stemness genes c-Myc, Sox-2, Oct-4, CD44 and CD133, which enhance cellular self-renewal capability. Also, the ECE-1cK6R-expressing cells showed higher cisplatin chemoresistance, correlating with an augmented side-population abundance due to the increased expression of the ABCG2 efflux pump. Finally, the ECE-1cK6R-expressing cells showed enhanced invasiveness, which correlated with the regulated expression of known EMT markers. CONCLUSIONS: Our findings suggest an important role of ECE-1c in lung cancer. ECE-1c is key in a non-canonical ET-1-independent mechanism which triggers a CSC-like phenotype, leading to enhanced lung cancer aggressiveness. Underlying this mechanism, ECE-1c is stabilized upon phosphorylation by CK2, which is upregulated in many cancers. Thus, phospho-ECE-1c may be considered as a novel prognostic biomarker of recurrence, as well as the CK2 inhibitor silmitasertib as a potential therapy for lung cancer patients.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Enzimas Conversoras de Endotelina , Neoplasias Pulmonares , Humanos , Enzimas Conversoras de Endotelina/metabolismo , Enzimas Conversoras de Endotelina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/metabolismo , Western BlottingRESUMO
Chagas disease, endemic from Latin America, is caused by Trypanosoma cruzi and is transmitted by triatomine feces. This parasite undergoes complex morphological changes through its life cycle, promoted by significant changes in signal transduction pathways. The activity of protein kinase CK2 has been described in trypanosomatids. Using a specific peptide and radioactive ATP, we identified CK2 activity on the cellular surface and the cytoplasmic content in Trypanosoma cruzi, apart from the secreted form. Dephosphorylated casein promoted an increase of 48% in the secreted CK2 activity. Total extract of peritoneal macrophages from BALB/c and inactivated human serum promoted an increase of 67% and 36%, respectively, in this activity. The protein secreted by parasites was purified by HPLC and had shown compatibility with the catalytic subunit of mammalian CK2. Incubation of the parasites with CK2 inhibitors, added to the culture medium, prevented their growth. The opposite was observed when CK2 activators were used. Results of interaction between Trypanosoma cruzi and the gut of the vector have revealed that, in the presence of CK2 inhibitors, there is a reduction in the association rate. A similar inhibition profile was seen in the Trypanosoma cruzi-macrophages interaction, confirming the importance of this enzyme in the life cycle of this protozoan.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/metabolismo , Caseína Quinase II/metabolismo , Doença de Chagas/parasitologia , Invertebrados , MamíferosRESUMO
Protein kinase CK2 type α (CK2α) inhibitors are expected to be a new anticancer drug and a treatment for nephritis. Virtual screening for CK2α inhibitors has been conducted and active compounds with various scaffolds have been obtained. Research on compound optimization is currently in progress for some of them with the aim of improving their activity. This process involves the combination of various computational chemistry methods and crystal analyses. In this review, case studies of structure-based compound designs that have efficiently improved the activity of screening hit compounds, including compounds with a thiadiazole ring and a purine scaffold, are introduced.
Assuntos
Caseína Quinase II , Desenho de Fármacos , Inibidores de Proteínas Quinases , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Caseína Quinase II/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Química ComputacionalRESUMO
BACKGROUND: Protein kinase CK2 activity is implicated in the pathogenesis of various hematological malignancies like Acute Myeloid Leukemia (AML) that remains challenging concerning treatment. This kinase has emerged as an attractive molecular target in therapeutic. Antitumoral peptide CIGB-300 blocks CK2 phospho-acceptor sites on their substrates but it also binds to CK2α catalytic subunit. Previous proteomic and phosphoproteomic experiments showed molecular and cellular processes with relevance for the peptide action in diverse AML backgrounds but earlier transcriptional level events might also support the CIGB-300 anti-leukemic effect. Here we used a Clariom S HT assay for gene expression profiling to study the molecular events supporting the anti-leukemic effect of CIGB-300 peptide on HL-60 and OCI-AML3 cell lines. RESULTS: We found 183 and 802 genes appeared significantly modulated in HL-60 cells at 30 min and 3 h of incubation with CIGB-300 for p < 0.01 and FC > = â1.5â, respectively; while 221 and 332 genes appeared modulated in OCI-AML3 cells. Importantly, functional enrichment analysis evidenced that genes and transcription factors related to apoptosis, cell cycle, leukocyte differentiation, signaling by cytokines/interleukins, and NF-kB, TNF signaling pathways were significantly represented in AML cells transcriptomic profiles. The influence of CIGB-300 on these biological processes and pathways is dependent on the cellular background, in the first place, and treatment duration. Of note, the impact of the peptide on NF-kB signaling was corroborated by the quantification of selected NF-kB target genes, as well as the measurement of p50 binding activity and soluble TNF-α induction. Quantification of CSF1/M-CSF and CDKN1A/P21 by qPCR supports peptide effects on differentiation and cell cycle. CONCLUSIONS: We explored for the first time the temporal dynamics of the gene expression profile regulated by CIGB-300 which, along with the antiproliferative mechanism, can stimulate immune responses by increasing immunomodulatory cytokines. We provided fresh molecular clues concerning the antiproliferative effect of CIGB-300 in two relevant AML backgrounds.
Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Linhagem Celular Tumoral , NF-kappa B , Proteômica , Peptídeos/farmacologia , Perfilação da Expressão Gênica , Apoptose , Leucemia Mieloide Aguda/genética , CitocinasRESUMO
Striatal medium spiny neurons are highly susceptible in Huntington's disease (HD), resulting in progressive synaptic perturbations that lead to neuronal dysfunction and death. Non-invasive imaging techniques, such as proton magnetic resonance spectroscopy (1 H-MRS), are used in HD mouse models and patients with HD to monitor neurochemical changes associated with neuronal health. However, the association between brain neurochemical alterations and synaptic dysregulation remains unknown, limiting our ability to monitor potential treatments that may affect synapse function. We conducted in vivo longitudinal 1 H-MRS in the striatum followed by ex vivo analyses of excitatory synapse density of two synaptic circuits disrupted in HD, thalamo-striatal (T-S), and cortico-striatal (C-S) pathways, to assess the relationship between neurochemical alterations and changes in synapse density. We used the zQ175(Tg/0) HD mouse model as well as zQ175 mice lacking one allele of CK2α'(zQ175(Tg/0) :CK2α'(+/-) ), a kinase previously shown to regulate synapse function in HD. Longitudinal analyses of excitatory synapse density showed early and sustained reduction in T-S synapses in zQ175 mice, preceding C-S synapse depletion, which was rescued in zQ175:CK2α'(+/-) . Changes in T-S and C-S synapses were accompanied by progressive alterations in numerous neurochemicals between WT and HD mice. Linear regression analyses showed C-S synapse number positively correlated with 1 H-MRS-measured levels of GABA, while T-S synapse number positively correlated with levels of phosphoethanolamine and negatively correlated with total creatine levels. These associations suggest that these neurochemical concentrations measured by 1 H-MRS may facilitate monitoring circuit-specific synaptic dysfunction in the zQ175 mouse model and in other HD pre-clinical studies.
Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/metabolismo , Sinapses/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos TransgênicosRESUMO
The molecular evolution processes underlying the acquisition of the placenta in eutherian ancestors are not fully understood. Mouse NCK-interacting kinase (NIK)-related kinase (NRK) is expressed highly in the placenta and plays a role in preventing placental hyperplasia. Here, we show the molecular evolution of NRK, which confers its function for inhibiting placental cell proliferation. Comparative genome analysis identified NRK orthologs across vertebrates, which share the kinase and citron homology (CNH) domains. Evolutionary analysis revealed that NRK underwent extensive amino acid substitutions in the ancestor of placental mammals and has been since conserved. Biochemical analysis of mouse NRK revealed that the CNH domain binds to phospholipids, and a region in NRK binds to and inhibits casein kinase-2 (CK2), which we named the CK2-inhibitory region (CIR). Cell culture experiments suggest the following: 1) Mouse NRK is localized at the plasma membrane via the CNH domain, where the CIR inhibits CK2. 2) This mitigates CK2-dependent phosphorylation and inhibition of PTEN and 3) leads to the inhibition of AKT signaling and cell proliferation. Nrk deficiency increased phosphorylation levels of PTEN and AKT in mouse placenta, supporting our hypothesis. Unlike mouse NRK, chicken NRK did not bind to phospholipids and CK2, decrease phosphorylation of AKT, or inhibit cell proliferation. Both the CNH domain and CIR have evolved under purifying selection in placental mammals. Taken together, our study suggests that placental mammals acquired the phospholipid-binding CNH domain and CIR in NRK for regulating the CK2-PTEN-AKT pathway and placental cell proliferation.