Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 164(2): 226-241, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272099

RESUMO

Striatal medium spiny neurons are highly susceptible in Huntington's disease (HD), resulting in progressive synaptic perturbations that lead to neuronal dysfunction and death. Non-invasive imaging techniques, such as proton magnetic resonance spectroscopy (1 H-MRS), are used in HD mouse models and patients with HD to monitor neurochemical changes associated with neuronal health. However, the association between brain neurochemical alterations and synaptic dysregulation remains unknown, limiting our ability to monitor potential treatments that may affect synapse function. We conducted in vivo longitudinal 1 H-MRS in the striatum followed by ex vivo analyses of excitatory synapse density of two synaptic circuits disrupted in HD, thalamo-striatal (T-S), and cortico-striatal (C-S) pathways, to assess the relationship between neurochemical alterations and changes in synapse density. We used the zQ175(Tg/0) HD mouse model as well as zQ175 mice lacking one allele of CK2α'(zQ175(Tg/0) :CK2α'(+/-) ), a kinase previously shown to regulate synapse function in HD. Longitudinal analyses of excitatory synapse density showed early and sustained reduction in T-S synapses in zQ175 mice, preceding C-S synapse depletion, which was rescued in zQ175:CK2α'(+/-) . Changes in T-S and C-S synapses were accompanied by progressive alterations in numerous neurochemicals between WT and HD mice. Linear regression analyses showed C-S synapse number positively correlated with 1 H-MRS-measured levels of GABA, while T-S synapse number positively correlated with levels of phosphoethanolamine and negatively correlated with total creatine levels. These associations suggest that these neurochemical concentrations measured by 1 H-MRS may facilitate monitoring circuit-specific synaptic dysfunction in the zQ175 mouse model and in other HD pre-clinical studies.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/metabolismo , Sinapses/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Acta Neuropathol Commun ; 10(1): 83, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659303

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene for which no therapies are available. HTT mutation causes protein misfolding and aggregation, preferentially affecting medium spiny neurons (MSNs) of the basal ganglia. Transcriptional perturbations in synaptic genes and neuroinflammation are key processes that precede MSN dysfunction and motor symptom onset. Understanding the interplay between these processes is crucial to develop effective therapeutic strategies to treat HD. We investigated the role of protein kinase CK2α', a kinase upregulated in MSNs in HD and previously associated with Parkinson's disease (PD), in the regulation of neuroinflammation and synaptic function in HD. We used the heterozygous knock-in zQ175 HD mouse model and compared that to zQ175 mice lacking one allele of CK2α' (zQ175:CK2α'(±)). CK2α' haploinsufficiency in zQ175 mice resulted in decreased levels of pro-inflammatory cytokines, HTT aggregation, astrogliosis and transcriptional alterations of synaptic genes related to glutamatergic signaling. zQ175:CK2α'(±) mice also presented increased frequency of striatal miniature excitatory postsynaptic currents (mEPSCs), an indicator of synaptic activity, and improved motor coordination compared to zQ175 mice. Neuropathological and phenotypic changes mediated by CK2α' were connected to alpha-synuclein (α-syn) dysregulation and correlated with differences in α-syn serine 129 phosphorylation (pS129-α-syn), a post-translational modification involved in α-synucleinopathy and shown to be regulated by CK2 in PD. pS129-α-syn was increased in the nuclei of MSNs in zQ175 mice and in the striatum of patients with HD, and it decreased in zQ175:CK2α'(±) mice. Collectively, our data established a novel connection between CK2α', neuroinflammation and synaptic gene dysregulation with synucleinopathy in HD and suggested common molecular mechanisms of neurodegeneration between HD and PD. Our results also support CK2α' inhibition as a potential therapeutic strategy to modulate neuronal function and neuroprotection in HD.


Assuntos
Caseína Quinase II/metabolismo , Doença de Huntington , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , Doença de Huntington/metabolismo , Camundongos , Neurônios/metabolismo , alfa-Sinucleína/genética
3.
Pathol Oncol Res ; 25(4): 1659-1663, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30607803

RESUMO

Glioblastoma (GB) is the most prevalent malignant primary brain tumor in adults. The preclinical glioblastoma model GL261 is widely used for investigating new therapeutic strategies. GL261 cultured cells are used for assessing preliminary in vitro data for this model although very little is known about the molecular characteristics of this cell line. Protein Kinase CK2 is a pleiotropic serine-threonine kinase and its inhibition may be a promising therapeutic strategy for GB treatment. In our group we follow treatment response with CK2 inhibitors in vivo using the GL261 murine model. For that, it is of our interest to assess the differential expression of α, α', ß CK2 subunits as well as CK2 activity in the GL261 GB model. CK2α' expression changed along the growth curve of GL261 cells, undergoing downregulation in postconfluent phase cells, whereas CK2α and CK2ß expression remained essentially unchanged. Furthermore, a marked decrease in CK2 activity in slowly proliferating postconfluent phase GL261 cells was observed. Finally, CK2α' expression in orthotopic GL261 tumors was intermediate between CK2α' expression found in cultured cells in exponentially growing or postconfluent phase, reflecting the heterogeneous nature of GL261 tumours growing in vivo. The results obtained suggest that, in the GL261 cell line, CK2α' could play a specific role in highly proliferative cells. Also, the decrease in CK2 activity in slowly proliferating GL261 cells could imply a differential susceptibility to subunit-specific CK2 inhibitors in this cell line, although further studies are needed to confirm this hypothesis.


Assuntos
Biomarcadores Tumorais/metabolismo , Caseína Quinase II/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Animais , Glioblastoma/enzimologia , Camundongos , Células Tumorais Cultivadas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa