Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Small ; 20(40): e2400970, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38801301

RESUMO

The fabrication of materials with hierarchical structures has garnered great interest, owing to the potential for significantly enhancing their functions. Herein, a strategy of coupling molecular solvation and crystal growth is presented to fabricate porous spherulites of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), an important energetic material. With the addition of polyvinylpyrrolidone in the antisolvent crystallization, the metastable solvate of CL-20 is formed and grows spherulitically, and spontaneously desolvates to obtain the porous spherulite when filtration, in which the characteristic peak of the nitro group of CL-20 shifts detected by the in situ micro-confocal Raman spectroscopy. The effect of polyvinylpyrrolidone is thought to induce the solvation of CL-20, confirmed by density functional theory calculations, meanwhile acting on the (020) face of CL-20 to trigger spherulitic growth, demonstrated through infrared spectroscopy and Rietveld refinement of powder X-ray diffraction. Moreover, compared to common CL-20 crystals, porous spherulites exhibit enhanced combustion with increases of 6.24% in peak pressure, 40.21% in pressurization rate, and 9.63% in pressure duration effect, indicating the capability of hierarchical structures to boost the energy release of energetic crystals. This work demonstrates a new route via solvation-growth coupling to construct hierarchical structures for organic crystals and provides insight into the structure-property relations for material design.

2.
Luminescence ; 39(5): e4775, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745525

RESUMO

A new smartphone-based chemiluminescence method has been introduced for the quantitative analysis of CL-20 (Hexanitroazaisowuertzitan) explosive. The solvent mixture, oxidizer agent, and concentration of the reactants were optimized using statistical procedures. CL-20 explosive showed a quenching effect on the chemiluminescence intensity of the luminol-NaClO reaction in the solvent mixture of DMSO/H2O. A smartphone was used as a detector to record the light intensity of chemiluminescence reaction as a video file. The recorded video file was converted to an analytical signal as intensity luminescence-time curve by a written code in MATLAB software. Dynamic range and limit of detection of the proposed method were obtained 2.0-240.0 and 1.1 mg⋅L-1, respectively, in optimized concentrations 1.5 × 10-3 mol⋅L-1 luminol and 1.0 × 10-2 mol⋅L-1 NaClO. Precursors TADB, HBIW, and TADNIW in CL-20 explosive synthesis did not show interference in measurement the CL-20 purity. The analysis of CL-20 spiked samples of soil and water indicated the satisfactory ability of the method in the analysis of real samples. The interaction of CL-20 molecules and OCl- ions is due to quench of chemiluminescence reaction of the luminol-NaClO.


Assuntos
Medições Luminescentes , Luminol , Smartphone , Medições Luminescentes/métodos , Medições Luminescentes/instrumentação , Luminol/química , Substâncias Explosivas/análise , Luminescência , Limite de Detecção
3.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743154

RESUMO

Safety concerns remain a bottleneck for the application of 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) cocrystal. Melamine-formaldehyde (MF) resin was chosen to fabricate CL-20/HMX cocrystal-based core-shell composites (CH@MF composites) via a facile in situ polymerization method. The resulted CH@MF composites were comprehensively characterized, and a compact core-shell structure was confirmed. The effects of the shell content on the properties of the composites were explored as well. As a result, we found that, except for CH@MF-2 with a 1% shell content, the increase in shell content led to a rougher surface morphology and more close-packed structure. The thermal decomposition peak temperature improved by 5.3 °C for the cocrystal enabled in 1.0 wt% MF resin. Regarding the sensitivity, the CH@MF composites exhibited a significantly reduced impact and friction sensitivity with negligible energy loss compared with the raw cocrystal and physical mixtures due to the cushioning and insulation effects of the MF coating. The formation mechanism of the core-shell micro-composites was further clarified. Overall, this work provides a green, facile and industrially potential strategy for the desensitization of energetic cocrystals. The CH@MF composites with high thermal stability and low sensitivity are promising to be applied in propellants and polymer-bonded explosive (PBX) formulations.


Assuntos
Formaldeído , Polímeros , Azocinas , Polimerização , Polímeros/química , Triazinas
4.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630742

RESUMO

The contradiction between energy and safety of explosives is better balanced by the host-guest inclusion strategy. To deeply analyze the role of small guest molecules in the host-guest system, we first investigated the intermolecular contacts of host and guest molecules through Hirshfeld surfaces, 2-D fingerprint plots and electrostatic interaction energy. We then examined the strength and nature of the intermolecular interactions between CL-20 and various small molecules in detail, using state-of-the-art quantum chemistry calculations and elaborate wavefunction analyses. Finally, we studied the effect of the small molecules on the properties of CL-20, using density functional theory (DFT). The results showed that the spatial arrangement of host and guest molecules and the interaction between host and guest molecules, such as repulsion or attraction, may depend on the properties of the guest molecules, such as polarity, oxidation, hydrogen content, etc. The insertion of H2O2, H2O, N2O, and CO2 had significant influence on the electrostatic potential (ESP), van der Waals (vdW) potential and chemical bonding of CL-20. The intermolecular interactions, electric density and crystal orbital Hamilton population (COHP) clarified and quantified the stabilization effect of different small molecules on CL-20. The insertion of the guest molecules improved the stability of CL-20 to different extents, of which H2O2 worked best.

5.
Molecules ; 27(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408551

RESUMO

Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials.


Assuntos
Substâncias Explosivas , Trinitrotolueno , Transferência de Energia , Substâncias Explosivas/química , Ligação de Hidrogênio , Trinitrotolueno/química , Vibração
6.
J Comput Chem ; 42(31): 2202-2212, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34476813

RESUMO

Electric field can initiate decomposition or detonation of explosives, but underlying mechanism is unclear. Here, we performed ReaxFF molecular dynamics simulation for decomposition of a cocrystal, formed by 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), solely induced by electric field. A new analytical method was proposed to obtain detailed decomposition mechanism. Results show that electric fields play important roles in decomposition of CL-20/HMX cocrystal, such as heating the system and causing the explosive to decompose. Strong constant field makes CL-20 molecules in the cocrystal decompose at significantly lower temperature, which greatly increases sensitivity. This is ascribed to the distinct decomposition mechanism that CN bond rupture dominates the initial step of CL-20's decomposition. Contrarily, oscillating field has a stronger heating effect but weaker influence on sensitivity. Moreover, HMX exhibits desensitizing effect in CL-20/HMX cocrystal under electric field. These results enhance our understanding of sensitivity mechanism beyond mechanical stimuli in explosives.

7.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443464

RESUMO

In order to better understand the role of binder content, molecular dynamics (MD) simulations were performed to study the interfacial interactions, sensitivity and mechanical properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-trinitrotoluene (CL-20/TNT) based polymer-bonded explosives (PBXs) with fluorine rubber F2311. The binding energy between CL-20/TNT co-crystal (1 0 0) surface and F2311, pair correlation function, the maximum bond length of the N-NO2 trigger bond, and the mechanical properties of the PBXs were reported. From the calculated binding energy, it was found that binding energy increases with increasing F2311 content. Additionally, according to the results of pair correlation function, it turns out that H-O hydrogen bonds and H-F hydrogen bonds exist between F2311 molecules and the molecules in CL-20/TNT. The length of trigger bond in CL-20/TNT were adopted as theoretical criterion of sensitivity. The maximum bond length of the N-NO2 trigger bond decreased very significantly when the F2311 content increased from 0 to 9.2%. This indicated increasing F2311 content can reduce sensitivity and improve thermal stability. However, the maximum bond length of the N-NO2 trigger bond remained essentially unchanged when the F2311 content was further increased. Additionally, the calculated mechanical data indicated that with the increase in F2311 content, the rigidity of CL-20/TNT based PBXs was decrease, the toughness was improved.

8.
Molecules ; 25(18)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962224

RESUMO

The cocrystallization of high-energy explosives has attracted great interests since it can alleviate to a certain extent the power-safety contradiction. 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), one of the most powerful explosives, has attracted much attention for researchers worldwide. However, the disadvantage of CL-20 has increased sensitivity to mechanical stimuli and cocrystallization of CL-20 with other compounds may provide a way to decrease its sensitivity. The intermolecular interaction of five types of CL-20-based cocrystal (CL-20/TNT, CL-20/HMX, CL-20/FOX-7, CL-20/TKX-50 and CL-20/DNB) by using molecular dynamic simulation was reviewed. The preparation methods and thermal decomposition properties of CL-20-based cocrystal are emphatically analyzed. Special emphasis is focused on the improved mechanical performances of CL-20-based cocrystal, which are compared with those of CL-20. The existing problems and challenges for the future work on CL-20-based cocrystal are discussed.


Assuntos
Compostos Aza/química , Substâncias Explosivas/química , Compostos Heterocíclicos/química , Azocinas/química , Cristalização , Etilenos , Conformação Molecular , Simulação de Dinâmica Molecular , Nitrocompostos , Relação Estrutura-Atividade , Trinitrotolueno/química
9.
Molecules ; 25(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545500

RESUMO

Metal hydrides are regarded as promising hydrogen-supplying fuel for energetic materials while CL-20 (Hexanitrohexaazaisowurtzitane) and FOX-7 (1,1-Diamino-2,2-dinitroethylene) are typical principal components commonly used in energetic materials. Hence, it is interesting to explore the interactions between them for development of new energetic systems. In this paper, the adsorption and decomposition of CL-20 or FOX-7 molecules on the MgH2 (110) crystal surface were investigated by employing the First-Principles. In total, 18 adsorption configurations for CL-20/MgH2 (110) and 12 adsorption configurations for FOX-7/MgH2 (110) were considered. The geometric parameters for the configurations, adsorption energies, charge transfer, density of states, and decomposition mechanism were obtained and analyzed. In most of the configurations, chemical adsorption will occur. Moreover, the orientation of the nitro-group in CL-20 or FOX-7 with regard to the MgH2 (110) surface plays an important role on whether and how the energetic molecule decomposes. The adsorption and decomposition of CL-20 or FOX-7 on MgH2 could be attributed to the strong charge transfer between Mg atoms in the first layer of MgH2 (110) surface and oxygen as well as nitrogen atoms in the nitro-group of CL-20 or FOX-7 molecules.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Etilenos/química , Magnésio/química , Nitrocompostos/química , Adsorção , Hidrogênio/química , Modelos Químicos , Modelos Moleculares , Nitrogênio/química , Oxigênio/química , Propriedades de Superfície
10.
J Mol Model ; 30(9): 311, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158795

RESUMO

CONTEXT: The exploration of CL-20 eutectic has been a subject of fervent interest within the realm of high-energy material modification. Through the utilization of density functional and molecular dynamics methods, an investigation into the characteristics of hexanitrohexaazaisowurtzitane (CL-20)/2,4-dinitroanisole (DNAN) within the molar ratio range of 9:1-1:9 was conducted. This inquiry encompassed the scrutiny of molecular interaction pathway, attachment force, initiating molecular distance, unified energy concentration, and physical characteristics. Furthermore, EXPLO-5 was harnessed to prognosticate the explosion features and byproducts of unadulterated CL-20, DNAN, and CL-20/DNAN frameworks. The findings delineate a substantial differentiation in the electrostatic charge distribution on the surface between CL-20 and DNAN particles, signifying the preeminence of intermolecular interactions between disparate entities over those within similar entities, thus intimating the plausibility of eutectic constitution. Remarkably, the identification of maximal attachment force at a molar ratio of 4:6 suggests the heightened likelihood of eutectic formation, propelled primarily by electrostatic and van der Waals forces. The resultant eutectic explosive evinces intermediate reactivity and exemplary mechanical attributes. Moreover, the detonation achievement of the eutectic with a molar proportion of 4:6 straddles that of CL-20 and DNAN, representing a new type of insensitive high-energy material. METHODS: The testing method employs the Materials Studio software and utilizes the molecular dynamics (MD) method to predict the properties of CL-20/DNAN co-crystals with different ratios and crystal faces. The MD simulation time step is set to 1 fs, and the total MD simulation time is 2 ns. An isothermal-isobaric (NPT) ensemble is used for the 2-ns MD simulation. The COMPASS force field is employed, with the temperature set to 295 K. The prediction of detonation characteristics and products is conducted using the EXPLO-5 software.

11.
J Mol Model ; 30(10): 348, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316169

RESUMO

CONTEXT: The exploration of CL-20 eutectic has been a subject of fervent interest within the realm of high-energy material modification. Through the utilization of density functional and molecular dynamics methods, an investigation into the characteristics of hexanitrohexaazaisowurtzitane (CL-20)/4,4',5,5'-tetranitro-2H,2'H-3,3'-bipyrazole (TNBP)within the molar ratio range of 4:1-1:4 was conducted. This inquiry encompassed the scrutiny of molecular interaction pathways, attachment force, initiating molecular distance, unified energy concentration, and physical characteristics. Furthermore, the EXPLO-5 was harnessed to prognosticate the explosion features and byproducts of unadulterated CL-20, TNBP, and CL-20/TNBP frameworks. The findings delineate a substantial differentiation in the electrostatic charge distribution on the surface between CL-20 and TNBP particles, signifying the preeminence of intermolecular interactions between disparate entities over those within similar entities, thus intimating the plausibility of the eutectic constitution. Remarkably, the identification of maximal attachment force at a molar ratio of 1:1 suggests the heightened likelihood of eutectic formation, propelled primarily by electrostatic and van der Waals forces. The resultant eutectic explosive evinces intermediate reactivity and exemplary mechanical attributes. Moreover, the detonation achievement of the eutectic with a molar proportion of 1:1 straddles that of CL-20 and TNBP, representing a new type of insensitive high-energy material. METHODS: The testing method employs the Materials Studio software and utilizes the molecular dynamics (MD) method to predict the properties of CL-20/TNBP cocrystals with different ratios and crystal faces. The MD simulation time step is set to 1 fs, and the total MD simulation time is 2 ns. An isothermal-isobaric (NPT) ensemble is used for the 2 ns MD simulation. The COMPASS force field is employed, with the temperature set to 295 K. The prediction of detonation characteristics and products is conducted using the EXPLO-5 software.

12.
J Mol Graph Model ; 129: 108733, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38412812

RESUMO

Study on the dynamic process of CL-20 crystal under impact is critical for the safe utilization of energetic materials under extreme conditions. Herein, the mechanical and structural evolution of CL-20 under the impact of a diamond ball is investigated by using molecular dynamics simulation. The considerations are given to the effect of different impact velocity, impact direction and impact angle. It is found that a high impact velocity results in a large indentation depth and force, as well as more significant energy transition and the formation of a large number of molecular fragments. Moreover, CL-20 exhibits weak anisotropy along different impact directions due to the crystalline distribution anisotropy. Furthermore, the mechanical response of CL-20 is angle-dependent, which is caused by the discrepancy in local molecular re-arrangement. These results may enhance the understanding of the mechanical behavior of CL-20 and promote its wide applications.


Assuntos
Fenômenos Mecânicos , Simulação de Dinâmica Molecular , Conformação Molecular
13.
J Mol Model ; 30(2): 33, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206411

RESUMO

CONTEXT: 2,4,6,8,10, 12-hexanitro-2,4,6,8,10, 12-hexazepane (CL-20) is a new energetic material with high performance and low sensitivity. In-depth study of the thermal decomposition mechanism of CL-20 is a necessary condition to improve its performance, ensure its safety, and optimize its application. On the basis of a large number of empirical force fields used in molecular dynamics simulation in the past, the machine learning augmented first-principles molecular dynamics method was used for the first time to simulate the thermal decomposition reaction of CL-20 at 2200 K, 2500 K, 2800 K, and 3000 K isothermal temperature. The main stable resulting compounds are N2, CO2, CO, H2O, andH2, where CO2 and H2O continue to decompose at higher temperatures. The initial decomposition pathways are denitration by N-N fracture, ring-opening by C-N bond fracture, and redox reaction involving NO2 and CL-20. After ring opening, two main compounds, fused tricyclic pyrazine and azadicyclic, were formed, which were decomposed continuously to form monocyclic pyrazine and pyrazole ring structures. The most common fragments formed during decomposition are those containing two, three, four, and six carbons. The formation rule and quantity of main small molecule intermediates and resulting stable products under different simulated temperatures were analyzed. METHODS: Based on ab initio Bayesian active learning algorithm, efficient and accurate prediction of CL-20 is made using the dynamic machine learning function of Vienna Ab-Initio Simulation Package (VASP), which constructs the energy potential surface by learning a large number of data based on AIMD calculations. The result is a machine learning force field (MLFF). Then the molecular dynamics of CL-20 was simulated using the trained MLFF model. PAW pseudopotentials and generalized gradient approximation (GGA), namely, Perdew-Burke-Ernzerhof (PBE) functional, are used in the calculation. The plane wave truncation energy (ENCUT) is set to 550 eV, and using the Gaussian broadening, the thermal broadening size of the single-electron orbital is 0.05 eV. A van der Waals revision of the system with Grimme Version 3. The energy convergence accuracy (EDIFF) of electron self-consistent iteration is set to 1E-5 eV and 1E-6 eV, respectively. The two-step structure optimization is carried out using 1'1'1 k point grid and conjugate gradient method. The ENCUT was changed to 500 eV and EDIFF to 1E-5 eV, and NVT integration (ISIF = 2) of Langevin thermostat was used for machine learning force field training and AIMD simulation of the system.

14.
J Mol Model ; 30(8): 290, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073622

RESUMO

CONTEXT: To explore the influence of the external electric field (EEF) on ε-CL-20. The molecular structure, frontier molecular orbitals (FMOs), global reactivity parameters (GRP), surface electrostatic potential, nitro charge, and UV-Vis spectra of ε-CL-20 under EEF were studied using density functional theory (DFT). The calculation results show that the electric field applied along N16-N24 has a significant effect on the structure of ε-CL-20. With an increase in the positive EEF, the bond length of the initiating bond decreases, and the bond order and bond dissociation energy increase, which increases the thermal stability of ε-CL-20 to a certain extent. In addition, with an increase in the positive EEF intensity, the LUMO migrates from both sides of the positive electric field to one side of the nitro group, and the HOMO migrates from the skeleton to the nitro group. It is worth noting that in the negative EEF, when the electric field strength changed from 0 to 0.016 a.u., the negative charge of the total nitro group gradually decreased. When the electric field strength becomes 0.02 a.u., the negative charge of the total nitro group suddenly increases, and ε-CL-20 is significantly polarized. When the electric field strength is sufficiently strong, the occupied and unoccupied orbitals of the ε-CL-20 molecule change, resulting in a change in the energy level difference between the occupied and unoccupied orbitals, which further excites the corresponding excited state, resulting in a new UV-Vis absorption peak. METHODS: Based on the density functional theory (DFT), the structural optimization and energy calculation were carried out by using B3LYP/6-311 + G(d, p) and B3LYP/def2-TZVPP methods, respectively. After optimization convergence, vibration analysis was performed without imaginary frequencies to obtain stable configurations. Then the molecular structure, frontier molecular orbitals (FMOs), global reactivity parameters (GRP), surface electrostatic potential, nitro charge, and UV-Vis spectra were analyzed.

15.
J Mol Model ; 30(5): 124, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578379

RESUMO

CONTEXT: The crystal and molecular structure, electronic properties, optical parameters, and elastic properties of a 1:2 hexanitrohexaazaisowurtzitane (CL-20)/2-mercapto-1-methylimidazole (MMI) cocrystal under 0 ~ 100 GPa hydrostatic pressure were calculated. The results show that the cocrystal CL-20/MMI undergoes three structural transitions at 72 GPa, 95 GPa, and 97 GPa, respectively, and the structural transition occurs in the part of the MMI compound. Structural mutations formed new bonds S1-S2, C2-C7, and N1C5 at 72GPa, 95 GPa, and 97 GPa, respectively. Similarly, the formation of new bonds is confirmed on the basis of an analysis of the changes in lattice constants, cell volumes, and partial densities of states (PDOS) for S1, S2, C2, C7, N1, and C3 at the corresponding pressures. The optical parameters show that the pressure makes the peaks of various optical parameters of CL-20/MMI larger, and the optical activity is enhanced. The optical parameters also confirm the structural mutation of CL-20/MMI under the corresponding pressure. METHOD: CL-20/MMI was calculated by using the first-principles norm-conservative pseudopotential based on density functional theory (DFT) in the CASTEP software package. For the optimization results, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is selected to optimize the geometry of the cocrystal in the range of 0-100 GPa. GGA/PBE (Perdew-Burke-Ernzerhof) was selected to relax the cocrystal CL-20/MMI fully without constraints at atmospheric pressure. The sampling scheme in the Brillouin zone [10] is the Monkhorst-Pack scheme, and the number of k-point grids was 2 × 2 × 2. By contrast, this study will use the LDA method to calculate.

16.
J Mol Model ; 30(7): 210, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877350

RESUMO

CONTEXT: To estimate the influence of temperature on properties of 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-hexaazaisowurtzitane/1,4-dinitroimidazole (CL-20/1,4-DNI) cocrystal explosive, the supercell crystal of CL-20/1,4-DNI cocrystal model was established. The mechanical properties, sensitivity, and stability of cocrystal model under different temperatures (T = 225 K, 250 K, 275 K, 300 K, 325 K, 350 K) were predicted. Results show that mechanical parameters, including bulk modulus, tensile modulus and shear modulus are the lowest when temperature is 300 K, while Cauchy pressure is the highest, indicating that CL-20/1,4-DNI cocrystal model has better mechanical properties at 300 K. Cohesive energy density (CED) and its components energies decrease monotonically with the increase of temperature, illustrating that the CL-20 and 1,4-DNI molecules are activated and the safety of cocrystal explosive is worsened with the increase of temperature. Cocrystal model has relatively higher binding energy when the temperature is 300 K, implying that the CL-20/1,4-DNI cocrystal explosive is more stable under this condition. METHODS: The CL-20/1,4-DNI cocrystal model was optimized and the properties were predicted through molecular dynamics (MD) method. The MD simulation was performed with COMPASS force field and the ensemble was set as NPT, external pressure was set as 0.0001 GPa.

17.
J Mol Model ; 29(11): 345, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848622

RESUMO

CONTEXT: The study of CL-20 co-crystal has always been a focal point within the field of energetic material modification. In this study, we employed a combination of density functional theory and molecular dynamics simulations to investigate the properties of hexanitrohexaazaisowurtzitane (CL-20)/3-amino-5-nitro-1,2,4-triazole (ANTA) with different molar ratios ranging from 4:1 to 1:4. Additionally, EXPLO-5 software utilized to predict the detonation properties and products of pure CL-20, ANTA, and CL-20/ANTA systems. The results revealed that there was an interaction between CL-20 and ANTA molecules, which had the potential to form a co-crystal. The most likely molar ratio for co-crystal formation was 1:1, and the main driving forces for co-crystal formation were electrostatic force, dispersion force, and van der Waals force. The co-crystal explosive exhibited moderate sensitivity and excellent mechanical properties. Furthermore, the co-crystal detonation performance at a molar ratio of 1:1 was between that of CL-20 and ANTA, representing a new type of insensitive high-energy material. METHODS: The properties of CL-20/ANTA co-crystal were predicted by molecular dynamics (MD) method under Materials Studio software. For the whole MD simulations, set the temperature at 298 K, and the pressure was 0.0001 GPa. Conducted MD simulation under the NPT ensemble for a total simulation duration of 1 ns. The first 0.5 ns was used for thermodynamic equilibrium, and the last 0.5 ns was used for statistical calculation and analysis. Sampling was recorded every 10 fs during the calculation.

18.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987360

RESUMO

High-energy low-sensitivity explosives are research objectives in the field of energetic materials, and the formation of cocrystals is an important method to improve the safety of explosives. However, the sensitivity reduction mechanism of cocrystal explosives is still unclear. In this study, CL-20/TNT, CL-20 and TNT crystals were taken as research objects. On the basis of the ReaxFF-lg reactive force field, the propagation process of the wave front in the crystals at different impact velocities was simulated. The molecular dynamics data were used to analyze the molecular structure changes and initial chemical reactions, and to explore the sensitivity reduction mechanism of the CL-20/TNT cocrystal. The results showed that the chemical reaction of the CL-20/TNT cocrystal, compared with the CL-20 single crystal, is different under different impact velocities. At an impact velocity of 2 km/s, polymerization and separation of the component molecules weakened the decomposition of CL-20. At an impact velocity of 3 km/s, the decay rates of CL-20 and TNT in the cocrystal decreased, and the intermediate products were enhanced, such as nitrogen oxides. At an impact velocity of 4 km/s, the cocrystal had little effect on the decay rates of the molecules and formation of CO2, but it enhanced formation of N2 and H2O. This may explain the reason for the impact-sensitivity reduction of the CL-20/TNT cocrystal.

19.
ACS Appl Mater Interfaces ; 15(35): 41850-41860, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37611067

RESUMO

The characteristics of high burning rate, high energy output, and low pressure exponent have always been the focus of development in the field of composite solid rocket propellants. In this paper, a metal-organic framework (MOF-199) compound is introduced to prepare micro-nanospherical CL-20@MOF-199 composites via the spray-drying self-assembly technique to reach the above goals. MOF-199, which acts as an attractive combustion catalyst and a safety regulator, is uniformly coated on the surface of CL-20 with close interface contact between particles, effectively accelerating the thermal decomposition of CL-20 and ensuring safety performance. The average noncovalent interaction (aNCI) analysis illustrates that there are strong C-H···O hydrogen bonds and van der Waals interaction between CL-20 and MOF-199 molecules, greatly enhancing the effect of interparticle assembly. The effects of different contents of MOF-199 on the thermal, safety, and energy properties of CL-20 were discussed. The thermal analysis demonstrates that MOF-199 has a significant thermal catalytic effect on CL-20, with an advanced peak temperature of thermal decomposition of 14.2 °C and a reduced activation energy barrier of 34.2 kJ·mol-1, mainly benefitting from more exposed catalytic active sites and close interface contact. In addition, CL-20@MOF-199 composites exhibit decreased mechanical sensitivity (IS: 21-40 cm, FS: 80-240 N) and excellent energy performance. This work clearly demonstrates that MOF-199 is both a superior combustion catalyst and a good safety buffer for CL-20, and it opens new potential for further applications of CL-20 in composite solid propellants.

20.
J Mol Model ; 29(7): 199, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269375

RESUMO

CONTEXT: CL-20/DNDAP cocrystal is a promising new type of explosive with exceptional energy density and detonation parameters. However, compared to TATB, FOX-7 and other insensitive explosives, it still has higher sensitivity. In order to decrease the sensitivity of CL20/DNDAP cocrystal explosive, in this article, a CL20/DNDAP cocrystal model was established, and six different types of polymers, including butadiene rubber (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), hydroxyl-terminated polybutadiene (HTPB), fluoropolymer (F2603), and polyvinylidene difluoride (PVDF), were added to the three cleaved surfaces of (1 0 0), (0 1 0) and (0 0 1) to obtain polymer-bonded explosives (PBXs). Predict the effects of different polymers on the stability, trigger bond length, mechanical properties, and detonation performance of PBXs. Among the six PBX models, CL-20/DNDAP/PEG model exhibited the highest binding energy and the lowest trigger bond length, indicating that CL-20/DNDAP/PEG model had the best stability, compatibility, and the least sensitivity. Furthermore, although the CL-20/DNDAP/F2603 model demonstrated superior detonation capabilities, it should be noted that this model displayed low levels of compatibility. Overall, CL-20/DNDAP/PEG model exhibited the superior comprehensive properties, thereby demonstrating that PEG is a more suitable binder option for PBXs based on the CL20/DNDAP cocrystal. METHODS: The properties of CL-20/DNDAP cocrystal-based PBXs were predicted by molecular dynamics (MD) method under Materials Studio software. The MD simulation time step was set at 1fs and the total MD simulation time was 2ns. The Isothermal-isobaric (NPT) ensemble was used for the 2ns of MD simulation. The COMPASS force field was used, and the temperature was set at 295K.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa