Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Infect Dis ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107255

RESUMO

BACKGROUND: Assessing variant-specific COVID-19 vaccine effectiveness (VE) and severity can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial divergence from co-circulating XBB lineages. METHODS: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. RESULTS: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. CONCLUSIONS: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB.

2.
BMC Med ; 22(1): 227, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840159

RESUMO

BACKGROUND: We quantified SARS-CoV-2 dynamics in different community settings and the direct and indirect effect of the BNT162b2 mRNA vaccine in Monaco for different variants of concern (VOC). METHODS: Between July 2021 and September 2022, we prospectively investigated 20,443 contacts from 6320 index cases using data from the Monaco COVID-19 Public Health Programme. We calculated secondary attack rates (SARs) in households (n = 13,877), schools (n = 2508) and occupational (n = 6499) settings. We used binomial regression with a complementary log-log link function to measure adjusted hazard ratios (aHR) and vaccine effectiveness (aVE) for index cases to infect contacts and contacts to be infected in households. RESULTS: In households, the SAR was 55% (95% CI 54-57) and 50% (48-51) among unvaccinated and vaccinated contacts, respectively. The SAR was 32% (28-36) and 12% (10-13) in workplaces, and 7% (6-9) and 6% (3-10) in schools, among unvaccinated and vaccinated contacts respectively. In household, the aHR was lower in contacts than in index cases (aHR 0.68 [0.55-0.83] and 0.93 [0.74-1.1] for delta; aHR 0.73 [0.66-0.81] and 0.89 [0.80-0.99] for omicron BA.1&2, respectively). Vaccination had no significant effect on either direct or indirect aVE for omicron BA.4&5. The direct aVE in contacts was 32% (17, 45) and 27% (19, 34), and for index cases the indirect aVE was 7% (- 17, 26) and 11% (1, 20) for delta and omicron BA.1&2, respectively. The greatest aVE was in contacts with a previous SARS-CoV-2 infection and a single vaccine dose during the omicron BA.1&2 period (45% [27, 59]), while the lowest were found in contacts with either three vaccine doses (aVE - 24% [- 63, 6]) or one single dose and a previous SARS-CoV-2 infection (aVE - 36% [- 198, 38]) during the omicron BA.4&5 period. CONCLUSIONS: Protection conferred by the BNT162b2 mRNA vaccine against transmission and infection was low for delta and omicron BA.1&2, regardless of the number of vaccine doses and previous SARS-CoV-2 infection. There was no significant vaccine effect for omicron BA.4&5. Health authorities carrying out vaccination campaigns should bear in mind that the current generation of COVID-19 vaccines may not represent an effective tool in protecting individuals from either transmitting or acquiring SARS-CoV-2 infection.


Assuntos
Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Eficácia de Vacinas , Humanos , Vacina BNT162/administração & dosagem , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/transmissão , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Adolescente , Adulto Jovem , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Idoso , Estudos Prospectivos , Criança , Pré-Escolar , Lactente , Espanha/epidemiologia
3.
J Infect Dis ; 227(4): 533-542, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36626187

RESUMO

BACKGROUND: Evidence is accumulating of coronavirus disease 2019 (COVID-19) vaccine effectiveness among persons with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We evaluated the effect against incident SARS-CoV-2 infection of (1) prior infection without vaccination, (2) vaccination (2 doses of Pfizer-BioNTech COVID-19 vaccine) without prior infection, and (3) vaccination after prior infection, all compared with unvaccinated persons without prior infection. We included long-term care facility staff in New York City aged <65 years with weekly SARS-CoV-2 testing from 21 January to 5 June 2021. Test results were obtained from state-mandated laboratory reporting. Vaccination status was obtained from the Citywide Immunization Registry. Cox proportional hazards models adjusted for confounding with inverse probability of treatment weights. RESULTS: Compared with unvaccinated persons without prior infection, incident SARS-CoV-2 infection risk was lower in all groups: 54.6% (95% confidence interval, 38.0%-66.8%) lower among unvaccinated, previously infected persons; 80.0% (67.6%-87.7%) lower among fully vaccinated persons without prior infection; and 82.4% (70.8%-89.3%) lower among persons fully vaccinated after prior infection. CONCLUSIONS: Two doses of Pfizer-BioNTech COVID-19 vaccine reduced SARS-CoV-2 infection risk by ≥80% and, for those with prior infection, increased protection from prior infection alone. These findings support recommendations that all eligible persons, regardless of prior infection, be vaccinated against COVID-19.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacina BNT162 , Teste para COVID-19 , Assistência de Longa Duração , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2 , Casas de Saúde
5.
Vaccines (Basel) ; 12(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38793704

RESUMO

Limited information is available on the effectiveness of COVID-19 vaccination in patients with psoriasis and psoriatic arthritis (psoriatic disease (PsD)). The objective of our research was to assess the effectiveness of mRNA COVID-19 vaccination in preventing SARS-CoV-2 positivity and severe infection in a cohort of patients with PsD and the association of immunosuppressants on SARS-CoV-2 infection-related outcomes from December 2020 to December 2021. Vaccine effectiveness was assessed in a matched nested case control study using conditional logistic regression adjusted for demographics, comorbidities and immunosuppressant use. Study outcomes included SARS-CoV-2 positivity and severe COVID-19 (moderate-to-severe COVID-19-related hospitalizations or death). At least one dose of mRNA COVID-19 vaccine was associated with reduced risk of SARS-CoV-2 positivity and severe COVID-19 (OR = 0.41 (95% CI, 0.38-0.43) and OR = 0.15 (95% CI, 0.11-0.20), respectively). A more significant effect was found among patients who received three vaccines doses compared with those who did not receive any (OR (for positive SARS-CoV-2) = 0.13 (95% CI, 0.12-0.15) and OR (for severe disease) = 0.02 (0.01-0.05)). Etanercept and methotrexate were associated with higher risk of SARS-CoV-2 positivity (1.58 (1.19-2.10), p = 0.001 and 1.25 (1.03-1.51), p = 0.03, respectively). In conclusion, our results show that mRNA COVID-19 vaccines are effective in reducing both infection and severe COVID-19-related outcomes.

6.
Vaccine ; 41(4): 989-998, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36588007

RESUMO

BACKGROUND: It is critical to monitor changes in vaccine effectiveness against COVID-19 outcomes for various vaccine products in different population subgroups. METHODS: We conducted a retrospective study in patients ≥12 years who underwent testing for SARS-CoV-2 virus from April 14 through October 25, 2021, at urgent care centers in the New York metropolitan area. Patients self-reported vaccination status at the time of testing. We used a test-negative design to estimate vaccine effectiveness (VE) by comparing odds of a positive test for SARS-CoV-2 infection among vaccinated (n = 474,805), partially vaccinated (n = 87,834), and unvaccinated (n = 369,333) patients, adjusted for demographic factors and calendar time. RESULTS: VE against symptomatic infection after 2 doses of mRNA vaccine was 96% (95% Confidence Interval: 95%, 97%) in the pre-delta period and reduced to 79% (95% CI: 77%, 81%) in the delta period. In the delta period, VE for 12-15-year-olds (85%; [95% CI: 81%, 88%]) was higher compared to older age groups (<65% for all other age groups). VE estimates did not differ by sex and race/ethnicity. VE against symptomatic infection was the highest for individuals with a prior infection followed by full vaccination. VE against symptomatic infection after the 2-dose mRNA-1273 vaccine (82% [95% CI: 80%, 84%]) was higher compared to the BNT162b2 vaccine (76% [95% CI: 74%, 78%]) in the delta period. VE after 1-dose of the Ad26.COV2.S vaccine was the lowest compared to other vaccines (19% [95% CI: 15%, 23%]) in the delta period. CONCLUSIONS: VE against infection after two doses of the mRNA vaccines was high initially, but significantly reduced against the delta variant for both FDA-approved vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Idoso , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Vacina BNT162 , Estudos Retrospectivos , SARS-CoV-2 , Assistência Ambulatorial
7.
Lancet Reg Health Am ; 27: 100626, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035125

RESUMO

Background: Vaccine effectiveness (VE) is essential to monitor the performance of vaccines and generate strategic information to guide decision making. We pooled data from six Latin American countries to estimate the effectiveness of COVID-19 vaccines in preventing laboratory-confirmed SARS-CoV-2 hospitalisation during three different pandemic waves from February 2021 to September 2022. Methods: We used a test-negative case-control design in hospitalised adults in Chile, Costa Rica, Ecuador, Guatemala, Paraguay, and Uruguay. We estimated adjusted VE by age group (18-64 and ≥65 years), vaccine type and product for primary series vaccination and booster vaccination and by time since last dose during the Omicron variant dominant period. We used mixed effects logistic regression models adjusting for sex, age, week of onset of symptom onset and pre-existing conditions with country fit as a random effect term. Findings: We included 15,241 severe acute respiratory infection (SARI) patients in the analysis. Among adults 18-64 years, VE estimates for primary series vaccination during pre-Delta and Delta periods ranged by product from 66.5% to 95.1% and from 33.5% to 88.2% for older adults. During the Omicron period, VE estimates for primary series were lower and decreased by time since last vaccination, but VE increased to between 26.4% and 57.4% when a booster was administered. Interpretation: mRNA and viral vector vaccines presented higher VE for both primary series and booster. While VE decreased over time, protection against severe COVID-19-associated hospitalisation increased when booster doses were administered. Vaccination with additional doses should be recommended, particularly for persons at increased risk of developing severe COVID-19. Funding: This work was supported by a grant from the U.S. Centers for Disease Control and Prevention (CDC) through cooperative agreements with the Pan American Health Organization/World Health Organization.

8.
Semin Oncol ; 49(5): 363-370, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055952

RESUMO

PURPOSE: Coronavirus disease 2019 (COVID-19) has been a constant health threat since its emergence. Amongst risk factors proposed, a diagnosis of cancer has been worrisome. We report the impact of cancer and other risk factors in US Veterans receiving care at Veterans Administration (VA) Hospitals, their adjusted odds ratio (aOR) for infection and death, and report on the impact of vaccines on the incidence and severity of COVID-19 infections in Veterans without/with cancer. METHODS: We conducted a cohort study of US Veterans without/with cancer by mining VA COVID-19 Shared Data Resource (CSDR) data using the VA Informatics and Computing Infrastructure (VINCI). Our observation period includes index dates from 14DEC2020 to 25JAN2022, encompassing both the delta and omicron waves in the US. RESULTS: We identified 915,928 Veterans, 24% of whom were African Americans who had undergone COVID testing-688,541 were and 227,387 were not vaccinated. 157,072 had a cancer diagnosis in the preceding two years. Age emerged as the major risk factor, with gender, BMI, and (Elixhauser) comorbidity contributing less. Among veterans with solid tumors other than lung cancer, risks of infection and death within 60 days were comparable to Veterans without cancer. However, those with hematologic malignancies fared worse. Vaccination was highly effective across all cancer cohorts; the respective rates of infection and death after infection were 8% and 5% among the vaccinated compared to 47% and 10% in the unvaccinated. Amongst vaccinated, increased risk of infection was noted in both, Veterans with hematologic malignancy treated with chemotherapy (HR, 2.993, P < 0.0001) or targeted therapies (HR, 1.781, P < 0.0001), and in solid tumors treated with either chemotherapy (HR 2.328, 95%CI 2.075-2.611, P < 0.0001) or targeted therapies (HR 1.328, P < 0.0001) when compared to those not on treatment. CONCLUSIONS: Risk for COVID-19 infection and death from infection vary based on cancer type and therapies administered. Importantly and encouragingly, the duration of protection from infection following vaccination in Veterans with a diagnosis of cancer was remarkably like those without a cancer diagnosis. Veterans with hematologic malignancies are especially vulnerable, with lower vaccine effectiveness (VE).


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas , Veteranos , Humanos , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/prevenção & controle , Incidência , Estudos de Coortes , Estudos Prospectivos , Teste para COVID-19
9.
Emerg Microbes Infect ; 11(1): 2383-2392, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36069511

RESUMO

Knowing vaccine effectiveness (VE) against variants of concern (VOCs) in the real-world setting is essential for public health decision-making. A systematic landscape of the VE against a series of clinical outcomes caused by the VOCs in the real-world setting is needed. We systematically searched for studies that evaluated VE against VOCs in the real-world setting and collected individual data. We identified 113 studies meeting the eligibility criteria. We found full vaccination provided strong protection against each clinical outcome with summary VE ranging from 86.8% to 96.0% Alpha, moderate protection against infection caused by Beta, Gamma and Delta with summary VE ranging from 70.9% to 72.8%, strong protection against severe disease caused by Delta with summary VE ranging from 84.9% to 90.3%, limited protection with summary VE of 23.5% (95% CI, 17.0-29.5) against infection and moderate protection with summary VE ranging from 56.5% to 82.4% against severe diseases caused by Omicron. Booster vaccination can provide a substantial improvement in protection against Delta and Omicron, but not as much as the Delta. The meta-regression analysis showed that the VE against the Omicron wanned over time, and the VE against hospitalization declined relatively slowly, compared to against infection. Those findings supported the need for public health measures, increasing booster vaccination coverage in response to current and new infectious waves driven by variants and developing broadly protective vaccines to confront virus evolution.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa