Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Saudi Pharm J ; 30(9): 1252-1261, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36249937

RESUMO

Methotrexate (MTX) is an immunosuppressant used for the treatment of cancer and autoimmune diseases. MTX has a major adverse effect, acute kidney injury, which limits its use. Mangiferin (MF) is a natural bioactive xanthonoid used as a traditional herbal supplement to boost the immune system due to its potent anti-inflammatory and antioxidant activity. The present study evaluates the protective effect of MF against MTX-induced kidney damage. Male Wistar rats received MTX to induce nephrotoxicity or were pretreated with MF for 10 constitutive days before MTX administration. MF dose-dependently improved renal functions of MTX-treated rats and this activity was correlated with increased renal expression of PPARγ, a well-known transcriptional regulator of the immune response. Pretreating rats with PPARγ inhibitor, BADGE, reduced the reno-protective activity of MF. Furthermore, MF treatment significantly reduced MTX-induced upregulation of the pro-inflammatory (NFκB, interleukin-1ß, TNF-α, and COX-2), oxidative stress (Nrf-2, hemoxygenase-1, glutathione, and malondialdehyde), and nitrosative stress (nitric oxide and iNOS) markers in the kidney. Importantly, BADGE treatment significantly reduced the anti-inflammatory and antioxidant activity of MF. Therefore, our data suggest that the reno-protective effect of MF against MTX-induced nephrotoxicity is due to inhibition of inflammation and oxidative stress in a PPAR-γ-dependent manner.

2.
Saudi Pharm J ; 30(7): 934-945, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35903524

RESUMO

Cardiovascular diseases are a major cause of mortality, and vascular injury, a common pathological basis of cardiovascular disease, is deeply correlated with macrophage apoptosis and inflammatory response. Genistein, a type of phytoestrogen, exerts cardiovascular protective activities, but the underlying mechanism has not been fully elucidated. In this study, RAW264.7 cells were treated with genistein, lipopolysaccharide (LPS), nuclear factor-kappa B (NF-κB) inhibitor, and/or protein kinase B (AKT) agonist to determine the role of genistein in apoptosis and inflammation in LPS-stimulated cells. Simultaneously, high fat diet-fed C57BL/6 mice were administered genistein to evaluate the function of genistein on LPS-induced cardiovascular injury mouse model. Here, we demonstrated that LPS obviously increased apoptosis resistance and inflammatory response of macrophages by promoting miR-21 expression, and miR-21 downregulated tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) expression by targeting the coding region. Genistein reduced miR-21 expression by inhibiting NF-κB, then blocked toll-like receptor 4 (TLR4) pathway and AKT phosphorylation dependent on TIPE2, resulting in inhibition of LPS. Our research suggests that miR-21/TIPE2 pathway is involved in M1 macrophage apoptosis and inflammatory response, and genistein inhibits the progression of LPS-induced cardiovascular injury at the epigenetic level via regulating the promoter region of Vmp1 by NF-κB.

3.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255450

RESUMO

Calcific aortic valve disease (CAVD) is the result of maladaptive fibrocalcific processes leading to a progressive thickening and stiffening of aortic valve (AV) leaflets. CAVD is the most common cause of aortic stenosis (AS). At present, there is no effective pharmacotherapy in reducing CAVD progression; when CAVD becomes symptomatic it can only be treated with valve replacement. Inflammation has a key role in AV pathological remodeling; hence, anti-inflammatory therapy has been proposed as a strategy to prevent CAVD. Cyclooxygenase 2 (COX-2) is a key mediator of the inflammation and it is the target of widely used anti-inflammatory drugs. COX-2-inhibitor celecoxib was initially shown to reduce AV calcification in a murine model. However, in contrast to these findings, a recent retrospective clinical analysis found an association between AS and celecoxib use. In the present study, we investigated whether variations in COX-2 expression levels in human AVs may be linked to CAVD. We extracted total RNA from surgically explanted AVs from patients without CAVD or with CAVD. We found that COX-2 mRNA was higher in non-calcific AVs compared to calcific AVs (0.013 ± 0.002 vs. 0.006 ± 0.0004; p < 0.0001). Moreover, we isolated human aortic valve interstitial cells (AVICs) from AVs and found that COX-2 expression is decreased in AVICs from calcific valves compared to AVICs from non-calcific AVs. Furthermore, we observed that COX-2 inhibition with celecoxib induces AVICs trans-differentiation towards a myofibroblast phenotype, and increases the levels of TGF-ß-induced apoptosis, both processes able to promote the formation of calcific nodules. We conclude that reduced COX-2 expression is a characteristic of human AVICs prone to calcification and that COX-2 inhibition may promote aortic valve calcification. Our findings support the notion that celecoxib may facilitate CAVD progression.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Valva Aórtica/patologia , Calcinose/tratamento farmacológico , Ciclo-Oxigenase 2/genética , Inflamação/tratamento farmacológico , Fator de Crescimento Transformador beta/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Valva Aórtica/efeitos dos fármacos , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Apoptose/efeitos dos fármacos , Calcinose/genética , Calcinose/patologia , Celecoxib/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Mensageiro/genética
4.
S Afr J Bot ; 135: 240-251, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32963416

RESUMO

Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.

5.
Saudi Pharm J ; 28(12): 1686-1703, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424261

RESUMO

The genus Millettia belongs to Fabaceae includes 200 species which are distributed in tropical and subtropical regions of the world. Plants belong to this genus are used as folkloric medicine, for the treatment of different ailments like in wound healing, boil, sores, skin diseases, snake bite, muscle aches, pains, rheumatic arthritis, and gynaecological diseases. The aim of the review is to provide updated, comprehensive and categorized information on the aspects of ethnobotanical, phytochemical, pharmacological uses and toxicity of genus Millettia in order to identify their therapeutic potential and generate space for future research opportunities. The present study comprises of isolated flavonoids, phenolic compounds, phytosterols, saponins, alkaloids, polysaccharides, terpenoids and resins and pharmacological activities of various Millettia species. The relevant data were searched by using the keyword "Millettia" in different scientific databases like, "Google Scholar"; "NISCAIR repository"; "Pub Med"; "Science Direct"; "Scopus" and the taxonomy is validated by "The Plant List". This review discusses the existing information of the traditional evaluation as well as phytochemical and pharmacological evaluation of the extract and active constituents of the genus "Millettia". This review confirms that several Millettia species have emerged as a high-quality medicine in a traditional system for arthritis, wound healing, inflammation, skin diseases. Numerous conventional uses of Millettia species have been validated by modern pharmacology research. Intensive investigations of the genus Millettia relating to phytochemistry and pharmacology, especially their mechanism of action, safety, and efficacy could be the future research interests by the researcher in the area of phytomedicine.

6.
Saudi Pharm J ; 28(12): 1777-1790, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424267

RESUMO

Millettia peguensis, popular for its ethnopharmacological uses, was employed to evaluate its different pharmacological properties in this study. The analgesic studies of the plant have been performed by acetic acid-induced writhing and formalin-induced licking tests respectively, whereas the antidiarrheal experiment was done by castor oil-induced diarrheal test. Besides, antioxidant, cytotoxic, antimicrobial, thrombolytic evaluations were performed by DPPH scavenging with phenol content determination, brine shrimp lethality, disc diffusion and clot lysis methods respectively. Moreover, in silico study of the phytoconstituents was carried out by molecular docking and ADME/T analysis. The methanol extract of Millettia peguensis (MEMP) revealed significant biological activity in the analgesic and antidiarrheal test (p < 0.001) compared to the standards. Antioxidant assay displayed promising IC50 values (15.96 µg/mL) with the total phenol content (65.27 ± 1.24 mg GAE/g). In the cytotoxicity study, the LC50 value was found to be 1.094 µg/mL. Besides, MEMP was highly sensitive to the bacteria but less liable to clot lysis. Furthermore, phytoconstituents exposed potential binding affinity towards the selected receptors, whereas the ADME/T properties indicated the drug likeliness of the plant. The outcomes of these findings suggest the therapeutic potential of this plant against pain, diarrhea, inflammation, and tissue toxicity.

7.
Exp Cell Res ; 369(2): 218-225, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29807023

RESUMO

Human antigen R (HuR) is a RNA-binding protein, which binds to the AU-rich element (ARE) in the 3'-untranslated region (3'-UTR) of certain mRNA and is involved in the export and stabilization of ARE-mRNA. HuR constitutively relocates to the cytoplasm in many cancer cells, however the mechanism of intracellular HuR trafficking is poorly understood. To address this question, we examined the functional role of the cytoskeleton in HuR relocalization. We tested the effect of actin depolymerizing macrolide latrunculin A or myosin II ATPase activity inhibitor blebbistatin for HuR relocalization induced by the vasoactive hormone Angiotensin II in cancer and control normal cells. Western blot and confocal imaging data revealed that both inhibitors attenuated the cytoplasmic HuR in normal cells but no such alteration was observed in cancer cells. Concomitant with changes in intracellular HuR localization, both inhibitors markedly decreased the accumulation and half-lives of HuR target ARE-mRNAs in normal cells, whereas no change was observed in cancer cells. Furthermore, co-immunoprecipitation experiments with HuR proteins revealed clear physical interaction with ß-actin only in normal cells. The current study is the first to verify that cancer cells can implicate a microfilament independent HuR transport. We hypothesized that when cytoskeleton structure is impaired, cancer cells can acquire an alternative HuR trafficking strategy.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/metabolismo , Regiões 3' não Traduzidas , Actinas/efeitos dos fármacos , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Miosinas/antagonistas & inibidores , Neoplasias/genética , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiazolidinas/farmacologia
8.
J Med Life ; 16(10): 1503-1507, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38313170

RESUMO

The endometrium produces MUCIN-1 (MUC-1) and cyclooxygenase-2 (COX-2), which are essential for implantation. MUC-1 is required for adhesion, while COX-2 is necessary for decidualization. Variations or polymorphisms in MUC-1 and COX-2 can lead to changes in endometrial receptivity. This study investigated the relationship between MUC-1 and COX-2 polymorphisms and endometrial receptivity in endometriosis patients. Blood DNA samples were collected from 35 patients with endometriosis and 32 healthy patients between days 19 to 24 of their menstrual cycle (secretory phase). MUC-1 polymorphism was determined using the Amplification Refractory Mutation System (ARMS), and COX-2 gene polymorphism was assessed using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). The frequency distribution of gene polymorphisms between the two groups was compared using bivariate analysis. There were seven genotypic combinations of MUC-1 and COX-2: AAGC; AAGG; GACC; GAGC; GAGG; GGGC; GGGG. The AAGC genotype combination test was significant, with an OR=6.43 (95% CI:1.09-7.62) and p=0.01. In conclusion, combining MUC-1 and COX-2 (AAGC) genotypes results in endometrial receptivity defects in endometriosis.


Assuntos
Ciclo-Oxigenase 2 , Endometriose , Mucina-1 , Feminino , Humanos , Ciclo-Oxigenase 2/genética , Endometriose/genética , Endométrio , Mucina-1/genética , Polimorfismo Genético
9.
J Transl Autoimmun ; 6: 100192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860771

RESUMO

Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.

10.
J Tradit Complement Med ; 12(5): 488-498, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36081822

RESUMO

Background: Concurrent chemoradiotherapy (CCRT)-induced oral mucositis (OM) causes oral pain, malnutrition, and impaired quality of life in patients with head and neck cancer (HNC). Phytochemicals play a potential role in eliminating cancer therapy toxicity. Objective: To evaluate the effect of phytochemical-rich vegetable and fruit juice (VFJ) consumption in preventing CCRT-induced OM among patients with locally advanced HNC. Methods: Forty-nine patients with HNC undergoing CCRT were enrolled. All patients received nutritional counseling before CCRT and weekly follow-up. The VFJ group (25 patients) received 600 mL/day VFJ, 5 days/week for two weeks preceding CCRT and during CCRT, and the control group (24 patients) did not. The contents of total polyphenols and carotenoids in the VFJ were determined. Changes in anthropometric, dietary, and laboratory profiles were compared. Assessment of OM was based on the World Health Organization (WHO) scoring system. Results: Total polyphenols content was 64.6 mg gallic acid equivalents per 100 mL of the VFJ, and the main carotenoids were ß-carotene and lycopene. The mean daily consumption of the VFJ was 538 mL for VFJ group. Changes in body weight, albumin, and energy intake were not significantly different between the two groups. The incidence of ulcerative OM was significantly lower in VFJ (64.0%) than in control (95.8%) subjects at week 6 of CCRT. Multiple logistic regressions revealed that VFJ consumption correlated significantly with lower risks of ulcerative OM. Conclusion: Consumption of VFJ rich in phytochemicals including total polyphenols and carotenoids effectively alleviates the severity of CCRT-induced OM among patients with locally advanced HNC. Section: Preventive Medicine; Dietary Therapy/Nutrition Supplements. Taxonomy: (classification by EVISE)Preventive medicine, dietary therapy, nutrition supplements.

11.
Phytomedicine ; 102: 154194, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660348

RESUMO

BACKGROUND: Uncontrolled inflammation causes health problems. Extracellular signal-regulated kinase (ERK) phosphorylates signal transducer and activator of transcription 3 (STAT3) at Ser727, resulting in inflammation. The leaf of Vernonia amygdalina (VA) is a medicinal herb for managing inflammation-associated diseases. Oral administration or topical application of VA leaf extract exerts anti-inflammatory effects in rat models. However, the anti-inflammatory mechanisms of the herb are not fully understood. PURPOSE: In this study, we aimed to investigate the involvement of ERK/STAT3 (Ser727) signaling in the anti-inflammatory effects of an ethanolic extract of VA leaves. STUDY DESIGN AND METHODS: Extracts of VA leaves were prepared with different concentrations of ethanol. A LPS-stimulated RAW264.7 cell model was used for in vitro assays, and a TPA (12-O-tetradecanoylphorbol-13-acetate)-induced ear edema mouse model was employed for in vivo assays. The 95% ethanol extract of VA leaves (VAE) exerted the strongest inhibitory effect on nitric oxide (NO) production in LPS-stimulated macrophages; thus it was selected for use in this study. Hematoxylin and eosin (H&E) staining was used to examine pathological conditions of mouse ear tissues. Griess reagent was employed to examine NO generation in cell cultures. Immunoblotting and ELISA were used to examine protein levels, and RT-qPCR was employed to examine mRNA levels. RESULTS: Topical application of VAE ameliorated mouse ear edema induced by TPA. VAE suppressed the phosphorylation of ERK (Thr202/Tyr204) and STAT3 (Ser727); and decreased protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, IL-1ß and tumor necrosis factor-α (TNF-α) in the mouse ear tissues and in LPS-stimulated RAW 264.7 cells. VAE also inhibited NO production, and lowered mRNA levels of IL-6, IL-1ß and TNF-α in the macrophages. CONCLUSIONS: VAE ameliorates TPA-induced mouse ear edema. Suppression of ERK/STAT3 (Ser727) signaling is involved in VAE's anti-inflammatory effects. These novel data provide further pharmacological justifications for the medicinal use of VA in treating inflammation-associated diseases, and lay the groundwork for developing VAE into a new anti-inflammatory agent.


Assuntos
Fator de Transcrição STAT3 , Vernonia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Edema/tratamento farmacológico , Etanol , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/uso terapêutico , RNA Mensageiro , Ratos , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Acta Pharm Sin B ; 12(5): 2300-2314, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646542

RESUMO

Ferroptosis is a form of regulated cell death, characterized by excessive membrane lipid peroxidation in an iron- and ROS-dependent manner. Celastrol, a natural bioactive triterpenoid extracted from Tripterygium wilfordii, shows effective anti-fibrotic and anti-inflammatory activities in multiple hepatic diseases. However, the exact molecular mechanisms of action and the direct protein targets of celastrol in the treatment of liver fibrosis remain largely elusive. Here, we discover that celastrol exerts anti-fibrotic effects via promoting the production of reactive oxygen species (ROS) and inducing ferroptosis in activated hepatic stellate cells (HSCs). By using activity-based protein profiling (ABPP) in combination with bio-orthogonal click chemistry reaction and cellular thermal shift assay (CETSA), we show that celastrol directly binds to peroxiredoxins (PRDXs), including PRDX1, PRDX2, PRDX4 and PRDX6, through the active cysteine sites, and inhibits their anti-oxidant activities. Celastrol also targets to heme oxygenase 1 (HO-1) and upregulates its expression in activated-HSCs. Knockdown of PRDX1, PRDX2, PRDX4, PRDX6 or HO-1 in HSCs, to varying extent, elevated cellular ROS levels and induced ferroptosis. Taken together, our findings reveal the direct protein targets and molecular mechanisms via which celastrol ameliorates hepatic fibrosis, thus supporting the further development of celastrol as a promising therapeutic agent for liver fibrosis.

13.
Saudi J Biol Sci ; 29(6): 103307, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35602869

RESUMO

Malathion (MAL) is an organophosphate insecticide that disrupts the body's antioxidant system; it is one of the earliest organophosphate insecticides extensively used as dust, emulsion, and vapor control a wide variety of insect pests under different conditions. This experimentation aims to evaluate the influence of Arabica coffee oil and olive oil on MAL-induced nephrotoxicity in male rat. 6 sets bearing the same number of animals were applied to this experiment. Each set comprised 10 rats. The first set of rats was used as the control group; rats in the second set were exposed to MAL measured at 100 mg/kg body weight for 7 weeks. Animals in the third and fourth set were treated with 400 mg/kg body weight of Arabica coffee oil and olive oil, and 100 mg/kg body weight of MAL. The fifth, together with the sixth set, were fed with a similar proportion of Arabica coffee oil and olive oil as administered to the third set of rats. After the experimental duration, rats of group 2 showed severe biochemical alterations, including significant increases of creatinine, uric acids, and urea nitrogen (BUN), resulting in marked decreases in serum albumin values and total protein (TP). Severe histopathological and immunohistochemical alterations of kidney tissues were observed in exposed MAL-intoxicated rats. Administration of these oils reduced the detected biochemical, histopathological modifications caused by MAL intoxication. Two active ingredients in Arabica coffee oil (oleic acid) and olive oil (hydroxytyrosol) showed good cyclooxygenase-2 (COX 2) interaction. Moreover, oleic acid from coffee oil and olive oil exhibited impressive association with xanthine oxidase (XO). The current finding showed that coffee oil and olive oil could be appraised as possible and a likely deterrence component against nephrotoxicity brought about by MAL.

14.
Arab J Chem ; 15(11): 104302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36189434

RESUMO

Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.

15.
Gene Rep ; 27: 101608, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35399222

RESUMO

Rapid emergence of covid-19 variants by continuous mutation made the world experience continuous waves of infections and as a result, a huge number of death-toll recorded so far. It is, therefore, very important to investigate the diversity and nature of the mutations in the SARS-CoV-2 genomes. In this study, the common mutations occurred in the whole genome sequences of SARS-CoV-2 variants of Bangladesh in a certain timeline were analyzed to better understand its status. Hence, a total of 78 complete genome sequences available in the NCBI database were obtained, aligned and further analyzed. Scattered Single Nucleotide Polymorphisms (SNPs) were identified throughout the genome of variants and common SNPs such as: 241:C>T in the 5'UTR of Open Reading Frame 1A (ORF1A), 3037: C>T in Non-structural Protein 3 (NSP3), 14,408: C>T in ORF6 and 23,402: A>G, 23,403: A>G in Spike Protein (S) were observed, but all of them were synonymous mutations. About 97% of the studied genomes showed a block of tri-nucleotide alteration (GGG>AAC), the most common non-synonymous mutation in the 28,881-28,883 location of the genome. This block results in two amino acid changes (203-204: RG>KR) in the SR rich motif of the nucleocapsid (N) protein of SARS-CoV-2, introducing a lysine in between serine and arginine. The N protein structure of the mutant was predicted through protein modeling. However, no observable difference was found between the mutant and the reference (Wuhan) protein. Further, the protein stability changes upon mutations were analyzed using the I-Mutant2.0 tool. The alteration of the arginine to lysine at the amino acid position 203, showed reduction of entropy, suggesting a possible impact on the overall stability of the N protein. The estimation of the non-synonymous to synonymous substitution ratio (dN/dS) were analyzed for the common mutations and the results showed that the overall mean distance among the N-protein variants were statistically significant, supporting the non-synonymous nature of the mutations. The phylogenetic analysis of the selected 78 genomes, compared with the most common genomic variants of this virus across the globe showed a distinct cluster for the analyzed Bangladeshi sequences. Further studies are warranted for conferring any plausible association of these mutations with the clinical manifestation.

16.
Food Chem X ; 14: 100322, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35571331

RESUMO

Moringa oleifera Lam. (M. oleifera Lam) is a perennial tropical deciduous tree that belongs to the Moringaceae family. Polysaccharides are one of the major bioactive compounds in M. oleifera Lam and show immunomodulatory, anticancer, antioxidant, intestinal health protection and antidiabetic activities. At present, the structure and functional activities of M. oleifera Lam polysaccharides (MOPs) have been widespread, but the research data are relatively scattered. Moreover, the relationship between the structure and biological activities of MOPs has not been summarized. In this review, the current research on the extraction, purification, structural characteristics and biological activities of polysaccharides from different sources of M. oleifera Lam were summarized, and the structural characteristics of purified polysaccharides were focused on this review. Meanwhile, the biological activities of MOPs were introduced, and some molecular mechanisms were listed. In addition, the relationship between the structure and biological activities of MOPs was discussed. Furthermore, new perspectives and some future research of M. oleifera Lam polysaccharides were proposed in this review.

17.
Acta Pharm Sin B ; 12(3): 1163-1185, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530162

RESUMO

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

18.
JTCVS Open ; 6: 224-236, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36003558

RESUMO

Objective: To evaluate trends in the use of epidural analgesia and nonopioid and opioid analgesics for patients undergoing lobectomy from 2009 to 2018. Methods: We queried the Premier database for adult patients undergoing open, video-assisted, and robotic-assisted lobectomy from 2009 to 2018. The outcome of interest was changes in the receipt of epidural analgesia and nonopioid and opioid analgesics as measured by charges on the day of surgery. We also evaluated postoperative daily opioid use. We used multivariable logistic and linear regression models to examine the association between the utilization of each analgesic modality and year. Results: We identified 86,308 patients undergoing lobectomy from 2009 to 2018 within the Premier database: 35,818 (41.5%) patients had open lobectomy, 35,951 (41.7%) patients had video-assisted lobectomy, and 14,539 (16.8%) patients had robotic-assisted lobectomy. For all 3 surgical cohorts, epidural analgesia use decreased, and nonopioid analgesics use increased over time, except for intravenous nonsteroidal anti-inflammatory drugs. Use of patient-controlled analgesia decreased, while opioid consumption on the day of surgery increased and postoperative opioid consumption did not decrease over time. Conclusions: In this large sample of patients undergoing lobectomy, utilization of epidural analgesia declined and use of nonopioid analgesics increased. Despite these changes, opioid consumption on day of surgery increased, and there was no significant reduction in postoperative opioid consumption. Further research is warranted to examine the association of these changes with patient outcomes.

19.
Expert Opin Ther Targets ; 25(11): 917-938, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34844502

RESUMO

INTRODUCTION: Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED: We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION: Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.


Assuntos
Edema Encefálico , Canais de Cátion TRPM , Edema Encefálico/terapia , Glibureto/farmacologia , Humanos , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
20.
Toxicol Rep ; 8: 1280-1288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277358

RESUMO

Diazinon (DZN) with prominent neurotoxic effects perturbs CNS function via multiple mechanisms. This investigation intends to explore mood, spatial learning, and memory dysfunction, acetylcholine esterase (AChE) activity, and neurodegeneration-related gene expression in the cortex and hippocampus regions of mice exposed to DZN for 63 consecutive days (subchronic exposure). Adult male albino mice were orally given sublethal DZN (DZNL = 0.1 mg/kg, DZNM = 1 mg/kg and DZNH = 10 mg/kg). All mice in the DZNH group died within 3 weeks postexposure. DZNL and DZNM caused body and brain weight loss (p < 0.05). Completing 9 weeks of DZN exposure, a marked decline in AChE activity and oxidative stress level was indicated in both brain regions (p < 0.05). Also, synaptophysin, vesicular acetylcholine transferase, and glutamate decarboxylase gene expressions were affected in both brain regions (p < 0.05). Furthermore, the present study revealed that DZN administration increased anxiety and depressive-like behaviors (p < 0.0001). Spatial learning and short- and long-memory were severely affected by DZNL and DZNM treatments (p < 0.0001). Taken together, subchronic exposure to low and medium doses of DZN can cause AChE inhibition, oxidative damage, and neurotransmitter disturbances in brain cells and induce neurodegeneration. These changes would impair mood, spatial learning, and memory function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa