Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 82(8): 1573-1588.e10, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35114099

RESUMO

The heat shock (HS) response involves rapid induction of HS genes, whereas transcriptional repression is established more slowly at most other genes. Previous data suggested that such repression results from inhibition of RNA polymerase II (RNAPII) pause release, but here, we show that HS strongly affects other phases of the transcription cycle. Intriguingly, while elongation rates increase upon HS, processivity markedly decreases, so that RNAPII frequently fails to reach the end of genes. Indeed, HS results in widespread premature transcript termination at cryptic, intronic polyadenylation (IPA) sites near gene 5'-ends, likely via inhibition of U1 telescripting. This results in dramatic reconfiguration of the human transcriptome with production of new, previously unannotated, short mRNAs that accumulate in the nucleus. Together, these results shed new light on the basic transcription mechanisms induced by growth at elevated temperature and show that a genome-wide shift toward usage of IPA sites can occur under physiological conditions.


Assuntos
Poliadenilação , Transcriptoma , Resposta ao Choque Térmico/genética , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética
2.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054711

RESUMO

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Assuntos
Proteínas de Drosophila , Doenças do Sistema Nervoso , Adulto , Animais , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação/genética , RNA Mensageiro
3.
RNA ; 30(3): 281-297, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38191171

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited effective treatment options, potentiating the importance of uncovering novel drug targets. Here, we target cleavage and polyadenylation specificity factor 3 (CPSF3), the 3' endonuclease that catalyzes mRNA cleavage during polyadenylation and histone mRNA processing. We find that CPSF3 is highly expressed in PDAC and is associated with poor prognosis. CPSF3 knockdown blocks PDAC cell proliferation and colony formation in vitro and tumor growth in vivo. Chemical inhibition of CPSF3 by the small molecule JTE-607 also attenuates PDAC cell proliferation and colony formation, while it has no effect on cell proliferation of nontransformed immortalized control pancreatic cells. Mechanistically, JTE-607 induces transcriptional readthrough in replication-dependent histones, reduces core histone expression, destabilizes chromatin structure, and arrests cells in the S-phase of the cell cycle. Therefore, CPSF3 represents a potential therapeutic target for the treatment of PDAC.


Assuntos
Histonas , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Trends Biochem Sci ; 46(9): 772-784, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33941430

RESUMO

Cleavage of nascent transcripts is a fundamental process for eukaryotic mRNA maturation and for the production of different mRNA isoforms. In eukaryotes, cleavage of mRNA precursors by the highly conserved endonuclease CPSF73 is critical for mRNA stability, export from the nucleus, and translation. As an essential enzyme in the cell, CPSF73 surprisingly shows promise as a drug target for specific cancers and for protozoan parasites. In this review, we cover our current understanding of CPSF73 in cleavage and polyadenylation, histone pre-mRNA processing, and transcription termination. We discuss the potential of CPSF73 as a target for novel therapeutics and highlight further research into the regulation of CPSF73 that will be critical to understanding its role in cancer and other diseases.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Precursores de RNA , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Endonucleases/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
BMC Cancer ; 22(1): 1026, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175880

RESUMO

Alternative polyadenylation (APA) is emerging as a crucial regulatory mechanism in bladder cancer (BC), while it remains elusive whether APA influences the tumor immune microenvironment (TIME) in BC. We identified two distinct subtypes of BC by APA-related regulatory genes expression profiles. The two subtypes have different pathological grades, prognostic outcomes, tumor immune infiltration characteristics, and pathway enrichment. Subsequently, CPSF3 was identified as a potential immune infiltration-related gene in BC. Highly expressed CPSF3 was positively correlated with unfavorable prognosis and high CD276 expression in BC. Moreover, we verified the expression of CPSF3 in BC tissues and cell lines by qRT-PCR. In conclusion, the study indicates that APA regulatory factors play an important role in immune infiltration of BC, and that CPSF3 was a potentially prognostic marker and immunotherapy target for BC.


Assuntos
Poliadenilação , Neoplasias da Bexiga Urinária , Antígenos B7/metabolismo , Genes Reguladores , Humanos , Prognóstico , Microambiente Tumoral/genética , Neoplasias da Bexiga Urinária/patologia
6.
Biochem Biophys Res Commun ; 518(1): 32-37, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31399191

RESUMO

JTE-607 is a small molecule that was developed as an inflammatory cytokine inhibitor and also as an anti-leukemia reagent for monocytic leukemia. However, the mode of action of JTE-607 remains unknown. In this study, we identified JTE-607 to be a prodrug compound that is converted to an active form by ester hydrolysis. Furthermore, we determined that the active form of JTE-607 bound cleavage and polyadenylation specificity factor subunit 3 (CPSF3), using compound-immobilized affinity chromatography. CPSF3 is a 73-kDa subunit of the cleavage and polyadenylation specificity factor complex, which functions as an RNA endonuclease. The protein is involved in the 3'-end processing of messenger RNA precursors (pre-mRNAs) at the cleavage site located downstream of the poly(A) addition signal. We found that treatment with JTE-607 caused accumulation of pre-mRNAs. Furthermore, knockdown experiments showed that CPSF3 deficiency also caused accumulation of pre-mRNAs and suppressed the expression of inflammatory cytokines, like JTE-607. These findings indicated that CPSF3 is a direct target of JTE-607 and a new potential target for the treatment of disease-related abnormal cytokine production.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Citocinas/biossíntese , Fenilalanina/análogos & derivados , Piperazinas/farmacologia , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , Linhagem Celular , Humanos , Modelos Biológicos , Fenilalanina/química , Fenilalanina/farmacologia , Piperazinas/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos
7.
Cancer Lett ; 593: 216925, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718887

RESUMO

Alternative polyadenylation (APA), an important post-transcriptional regulatory mechanism, is aberrantly activated in cancer,but how APA functions in tumorigenesis remains elusive. We analyzed APA events in RNA-seq data in TCGA and reported 3'UTR alterations associated with esophageal squamous cell carcinoma (ESCC) patient prognosis and gene expression changes involving loss of tumor-suppressive miRNA binding sites. Moreover, we investigated the expression and function of cleavage and polyadenylation specific factor 3 (CPSF3), a key APA regulator in ESCC. By immunohistochemistry and qRT-PCR, we found that CPSF3 was highly expressed in ESCC tissues and associated with poor patient prognosis. Overexpression of CPSF3 enhanced, while knockdown of CPSF3 inhibited ESCC cell proliferation and migration in vitro and in vivo, as determined by colony formation, transwell assays and animal experiments. Iso-Seq and RNA-seq data analysis indicated that knockdown of CPSF3 favored use of the distal poly (A) site in the 3'UTR of Cornichon family AMPA receptor auxiliary protein 2 (CNIH2), resulting in a long-3'UTR CNIH2 isoform that produced less CNIH2 protein due to miR-125a-5p targeting and downregulating CNIH2 mRNA through a miR-125a-5p binding site in the long CNIH2 mRNA 3'UTR. Moreover, CPSF3-induced ESCC tumorigenicity was mediated by CNIH2. Taken together, CPSF3 promotes ESCC progression by upregulating CNIH2 expression through loss of miR-125a-5p-mediated CNIH2 repression through alternative splicing and polyadenylation of the CNIH2 mRNA 3'UTR.


Assuntos
Proliferação de Células , Fator de Especificidade de Clivagem e Poliadenilação , Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Poliadenilação , Animais , Feminino , Humanos , Masculino , Camundongos , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
8.
Genome Biol ; 22(1): 171, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082786

RESUMO

BACKGROUND: Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. RESULTS: We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. CONCLUSIONS: Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.


Assuntos
Processamento Alternativo/genética , Reprogramação Celular/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Antígeno-1 Intracelular de Células T/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos
9.
Biomark Med ; 15(5): 347-358, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33666519

RESUMO

Background: Recent studies have shown that cleavage and polyadenylation-specific factor 3 (CPSF3) is a promising antitumor therapeutic target, but its potential role in hepatocellular carcinoma (HCC) has not been reported. Materials & methods: We explored the expression pattern of CPSF3 in HCC through bioinformatics analysis, quantitative polymerase chain reaction (qPCR) and western blot. The potential role of CPSF3 as a biomarker for HCC was evaluated by Kaplan-Meier analysis. Next, changes in HCC cell lines in the CPSF3 knockdown model group and the control group were assessed by Cell Counting Kit-8, clonal formation, flow cytometry and EdU staining. Western blot detected changes in protein levels of the PI3K/Akt/GSK-3ß axis of two HCC cell lines in the knockdown group and the control group. Results: The results showed that the transcription and protein levels of CPSF3 were significantly higher in HCC tissues than in adjacent normal tissues (p < 0.05). The HCC cohort with increased expression of CPSF3 is associated with advanced stage and differentiation and predicts poorer prognosis (p < 0.05). CPSF3 knockdown significantly inhibited proliferation and clone formation of HepG2 and SMMC-7721 cell lines. Flow cytometry analysis showed G1-S cell cycle arrest in the CPSF3 knockdown group, and the results of EdU staining were consistent with this. Compared with the control group, p-Akt and cyclin D1 were decreased, and GSK-3ß was increased in the knockdown group. Conclusion: CPSF3 may be a potential diagnostic biomarker and candidate therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Fator de Especificidade de Clivagem e Poliadenilação/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
10.
Transcription ; 11(2): 83-96, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32522085

RESUMO

The majority of eukaryotic messenger RNA precursors (pre-mRNAs) undergo cleavage and polyadenylation at their 3' end. This canonical 3'-end processing depends on sequence elements in the pre-mRNA as well as a mega-dalton protein machinery. The cleavage site in mammalian pre-mRNAs is located between an upstream poly(A) signal, most frequently an AAUAAA hexamer, and a GU-rich downstream sequence element. This review will summarize recent advances from the studies on this canonical 3'-end processing machinery. They have revealed the molecular mechanism for the recognition of the poly(A) signal and provided the first glimpse into the overall architecture of the machinery. The studies also show that the machinery is highly dynamic conformationally, and extensive re-arrangements are necessary for its activation. Inhibitors targeting the active site of the CPSF73 nuclease of this machinery have anti-cancer, anti-inflammatory and anti-protozoal effects, indicating that CPSF73 and pre-mRNA 3'-end processing in general are attractive targets for drug discovery. ABBREVIATIONS: APA: alternative polyadenylation; ß-CASP: metallo-ß-lactamase-associated CPSF Artemis SNM1/PSO2; CTD: C-terminal domain; CF: cleavage factor; CPF: cleavage and polyadenylation factor; CPSF: cleavage and polyadenylation specificity factor; CstF: cleavage stimulation factor; DSE: downstream element; HAT: half a TPR; HCC: histone pre-mRNA cleavage complex; mCF: mammalian cleavage factor; mPSF: mammalian polyadenylation specificity factor; mRNA: messenger RNA; nt: nucleotide; NTD: N-terminal domain; PAP: polyadenylate polymerase; PAS: polyadenylation signal; PIM: mPSF interaction motif; Poly(A): polyadenylation, polyadenylate; Pol II: RNA polymerase II; pre-mRNA: messenger RNA precursor; RRM: RNA recognition module, RNA recognition motif; snRNP: small nuclear ribonucleoprotein; TPR: tetratricopeptide repeat; UTR: untranslated region; ZF: zinc finger.


Assuntos
Precursores de RNA/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Humanos , Precursores de RNA/metabolismo
11.
J Exp Clin Cancer Res ; 38(1): 249, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186036

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related death worldwide. Increasing evidence indicates that the deregulation of long noncoding RNAs (lncRNAs) contributes to tumor initiation and progression; however, little is known about the biological role of cancer susceptibility candidate 9 (CASC9) in CRC. METHODS: Novel lncRNAs potentially involved in CRC tumorigenesis were identified from datasets downloaded from The Cancer LncRNome Atlas and The Atlas of Noncoding RNAs in Cancer. The CRC cell lines HCT-116, HCT-116 p53-/-, SW620, SW480, HT-29, LoVo, LS-174T, and RKO were used. Colony-formation, MTS, cell-cycle, apoptosis, and in-vivo tumorigenesis assays were used to determine the role of CASC9 in CRC cell growth in vitro and in vivo. Potential interaction between CASC9 and cleavage and polyadenylation specificity factor subunit 3 (CPSF3) was evaluated using RNA immunoprecipitation and RNA-protein pull-down assays. RNA-sequencing was performed to analyze gene expression following CASC9 knockdown. RT-qPCR, western blotting, and mRNA decay assays were performed to study the mechanisms involved. RESULTS: CASC9 was frequently upregulated in CRC, which was correlated with advanced TNM stage, and higher CASC9 levels were associated with poor patient outcomes. Knockdown of CASC9 inhibited growth and promoted apoptosis in CRC cells, whereas ectopic CASC9 expression promoted cell growth in vitro and in vivo. We demonstrated that CPSF3 is a CASC9-interacting protein, and knockdown of CPSF3 mimicked the effects of CASC9 knockdown in CRC cells. Furthermore, we found that CASC9 exerts its oncogenic activity by modulating TGFß2 mRNA stability and upregulating the levels of TGFß2 and TERT, resulting in an increase in phosphorylated SMAD3 and activation of TGF-ß signaling, and enhanced TERT complex function in CRC cells. Finally, CPSF3 was significantly upregulated in CRC tissues as compared with adjacent or non-adjacent normal colon tissues, and CASC9, CPSF3, and TGFß2 levels in human CRC tissues were positively correlated. CONCLUSIONS: CASC9 is a promising prognostic predictor for patients with CRC and the CASC9-CPSF3-TGFß2 axis is a potential therapeutic target for CRC treatment.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Biomarcadores Tumorais , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Interferência de RNA , Carga Tumoral
12.
J Ophthalmic Vis Res ; 14(1): 62-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820289

RESUMO

PURPOSE: To compare the levels of gene expression for enzymes involved in production and elimination of reactive oxygen/nitrogen species (ROS/RNS) in normal human corneal cells (NL cells) with those in human corneal cells with keratoconus (KC cells) in vitro. METHODS: Primary NL and KC stromal fibroblast cultures were incubated with apocynin (an inhibitor of NADPH oxidase) or N-nitro-L-arginine (N-LLA; an inhibitor of nitric oxide synthase). ROS/RNS levels were measured using an H2 DCFDA fluorescent assay. The RT2 Profiler™ PCR Array for Oxidative Stress and Antioxidant Defense was used for initial screening of the NL and KC cultures. Transcription levels for genes related to production or elimination of ROS/RNS were analyzed using quantitative PCR. Immunohistochemistry was performed on 10 intact human corneas using antibodies against SCARA3 and CPSF3. RESULTS: Array screening of 84 antioxidant-related genes identified 12 genes that were differentially expressed between NL and KC cultures. Compared with NL cells, quantitative PCR showed that KC cells had decreased expression of antioxidant genes SCARA3 isoform 2 (0.59-fold, P = 0.02) and FOXM1 isoform 1 (0.61-fold, P = 0.03). KC cells also had downregulation of the antioxidant genes SOD1 (0.4-fold, P = 0.0001) and SOD3 (0.37-fold, P = 0.02) but increased expression of SOD2 (3.3-fold, P < 0.0001), PRDX6 (1.47-fold, P = 0.01), and CPSF3 (1.44-fold, P = 0.02). CONCLUSION: The difference in expression of antioxidant enzymes between KC and NL suggests that the oxidative stress imbalances found in KC are caused by defects in ROS/RNS removal rather than increased ROS/RNS production.

13.
EMBO Mol Med ; 9(3): 385-394, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28148555

RESUMO

Toxoplasma gondii is an important food and waterborne pathogen causing toxoplasmosis, a potentially severe disease in immunocompromised or congenitally infected humans. Available therapeutic agents are limited by suboptimal efficacy and frequent side effects that can lead to treatment discontinuation. Here we report that the benzoxaborole AN3661 had potent in vitro activity against T. gondii Parasites selected to be resistant to AN3661 had mutations in TgCPSF3, which encodes a homologue of cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3), an endonuclease involved in mRNA processing in eukaryotes. Point mutations in TgCPSF3 introduced into wild-type parasites using the CRISPR/Cas9 system recapitulated the resistance phenotype. Importantly, mice infected with T. gondii and treated orally with AN3661 did not develop any apparent illness, while untreated controls had lethal infections. Therefore, TgCPSF3 is a promising novel target of T. gondii that provides an opportunity for the development of anti-parasitic drugs.


Assuntos
Antiprotozoários/farmacologia , Compostos de Boro/farmacologia , Fator de Especificidade de Clivagem e Poliadenilação/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia , Toxoplasmose/tratamento farmacológico , Administração Oral , Animais , Antiprotozoários/administração & dosagem , Compostos de Boro/administração & dosagem , Modelos Animais de Doenças , Resistência a Medicamentos , Camundongos , Testes de Sensibilidade Parasitária , Mutação Puntual , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa