Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2121174119, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727969

RESUMO

The carbon-neutral synthesis of syngas from CO2 and H2O powered by solar energy holds grand promise for solving critical issues such as global warming and the energy crisis. Here we report photochemical reduction of CO2 with H2O into syngas using core/shell Au@Cr2O3 dual cocatalyst-decorated multistacked InGaN/GaN nanowires (NWs) with sunlight as the only energy input. First-principle density functional theory calculations revealed that Au and Cr2O3 are synergetic in deforming the linear CO2 molecule to a bent state with an O-C-O angle of 116.5°, thus significantly reducing the energy barrier of CO2RR compared with that over a single component of Au or Cr2O3. Hydrogen evolution reaction was promoted by the same cocatalyst simultaneously. By combining the cooperative catalytic properties of Au@Cr2O3 with the distinguished optoelectronic virtues of the multistacked InGaN NW semiconductor, the developed photocatalyst demonstrated high syngas activity of 1.08 mol/gcat/h with widely tunable H2/CO ratios between 1.6 and 9.2 under concentrated solar light illumination. Nearly stoichiometric oxygen was evolved from water splitting at a rate of 0.57 mol/gcat/h, and isotopic testing confirmed that syngas originated from CO2RR. The solar-to-syngas energy efficiency approached 0.89% during overall CO2 reduction coupled with water splitting. The work paves a way for carbon-neutral synthesis of syngas with the sole inputs of CO2, H2O, and solar light.

2.
Nano Lett ; 24(28): 8525-8534, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954769

RESUMO

Cr2(NCN)3 is a potentially high-capacity and fast-charge Li-ion anode owing to its abundant and broad tunnels. However, high intrinsic chemical instability severely restricts its capacity output and electrochemical reversibility. Herein we report an effective crystalline engineering method for optimizing its phase and crystallinity. Systematic studies reveal the relevancy between electrochemical performance and crystalline structure; an optimal Cr2(NCN)3 with high phase purity and uniform crystallinity exhibits a high reversible capacity of 590 mAh g-1 and a stable cycling performance of 478 mAh g-1 after 500 cycles. In-operando heating XRD reveals its high thermodynamical stability over 600 °C, and in-operando electrochemical XRD proves its electrochemical Li storage mechanism, consisting of the primary Li-ion intercalation and subsequent conversion reactions. This study introduces a facile and low-cost method for fabricating high-purity Cr2(NCN)3, and it also confirms that the Li storage of Cr2(NCN)3 can be further improved by tuning its phase and crystallinity.

3.
Nano Lett ; 24(7): 2408-2414, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329291

RESUMO

Two-dimensional (2D) heterostructures with ferromagnetism and ferroelectricity provide a promising avenue to miniaturize the device size, increase computational power, and reduce energy consumption. However, the direct synthesis of such eye-catching heterostructures has yet to be realized up to now. Here, we design a two-step chemical vapor deposition strategy to growth of Cr2S3/WS2 vertical heterostructures with atomically sharp and clean interfaces on sapphire. The interlayer charge transfer and periodic moiré superlattice result in the emergence of room-temperature ferroelectricity in atomically thin Cr2S3/WS2 vertical heterostructures. In parallel, long-range ferromagnetic order is discovered in 2D Cr2S3 via the magneto-optical Kerr effect technique with the Curie temperature approaching 170 K. The charge distribution variation induced by the moiré superlattice changes the ferromagnetic coupling strength and enhances the Curie temperature. The coexistence of ferroelectricity and ferromagnetism in 2D Cr2S3/WS2 vertical heterostructures provides a cornerstone for the further design of logic-in-memory devices to build new computing architectures.

4.
Small ; 20(30): e2312130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409470

RESUMO

The principal challenges faced by sodium-ion batteries (SIBs) and potassium-ion batteries (KIBs) revolve around identifying suitable host materials capable of accommodating metal ions with larger dimensions and addressing the issue of sluggish chemical kinetics. Herein, a MoSe2/Cr2Se3 heterojunction uniformly embedded is fabricated in nitrogen-doped hollow carbon nanospheres (MoSe2/Cr2Se3@N-HCSs) as an electrode material for SIBs and KIBs. Cr2Se3 exhibits spontaneous antiparallel alignment of magnetic moments. Mo2+ doping is employed to regulate the electron spin states of Cr2Se3. Moreover, the MoSe2 and Cr2Se3 heterojunctions induce a lattice mismatch at the heterostructure interface, resulting in spin-polarized states or localized magnetic moments at the interface, potentially contributing to spin-polarized surface capacitance. MoSe2/Cr2Se3@N-HCSs demonstrate a high capacity of 498 mAh g-1 at 0.1 A g-1 with good cycling stability (capacity of 405 mAh g-1 and a coulombic efficiency of 99.8% after 1000 cycles). Additionally, density functional theory (DFT) calculations simulate the accumulation of spin-polarized charges at the MoSe2/Cr2Se3@N-HCSs heterojunction interface, dependent on the surface electron density of the antiferromagnetic Cr2Se3 and the surface spin polarization near the Fermi level. After regulating the electron spin states through Mo-doping, the band gap of the material decreases. These significant findings provide novel insights into the design and synthesis of electrode materials with exceptional performance characteristics for batteries.

5.
Chemphyschem ; 25(1): e202300530, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37867156

RESUMO

Cr2 O3 was applied to study the modification of In2 O3 based catalysts for CO2 hydrogenation to methanol reaction. Combined with X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), etc., the structure of the catalysts was characterized. The reaction performances for CO2 hydrogenation to methanol were evaluated on a stainless-steel fix-bed reactor. The results showed that solid solutions were formed for the Cr2 O3 promoted In2 O3 catalysts. The important role of electronic interaction between Cr2 O3 and In2 O3 was revealed in the hydrogenation reaction. In1.25 Cr0.75 O3 sample exhibited the highest methanol yield, which was 2.8 times higher than that of pure In2 O3 . No deactivation was observed for In1.25 Cr0.75 O3 sample during the 50 hours of reaction. The improved catalytic performance may be due to the formation of the solid solutions and the highest amount of oxygen vacancies.

6.
Mol Ther ; 31(9): 2715-2733, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37481702

RESUMO

Neuromyelitis optica (NMO) is an autoimmune inflammatory disease of the central nervous system (CNS) characterized by transverse myelitis and optic neuritis. The pathogenic serum IgG antibody against the aquaporin-4 (AQP4) on astrocytes triggers the activation of the complement cascade, causing astrocyte injury, followed by oligodendrocyte injury, demyelination, and neuronal loss. Complement C3 is positioned as a central player that relays upstream initiation signals to activate downstream effectors, potentially stimulating and amplifying host immune and inflammatory responses. However, whether targeting the inhibition of C3 signaling could ameliorate tissue injury, locomotor defects, and visual impairments in NMO remains to be investigated. In this study, using the targeted C3 inhibitor CR2-Crry led to a significant decrease in complement deposition and demyelination in both slice cultures and focal intracerebral injection models. Moreover, the treatment downregulated the expression of inflammatory cytokines and improved motor dysfunction in a systemic NMO mouse model. Similarly, employing serotype 2/9 adeno-associated virus (AAV2/9) to induce permanent expression of CR2-Crry resulted in a reduction in visual dysfunction by attenuating NMO-like lesions. Our findings reveal the therapeutic value of inhibiting the complement C3 signaling pathway in NMO.


Assuntos
Complemento C3 , Neuromielite Óptica , Animais , Camundongos , Complemento C3/genética , Complemento C3/metabolismo , Neuromielite Óptica/patologia , Aquaporina 4/metabolismo , Transtornos da Visão/complicações , Transtornos da Visão/patologia , Astrócitos/metabolismo , Transdução de Sinais , Proteínas Recombinantes de Fusão/metabolismo
7.
Mikrochim Acta ; 191(3): 135, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355771

RESUMO

A highly sensitive electrochemical sensor is reported that employs a modified electrode for the precise measurement of cabotegravir, a potent anti-HIV drug. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were utilized for this purpose. Electrode modification involved the immobilization of Cr2AlC MAX phase/g-C3N4 onto a glassy carbon electrode (GCE) to enhance its electrocatalytic activity and selectivity for cabotegravir detection. Under the optimal experimental conditions, the working potential (vs. Ag/AgCl) was to 0.93 V. The developed sensor exhibited a good linear relationship in the range 0.05 µM to 9.34 µM with a low limit of detection of 4.33 nM, signifying its exceptional sensitivity. Additionally, it demonstrated successful cabotegravir detection in pharmaceutical formulations and biological samples, achieving an RSD below 3.0%. The recoveries fell within the range 97.7 to 102%, confirming the sensor's potential for real-sample applications. This innovative electrochemical sensor represents a significant advancement, providing a simple, reliable, and sensitive tool for the accurate measurement of cabotegravir. Its potential applications include optimizing drug dosages, monitoring treatment responses, and supporting the development of cabotegravir-based pharmaceutical products, thereby contributing to advancements in HIV therapy and prevention strategies.


Assuntos
Carbono , Dicetopiperazinas , Técnicas Eletroquímicas , Piridonas , Técnicas Eletroquímicas/métodos , Limite de Detecção , Carbono/química , Preparações Farmacêuticas
8.
Nano Lett ; 23(2): 710-717, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626837

RESUMO

Charge transfer plays a key role at the interfaces of heterostructures, which can affect electronic structures and ultimately the physical properties of the materials. However, charge transfer is difficult to manipulate externally once the interface is formed. The recently discovered van der Waals ferromagnets with atomically sharp interfaces provided a perfect platform for the electrical control of interfacial charge transfer. Here, we report magnetoresistance experiments revealing electrically tunable charge transfer in Fe3GeTe2/Cr2Ge2Te6/Fe3GeTe2 all-magnetic van der Waals heterostructures, which can be exploited to selectively modify the switching fields of the top or bottom Fe3GeTe2 electrodes. The directional charge transfer from metallic Fe3GeTe2 to semiconducting Cr2Ge2Te6 is revealed by first-principles calculations, which remarkably modifies the magnetic anisotropy energy of Fe3GeTe2, leading to the dramatically suppressed coercivity. The electrically selective control of magnetism demonstrated in this study could stimulate the development of spintronic devices based on van der Waals magnets.

9.
Molecules ; 29(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792243

RESUMO

Chromium slag is a solid waste of chromium salt production, which contains highly toxic Cr(VI) and significant amounts of valuable metals, such as Fe and Cr. Recycling chromium slag as a raw sintering material in sintering-ironmaking processes can simultaneously reduce toxic Cr(VI) and recover valuable metals. A micro-sintering experiment, compressive strength test, microhardness test, and first-principles calculation are performed to investigate the influence of Cr2O3 on the sintering microstructure and mechanical properties of the silico-ferrite of calcium and aluminum (SFCA) in order to understand the basis of the sintering process with chromium slag addition. The results show that the microstructure of SFCA changes from blocky to interwoven, with further increasing Cr2O3 content from 0 wt% to 3 wt%, and transforms to blocky with Cr2O3 content increasing to 5 wt%. Cr2O3 reacts with Fe2O3 to form (Fe1-xCrx)2O3 (0 ≤ x ≤ 1), which participates in forming SFCA. With the increase in Cr doping concentrations, the hardness of SFCA first decreases and then increases, and the toughness increases. When Cr2O3 content increases from 0 wt% to 3 wt%, the SFCA microhardness decreases and the compressive strength of the sintered sample increases. Further increasing Cr2O3 contents to 5 wt%, the SFCA microhardness increases, and the compressive strength of sintered sample decreases.

10.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930954

RESUMO

The organic molecules adsorbed on antiferromagnetic surfaces can produce interesting interface states, characterized by charge transfer mechanisms, hybridization of molecular-substrate orbitals, as well as magnetic couplings. Here, we apply an ab initio approach to study the adsorption of Fe phthalocyanine on stoichiometric Cr2O3(0001). The molecule binds via a bidentate configuration forming bonds between two opposite imide N atoms and two protruding Cr ones, making this preferred over the various possible adsorption structures. In addition to the local modifications at these sites, the electronic structure of the molecule is weakly influenced. The magnetic structure of the surface Cr atoms shows a moderate influence of molecule adsorption, not limited to the atoms in the close proximity of the molecule. Upon optical excitation at the onset, electron density moves toward the molecule, enhancing the ground state charge transfer. We investigate this movement of charge as a mechanism at the base of light-induced modifications of the magnetic structure at the interface.

11.
Angew Chem Int Ed Engl ; 63(16): e202400011, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38409577

RESUMO

Light-driven hydrogen production from biomass derivatives offers a path towards carbon neutrality. It is often however operated with the limitations of sluggish kinetics and severe coking. Herein, a disruptive air-promoted strategy is explored for efficient and durable light-driven hydrogen production from ethanol over a core/shell Cr2O3@GaN nanoarchitecture. The correlative computational and experimental investigations show ethanol is energetically favorable to be adsorbed on the Cr2O3@GaN interface, followed by dehydrogenation toward acetaldehyde and protons by photoexcited holes. The released protons are then consumed for H2 evolution by photogenerated electrons. Afterward, O2 can be evolved into active oxygen species and promote the deprotonation and C-C cleavage of the key C2 intermediate, thus significantly lowering the reaction energy barrier of hydrogen evolution and removing the carbon residual with inhibited overoxidation. Consequently, hydrogen is produced at a high rate of 76.9 mole H2 per gram Cr2O3@GaN per hour by only feeding ethanol, air, and light, leading to the achievement of a turnover number of 266,943,000 mole H2 per mole Cr2O3 over a long-term operation of 180 hours. Notably, an unprecedented light-to-hydrogen efficiency of 17.6 % is achieved under concentrated light illumination. The simultaneous generation of aldehyde from ethanol dehydrogenation enables the process more economically promising.

12.
Small ; 19(52): e2304264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661567

RESUMO

Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe3 O4 /Cr2 O3 heterostructure with multiple interfaces is synthesized by a facile sol-gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li+ migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe3 O4 , Cr2 O3 , and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g-1 for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.

13.
Small ; 19(47): e2304581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501327

RESUMO

The sensing and monitoring of toxic oxo-anion contaminants in water are of significant importance to biological and environmental systems. A rare hydro-stable SIFSIX metal-organic framework, SiF6 @MOF-1, {[Cu(L)2 (H2 O)2 ]·(SiF6 )(H2 O)}n , with exchangeable SiF6 2- anion in its pore is strategically designed and synthesized, exhibiting selective detection of toxic Cr2 O7 2- oxo-anion in an aqueous medium having high sensitivity, selectivity, and recyclability through fluorescence quenching phenomena. More importantly, the recognition and ion exchange mechanism is unveiled through the rarely explored single-crystal-to-single crystal (SC-SC) fashion with well-resolved structures. A thorough SC-SC study with interfering anions (Cl- , F- , I- , NO3 - , HCO3 - , SO4 2- , SCN- , IO3 - ) revealed no such transformations to take place, as per line with quenching studies. Density functional theory calculations revealed that despite a lesser binding affinity, Cr2 O7 2- shows strong orbital mixing and large driving forces for electron transfer than SiF6 2- , and thus enlightens the fluorescence quenching mechanism. This work inaugurates the usage of a SIFSIX MOF toward sensing application domain under aqueous medium where hydrolytic stability is a prime concern for their plausible implementation as sensor materials.

14.
Environ Res ; 223: 115485, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775087

RESUMO

Chromium (Cr) is reported to be hazardous to environmental components and surrounding biota when levels exceed allowable thresholds. As Cr is extensively utilized in different industries, thereby comprehensively studied for its toxicity. Along with Cr, the applications of nano-Cr or chromium oxide nanoparticles (Cr2O3-NPs) are also expanding; however, the literature is scarce or limited on their phytotoxicity. Thereby, the current work investigated the morpho-physiological insights of macro- and nanoparticles of Cr in Hordeum vulgare L. plants. The increased accumulation and translocation of Cr under the exposure of both forms disturbed the cellular metabolism that might have inhibited germination and growth as well as interfered with the photosynthesis of plants. The overall extent of toxicity was noticeably higher under nanoparticles' exposure than macroparticles of Cr. The potential cue for such phytotoxic consequences mediated by Cr nanoparticles could be an increased bioavailability of Cr ions which was also supported by their total content, mobility, and factor toxicity index. Besides, to support further these findings, synchrotron X-ray technique was used to reliably identify Cr-containing compounds in the plant tissues. The X-ray spectra of the near spectral region and the far region of the spectrum of K-edge of Cr were obtained, and it was established that the dominant crystalline phase corresponds to Cr2O3 (eskolaite) from the recorded observations. Thus, the obtained results would allow revealing the mechanism of macro- and nanoparticles of Cr induced impacts on plant at the tissue, cellular- and sub-cellular levels.


Assuntos
Hordeum , Nanopartículas , Cromo/química , Nanopartículas/toxicidade , Nanopartículas/química , Plantas , Raízes de Plantas/metabolismo
15.
Luminescence ; 38(7): 1275-1281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36378529

RESUMO

Here, we developed a facile one-pot strategy for the fabrication of fluorescent aminoclay (F-AC) through in situ solvothermal treatment of 3-aminopropyltrimethoxysilane, MgCl2 , and sodium ascorbate at 180°C for 6 h. The obtained F-AC exhibited blue emission, good water solubility, and satisfactory photostability. It was observed that Cr2 O7 2- could selectively quench the fluorescence of F-AC through the inner filter effect and static quenching process. As a result, a novel fluorescent F-AC-based nanosensor was constructed with good linearity in the range 0.1-75 µM. The nanosensor was successfully applied in real water samples with satisfactory results. This work not only provides a novel nanosensor for Cr2 O7 2- , but also highlights the F-AC's promising applications in wider fields due to the versatility and simplicity of the preparation strategy.


Assuntos
Corantes Fluorescentes , Água , Limite de Detecção , Espectrometria de Fluorescência/métodos
16.
Nano Lett ; 22(19): 7944-7951, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129470

RESUMO

In this study, facile salt-assisted chemical vapor deposition (CVD) was used to synthesize ultrathin non-van der Waals chromium sulfide (Cr2S3) with a thickness of ∼1.9 nm. The structural transformation of as-grown Cr2S3 was studied using advanced in situ heating techniques combined with transmission electron microscopy (TEM). Two-dimensional (2D) and quasi-one-dimensional (1D) samples were fabricated to investigate the connection between specific planes and the dynamic behavior of the structural variation. The rearrangement of atoms during the phase transition was driven by the loss of sulfur atoms at elevated temperatures, resulting in increased free energy. A decrease in the ratio of the (001) plane led to an overall increase in surface energy, thus lowering the critical phase transition temperature. Our study provides detailed insight into the mechanism of structural transformation and the critical factors governing transition temperature, thus paving the way for future studies on intriguing Cr-S compounds.

17.
J Environ Manage ; 346: 119020, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734212

RESUMO

Economically sustainable development requires more viable waste recycling solutions. In this context, we address the problem of utilizing chromium-containing sludge, a prevalent and environmentally hazardous waste. Meanwhile, sustainable energy development must develop ecology-friendly and low-cost electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Herein, we report an ultra-low-cost electrocatalyst from chromium-containing sludge. The optimum preparation conditions are determined by optimizing the calcination temperature and the loading of nickel acetylacetonate. The optimized catalyst delivers excellent stability and outstanding OER activity with overpotentials of 320 mV at 10 mA cm-2 in alkaline media. Density functional theory calculations reveal that the energy barrier of OER is decreased because of the catalyst's heterogeneous structure arrangement and confirm the influence of chromium on performance improvement. The concept of "turning waste into treasure" stimulates the search for methods to process Cr-containing waste and produce low-cost, high-performance electrocatalysts.

18.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375227

RESUMO

A new Ni coordination polymer [Ni(MIP)(BMIOPE)]n (1) was constructed (BMIOPE = 4,4'-bis(2-methylimidazol-1-yl)diphenyl ether, and H2MIP = 5-methylisophthalic acid), possessing two-dimensional (2D) twofold parallel interwoven net structure with a 44∙62 point symbol. Complex 1 has been successfully obtained based on mixed-ligand strategy. The fluorescence titration experiments revealed that complex 1 could act as multifunctional luminescent sensor to simultaneously detect UO22+, Cr2O72- and CrO42-, and NFT (nitrofurantoin). The limit of detection (LOD) values for complex 1 are 2.86 × 10-5, 4.09 × 10-5, 3.79 × 10-5 and 9.32 × 10-5 M for UO22+, Cr2O72-, CrO42- and NFT. The Ksv values are 6.18 × 103, 1.44 × 104, 1.27 × 104 and 1.51 × 104 M-1 for NFT, CrO42-, Cr2O72- and UO22+. Finally, the mechanism of its luminescence sensing is studied in detail. These results manifest that complex 1 is a multifunctional sensor for sensitive fluorescent UO22+, Cr2O72-, CrO42- and NFT detection.

19.
Small ; 18(4): e2105744, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837337

RESUMO

For expanding the applications of 2D transition metal dichalcogenides (TMDCs), integrating functional devices with diverse conduction polarities in the same parent material is a very promising direction. Improving the contact issue at the metal-semiconductor interface also holds fundamental significance. To achieve these concurrently, step-like Cr2 S3 vertical stacks with varied thicknesses are achieved via a one-step chemical vapor deposition (CVD) method route. Various types of 2D Cr2 S3 lateral homojunctions are thus naturally evolved, that is, pm -ambipolar/n, p/ambipolar, ambipolar/n, and nm -ambipolar/n junctions, allowing the integration of diverse conduction polarities in single Cr2 S3 homojunctions. Significantly, on-state current density and field-effect mobility of the thinner 2D Cr2 S3 flakes stacked below are detected to be ≈5 and ≈6 times increased in the lateral homojunctions, respectively. This work should hereby provide insights for designing 2D functional devices with simpler structures, for example, multipolar field-effect transistors, photodetectors, and inverters, and provide fundamental references for optimizing the electrical performances of 2D materials related devices.

20.
Small ; 18(17): e2201228, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344270

RESUMO

Thin films of the magnetoelectric insulator α-Cr2 O3 are technologically relevant for energy-efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr2 O3 films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small-volume defects and their complexes is studied on the magnetic properties of Cr2 O3 thin films. By tuning the deposition temperature, the type, size, and relative concentration of defects is tailored, which is analyzed using the positron annihilation spectroscopy complemented with electron microscopy studies. The structural characterization is correlated with magnetotransport measurements and nitrogen-vacancy microscopy of antiferromagnetic domain patterns. Defects pin antiferromagnetic domain walls and stabilize complex multidomain states with a domain size in the sub-micrometer range. Despite their influence on the domain configuration, neither small open-volume defects nor grain boundaries in Cr2 O3 thin films affect the Néel temperature in a broad range of deposition parameters. The results pave the way toward the realization of spin-orbitronic devices where magnetic domain patterns can be tailored based on defect nanostructures without affecting their operation temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa