Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(22): 12452-12463, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32404426

RESUMO

Plastid isoprenoid-derived carotenoids serve essential roles in chloroplast development and photosynthesis. Although nearly all enzymes that participate in the biosynthesis of carotenoids in plants have been identified, the complement of auxiliary proteins that regulate synthesis, transport, sequestration, and degradation of these molecules and their isoprenoid precursors have not been fully described. To identify such proteins that are necessary for the optimal functioning of oxygenic photosynthesis, we screened a large collection of nonphotosynthetic (acetate-requiring) DNA insertional mutants of Chlamydomonas reinhardtii and isolated cpsfl1 The cpsfl1 mutant is extremely light-sensitive and susceptible to photoinhibition and photobleaching. The CPSFL1 gene encodes a CRAL-TRIO hydrophobic ligand-binding (Sec14) domain protein. Proteins containing this domain are limited to eukaryotes, but some may have been retargeted to function in organelles of endosymbiotic origin. The cpsfl1 mutant showed decreased accumulation of plastidial isoprenoid-derived pigments, especially carotenoids, and whole-cell focused ion-beam scanning-electron microscopy revealed a deficiency of carotenoid-rich chloroplast structures (e.g., eyespot and plastoglobules). The low carotenoid content resulted from impaired biosynthesis at a step prior to phytoene, the committed precursor to carotenoids. The CPSFL1 protein bound phytoene and ß-carotene when expressed in Escherichia coli and phosphatidic acid in vitro. We suggest that CPSFL1 is involved in the regulation of phytoene synthesis and carotenoid transport and thereby modulates carotenoid accumulation in the chloroplast.


Assuntos
Carotenoides/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/classificação , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/genética , Fotossíntese , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos
2.
Proc Natl Acad Sci U S A ; 117(16): 9101-9111, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245810

RESUMO

In eukaryotic photosynthetic organisms, the conversion of solar into chemical energy occurs in thylakoid membranes in the chloroplast. How thylakoid membranes are formed and maintained is poorly understood. However, previous observations of vesicles adjacent to the stromal side of the inner envelope membrane of the chloroplast suggest a possible role of membrane transport via vesicle trafficking from the inner envelope to the thylakoids. Here we show that the model plant Arabidopsis thaliana has a chloroplast-localized Sec14-like protein (CPSFL1) that is necessary for photoautotrophic growth and vesicle formation at the inner envelope membrane of the chloroplast. The cpsfl1 mutants are seedling lethal, show a defect in thylakoid structure, and lack chloroplast vesicles. Sec14 domain proteins are found only in eukaryotes and have been well characterized in yeast, where they regulate vesicle budding at the trans-Golgi network. Like the yeast Sec14p, CPSFL1 binds phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA) and acts as a phosphatidylinositol transfer protein in vitro, and expression of Arabidopsis CPSFL1 can complement the yeast sec14 mutation. CPSFL1 can transfer PIP into PA-rich membrane bilayers in vitro, suggesting that CPSFL1 potentially facilitates vesicle formation by trafficking PA and/or PIP, known regulators of membrane trafficking between organellar subcompartments. These results underscore the role of vesicles in thylakoid biogenesis and/or maintenance. CPSFL1 appears to be an example of a eukaryotic cytosolic protein that has been coopted for a function in the chloroplast, an organelle derived from endosymbiosis of a cyanobacterium.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fotossíntese , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos , Microscopia Eletrônica de Transmissão , Mutação , Ácidos Fosfatídicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Plântula , Homologia de Sequência de Aminoácidos , Tilacoides/ultraestrutura
3.
Traffic ; 21(2): 200-219, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31650663

RESUMO

Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.


Assuntos
Membrana Celular , Retículo Endoplasmático , Fosfatidilinositóis , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo
4.
Mol Biol Evol ; 33(1): 79-92, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26371082

RESUMO

Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.


Assuntos
Borboletas/genética , Borboletas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Opsinas/genética , Transcriptoma/genética , Animais , Olho/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Masculino , Opsinas/metabolismo , Fenótipo , Pigmentação , Caracteres Sexuais
5.
J Biol Chem ; 290(21): 13541-55, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25861993

RESUMO

Previous studies revealed an essential role for the lipid-binding Sec14 domain of kalirin (KalSec14), but its mechanism of action is not well understood. Because alternative promoter usage appends unique N-terminal peptides to the KalSec14 domain, we used biophysical, biochemical, and cell biological approaches to examine the two major products, bKalSec14 and cKalSec14. Promoter B encodes a charged, unstructured peptide, whereas promoter C encodes an amphipathic helix (Kal-C-helix). Both bKalSec14 and cKalSec14 interacted with lipids in PIP strip and liposome flotation assays, with significantly greater binding by cKalSec14 in both assays. Disruption of the hydrophobic face of the Kal-C-helix in cKalSec14KKED eliminated its increased liposome binding. Although cKalSec14 showed significantly reduced binding to liposomes lacking phosphatidylinositol phosphates or cholesterol, liposome binding by bKalSec14 and cKalSec14KKED was not affected. When expressed in AtT-20 cells, bKalSec14-GFP was diffusely localized, whereas cKalSec14-GFP localized to the trans-Golgi network and secretory granules. The amphipathic C-helix was sufficient for this localization. When AtT-20 cells were treated with a cell-permeant derivative of the Kal-C-helix (Kal-C-helix-Arg9), we observed increased secretion of a product stored in mature secretory granules, with no effect on basal secretion; a cell-permeant control peptide (Kal-C-helixKKED-Arg9) did not have this effect. Through its ability to control expression of a novel, phosphoinositide-binding amphipathic helix, Kalrn promoter usage is expected to affect function.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos Penetradores de Células/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipoproteínas/metabolismo , Fosfatidilinositóis/metabolismo , Neoplasias Hipofisárias/metabolismo , Regiões Promotoras Genéticas/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Peptídeos Penetradores de Células/química , Dicroísmo Circular , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina/genética , Processamento de Imagem Assistida por Computador , Lipoproteínas/genética , Lipossomos/metabolismo , Camundongos , Dados de Sequência Molecular , Neoplasias Hipofisárias/genética , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Transativadores/genética , Células Tumorais Cultivadas , Rede trans-Golgi/metabolismo
6.
J Struct Biol ; 190(3): 261-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25987292

RESUMO

We present the crystal structures of the SEC14-like domain of supernatant protein factor (SPF) in complex with squalene and 2,3-oxidosqualene. The structures were resolved at 1.75Å (complex with squalene) and 1.6Å resolution (complex with 2,3-oxidosqualene), leading in both cases to clear images of the protein/substrate interactions. Ligand binding is facilitated by removal of the Golgi-dynamics (GOLD) C-terminal domain of SPF, which, as shown in previous structures of the apo-protein, blocked the opening of the binding pocket to the exterior. Both substrates bind into a large hydrophobic cavity, typical of such lipid-transporter family. Our structures report no specific recognition mode for the epoxide group. In fact, for both molecules, ligand affinity is dominated by hydrophobic interactions, and independent investigations by computational models or differential scanning micro-calorimetry reveal similar binding affinities for both ligands. Our findings elucidate the molecular bases of the role of SPF in sterol endo-synthesis, supporting the original hypothesis that SPF is a facilitator of substrate flow within the sterol synthetic pathway. Moreover, our results suggest that the GOLD domain acts as a regulator, as its conformational displacement must occur to favor ligand binding and release during the different synthetic steps.


Assuntos
Proteínas de Transporte/química , Colesterol/química , Esqualeno/análogos & derivados , Esqualeno/química , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Complexo de Golgi/metabolismo , Ligantes , Ligação Proteica , Esqualeno/metabolismo
7.
J Nutr Biochem ; 97: 108801, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119630

RESUMO

An evaluation of the impact of vitamin E deficiency on expression of the alpha-tocopherol transfer protein (α-TTP) and related CRAL_TRIO genes was undertaken using livers from adult zebrafish based on the hypothesis that increased lipid peroxidation would modulate gene expression. Zebrafish were fed either a vitamin E sufficient (E+) or deficient (E-) diet for 9 months, then fish were euthanized, and livers were harvested. Livers from the E+ relative to E- fish contained 40-times more α-tocopherol (P <0.0001) and one fourth the malondialdehyde (P = 0.0153). RNA was extracted from E+ and E- livers, then subject to evaluation of gene expression of ttpa and other genes of the CRAL_TRIO family, genes of antioxidant markers, and genes related to lipid metabolism. Ttpa expression was not altered by vitamin E status. However, one member of the CRAL_TRIO family, tyrosine-protein phosphatase non-receptor type 9 gene (ptpn9a), showed a 2.4-fold increase (P = 0.029) in E- relative to E+ livers. Further, we identified that the gene for choline kinase alpha (chka) showed a 3.0-fold increase (P = 0.010) in E- livers. These outcomes are consistent with our previous findings that show vitamin E deficiency increased lipid peroxidation causing increases in phospholipid turnover.


Assuntos
Proteínas de Transporte/genética , Expressão Gênica , Fígado/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Deficiência de Vitamina E/genética , Proteínas de Peixe-Zebra/genética , Animais , Antioxidantes , Proteínas de Transporte/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Metabolismo dos Lipídeos/genética , Malondialdeído/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Deficiência de Vitamina E/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , alfa-Tocoferol/metabolismo
8.
Comput Struct Biotechnol J ; 19: 3692-3707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285772

RESUMO

Phosphoinositides (PIs) are a family of eight lipids consisting of phosphatidylinositol (PtdIns) and its seven phosphorylated forms. PIs have important regulatory functions in the cell including lipid signaling, protein transport, and membrane trafficking. Yeast has been recognized as a eukaryotic model system to study lipid-protein interactions. Hundreds of yeast PI-binding proteins have been identified, but this research knowledge remains scattered. Besides, the complete PI-binding spectrum and potential PI-binding domains have not been interlinked. No comprehensive databases are available to support the lipid-protein interaction research on phosphoinositides. Here we constructed the first knowledgebase of Yeast Phosphoinositide-Binding Proteins (YPIBP), a repository consisting of 679 PI-binding proteins collected from high-throughput proteome-array and lipid-array studies, QuickGO, and a rigorous literature mining. The YPIBP also contains protein domain information in categories of lipid-binding domains, lipid-related domains and other domains. The YPIBP provides search and browse modes along with two enrichment analyses (PI-binding enrichment analysis and domain enrichment analysis). An interactive visualization is given to summarize the PI-domain-protein interactome. Finally, three case studies were given to demonstrate the utility of YPIBP. The YPIBP knowledgebase consolidates the present knowledge and provides new insights of the PI-binding proteins by bringing comprehensive and in-depth interaction network of the PI-binding proteins. YPIBP is available at http://cosbi7.ee.ncku.edu.tw/YPIBP/.

9.
Insect Biochem Mol Biol ; 62: 168-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25684408

RESUMO

CRAL_TRIO domain proteins are known to bind small lipophilic molecules such as retinal, inositol and Vitamin E and include such gene family members as PINTA, α-tocopherol transfer (ATT) proteins, retinoid binding proteins, and clavesins. In insects, very little is known about either the molecular evolution of this family of proteins or their ligand specificity. Here we characterize insect CRAL_TRIO domain proteins and present the first insect CRAL_TRIO protein phylogeny constructed by performing reciprocal BLAST searches of the reference genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Tribolium castaneum, Bombyx mori, Manduca sexta and Danaus plexippus. We find several highly conserved amino acid residues in the CRAL_TRIO domain-containing genes across insects and a gene expansion resulting in more than twice as many gene family members in lepidopterans than in other surveyed insect species, but no lepidopteran homolog of the PINTA gene in Drosophila. In addition, we examined the expression pattern of CRAL_TRIO domain genes in Manduca sexta heads using RNA-Seq data. Of the 42 gene family members found in the M. sexta reference genome, we found 30 expressed in the head tissue with similar expression profiles between males and females. Our results suggest this gene family underwent a large expansion in lepidopteran, making the lepidopteran CRAL_TRIO domain family distinct from other holometabolous insect lineages.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Animais , Proteínas de Transporte/genética , Evolução Molecular , Feminino , Genoma de Inseto , Proteínas de Insetos/genética , Insetos/genética , Masculino , Manduca/genética , Manduca/metabolismo , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa