RESUMO
For the deployment of Sixth Generation (6G) networks, integrating Massive Multiple-Input Multiple-Output (Massive MIMO) systems with Intelligent Reflecting Surfaces (IRS) is highly recommended due to its significant benefits in reducing communication losses for Non-Line-of-Sight (NLoS) conditions. However, the use of passive IRS presents challenges in channel estimation, mainly due to the significant feedback overhead required in Frequency Division Duplex (FDD)-based Massive MIMO systems. To address these challenges, this paper introduces a novel Denoising Gated Recurrent Unit with a Dropout-based Channel state information Network (DGD-CNet). The proposed DGD-CNet model is specifically designed for FDD-based IRS-aided Massive MIMO systems, aiming to reduce the feedback overhead while improving the channel estimation accuracy. By leveraging the Dropout (DO) technique with the Gated Recurrent Unit (GRU), the DGD-CNet model enhances the channel estimation accuracy and effectively captures both spatial structures and time correlation in time-varying channels. The results show that the proposed DGD-CNet model outperformed existing models in the literature, achieving at least a 26% improvement in Normalized Mean Square Error (NMSE), a 2% increase in correlation coefficient, and a 4% in system accuracy under Low-Compression Ratio (Low-CR) in indoor situations. Additionally, the proposed model demonstrates effectiveness across different CRs and in outdoor scenarios.
RESUMO
In wireless communication, to fully utilize the spectrum and energy efficiency of the system, it is necessary to obtain the channel state information (CSI) of the link. However, in Frequency Division Duplexing (FDD) systems, CSI feedback wastes part of the spectrum resources. In order to save spectrum resources, the CSI needs to be compressed. However, many current deep-learning algorithms have complex structures and a large number of model parameters. When the computational and storage resources are limited, the large number of model parameters will decrease the accuracy of CSI feedback, which cannot meet the application requirements. In this paper, we propose a neural network-based CSI feedback model, Mix_Multi_TransNet, which considers both the spatial characteristics and temporal sequence of the channel, aiming to provide higher feedback accuracy while reducing the number of model parameters. Through experiments, it is found that Mix_Multi_TransNet achieves higher accuracy than the traditional CSI feedback network in both indoor and outdoor scenes. In the indoor scene, the NMSE gains of Mix_Multi_TransNet are 4.06 dB, 4.92 dB, 4.82 dB, and 6.47 dB for compression ratio η = 1/8, 1/16, 1/32, 1/64, respectively. In the outdoor scene, the NMSE gains of Mix_Multi_TransNet are 3.63 dB, 6.24 dB, 4.71 dB, 4.60 dB, and 2.93 dB for compression ratio η = 1/4, 1/8, 1/16, 1/32, 1/64, respectively.
RESUMO
In order to solve the problem wherein too many base station antennas are deployed in a massive multiple-input-multiple-output system, resulting in high overhead for downlink channel state information feedback, this paper proposes an uplink-assisted channel feedback method based on deep learning. The method applies the reciprocity of the uplink and downlink, uses uplink channel state information in the base station to help users give feedback on unknown downlink information, and compresses and restores the channel state information. First, an encoder-decoder structure is established. The encoder reduces the network depth and uses multi-resolution convolution to increase the accuracy of channel state information extraction while reducing the number of computations relating to user equipment. Afterward, the channel state information is compressed to reduce feedback overhead in the channel. At the decoder, with the help of the reciprocity of the uplink and downlink, the feature extraction of the uplink's magnitudes is carried out, and the downlink channel state information is integrated into a channel state information feature matrix, which is restored to its original size. The simulation results show that compared with CSINet, CRNet, CLNet, and DCRNet, indoor reconstruction precision was improved by an average of 16.4%, and outside reconstruction accuracy was improved by an average of 21.2% under all compressions.
RESUMO
In this paper, we propose an end-to-end deep learning approach to realize channel state information (CSI) feedback and hybrid precoding for millimeter wave massive multiple-input multiple-output systems in the frequency division duplexing mode. Different from conventional approaches that treat the CSI reconstruction and hybrid precoding as separate components, we propose a new end-to-end learning method bypassing the channel reconstruction phase, and design the hybrid precoders and combiners directly from the feedback codewords (a compressed version of the CSI). More specifically, we design a neural network composed of the CSI feedback and hybrid precoding. Experiment results show that our proposed network can achieve better performance than conventional hybrid precoding schemes that reserve channel reconstruction, especially when the feedback resources are limited.