Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(6): 1774-1788, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433473

RESUMO

The biopharmaceutical industry is replacing fed-batch with perfusion processes to take advantage of reduced capital and operational costs due to the operation at high cell densities (HCD) and improved productivities. HCDs are achieved by cell retention and continuous medium exchange, which is often based on the cell-specific perfusion rate (CSPR). To obtain a cost-productive process the perfusion rate must be determined for each process individually. However, determining optimal operating conditions remain labor-intensive and time-consuming experiments, as investigations are performed in lab-scale perfusion bioreactors. Small-scale models such as microwell plates (MWPs) provide an option for screening multiple perfusion rates in parallel in a semi-perfusion mimic. This study investigated two perfusion rate strategies applied to the MWP platform operated in semi-perfusion. The CSPR-based perfusion rate strategy aimed to maintain multiple CSPR values throughout the cultivation and was compared to a cultivation with a perfusion rate of 1 RV d-1. The cellular performance was investigated with the dual aim (i) to achieve HCD, when inoculating at conventional and HCDs, and (ii) to maintain HCDs, when applying an additional manual cell bleed. With both perfusion rate strategies viable cell concentrations up to 50 × 106 cells mL-1 were achieved and comparable results for key metabolites and antibody product titers were obtained. Furthermore, the combined application of cell bleed and CSPR-based medium exchange was successfully shown with similar results for growth, metabolites, and productivities, respectively, while reducing the medium consumption by up to 50% for HCD cultivations.


Assuntos
Reatores Biológicos , Cricetulus , Células CHO , Animais , Perfusão/métodos , Perfusão/instrumentação , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Contagem de Células , Técnicas de Cultura Celular por Lotes/métodos , Técnicas de Cultura Celular por Lotes/instrumentação
2.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183174

RESUMO

The plant nonexpressor of pathogenesis-related 1 (NPR1) and pathogenesis-associated 1 (PR1) genes play fundamental roles in plant immunity response, as well as abiotic-stress tolerance. Nevertheless, comprehensive identification and characterization of NPR1 and PR1 homologs has not been conducted to date in Cymbidium orchids, a valuable industrial crop cultivated as ornamental and medicinal plants worldwide. Herein, three NPR1-like (referred to as CsNPR1-1, CsNPR1-2, and CsNPR1-3) and two PR1-like (CsPR1-1 and CsPR1-2) genes were genome-widely identified from Cymbidium orchids. Sequence and phylogenetic analysis revealed that CsNPR1-1 and CsNPR1-2 were grouped closest to NPR1 homologs in Zea mays (sharing 81.98% identity) and Phalaenopsis (64.14%), while CsNPR1-3 was classified into a distinct group with Oryza sativa NPR 3 (57.72%). CsPR1-1 and CsPR1-2 were both grouped closest to Phalaenopsis PR1 and other monocot plants. Expression profiling showed that CsNPR1 and CsPR1 were highly expressed in stem/pseudobulb and/or flower. Salicylic acid (SA) and hydrogen peroxide (H2O2) significantly up-regulated expressions of CsNPR1-2, CsPR1-1 and CsPR1-2, while CsNPR1-3, CsPR1-1 and CsPR1-2 were significantly up-regulated by abscisic acid (ABA) or salinity (NaCl) stress. In vitro transcripts of entire Cymbidium mosaic virus (CymMV) genomic RNA were successfully transfected into Cymbidium protoplasts, and the CymMV infection up-regulated the expression of CsNPR1-2, CsPR1-1 and CsPR1-2. Additionally, these genes were transiently expressed in Cymbidium protoplasts for subcellular localization analysis, and the presence of SA led to the nuclear translocation of the CsNPR1-2 protein, and the transient expression of CsNPR1-2 greatly enhanced the expression of CsPR1-1 and CsPR1-2. Collectively, the CsNPR1-2-mediated signaling pathway is SA-dependent, and confers to the defense against CymMV infection in Cymbidium orchids.


Assuntos
Ácido Abscísico/farmacologia , Orchidaceae/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Estresse Salino , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Vírus do Mosaico/patogenicidade , Orchidaceae/efeitos dos fármacos , Orchidaceae/virologia , Proteínas de Plantas/metabolismo , Salicilatos/farmacologia , Homologia de Sequência , Transcriptoma
3.
Bioengineering (Basel) ; 9(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35447688

RESUMO

Fed-batch process intensification with a significantly shorter culture duration or higher titer for monoclonal antibody (mAb) production by Chinese hamster ovary (CHO) cells can be achieved by implementing perfusion operation at the N-1 stage for biomanufacturing. N-1 perfusion seed with much higher final viable cell density (VCD) than a conventional N-1 batch seed can be used to significantly increase the inoculation VCD for the subsequent fed-batch production (referred as N stage), which results in a shorter cell growth phase, higher peak VCD, or higher titer. In this report, we incorporated a process analytical technology (PAT) tool into our N-1 perfusion platform, using an in-line capacitance probe to automatically adjust the perfusion rate based on real-time VCD measurements. The capacitance measurements correlated linearly with the offline VCD at all cell densities tested (i.e., up to 130 × 106 cells/mL). Online control of the perfusion rate via the cell-specific perfusion rate (CSPR) decreased media usage by approximately 25% when compared with a platform volume-specific perfusion rate approach and did not lead to any detrimental effects on cell growth. This PAT tool was applied to six mAbs, and a platform CSPR of 0.04 nL/cell/day was selected, which enabled rapid growth and maintenance of high viabilities for four of six cell lines. In addition, small-scale capacitance data were used in the scaling-up of N-1 perfusion processes in the pilot plant and in the GMP manufacturing suite. Implementing a platform approach based on capacitance measurements to control perfusion rates led to efficient process development of perfusion N-1 for supporting high-density CHO cell cultures for the fed-batch process intensification.

4.
J Biotechnol ; 335: 65-75, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34090946

RESUMO

Current CHO cell production processes require an optimized space-time-yield. Process intensification can support achieving this by enhancing the productivity and improving facility utilization. The use of perfusion at the last stage of the seed train (N-1) for high cell density inoculation of the fed-batch N-stage production culture is a relatively new approach with few industry applicable examples. Within this work, the impact of the cell-specific perfusion rate (CSPR) of the N-1 perfusion and the relevance of its control for the quality of generated inoculation cells was evaluated using an automated perfusion rate (PR) control based on online biomass measurements. Precise correlations (R² = 0.99) between permittivity and viable cell counts were found up to the high densities of 100⋅106 c·mL-1. Cells from N-1 perfusion were cultivated at a high and low CSPR with 50 and 20 pL·(c·d)-1, respectively. Lowered cell growth and an increased apoptotic reaction was found as a consequence of the latter due to nutrient limitations and reduced uptake rates. Subsequently, batch cultivations (N-stage) from the different N-1 sources were inoculated to evaluate the physiological state of the inoculum. Successive responses resulting from the respective N-1 condition were uncovered. While cell growth and productivity of approaches inoculated from high CSPR and a conventional seed were comparable, low CSPR inoculation suffered significantly in terms of reduced initial cell growth and impaired viability. This study underlines the importance to determine the CSPR for the design and implementation of an N-1 perfusion process in order to achieve the desired performance at the crucial production stage.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Animais , Automação , Células CHO , Contagem de Células , Cricetinae , Cricetulus , Perfusão
5.
Biotechnol Prog ; 36(2): e2933, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680446

RESUMO

Perfusion cultivation of recombinant CHO cells is of substantial interest to the biopharmaceutical industry. This is due to increased space-time-yields (STYs) and a short residence time of the recombinant protein in the bioreactor. Economic processes rely on cultivation media supporting rapid growth in the exponential phase and high protein production in the stationary phase at minimal media consumption rates. To develop clone-specific, high-performing perfusion media we present a straightforward and rapid two-step approach combining commercially available basal media and feed supplements using design-of-experiment. First, the best performing feed supplements are selected in batch cultures. Then, the mixing ratio of selected feed supplements is optimized in small-scale semicontinuous perfusion cultures. The final media formulation is supported by statistical response surface modeling of a set of cultivation experiments with blended media formulations. Two best performing novel media blends were finally applied to perfusion bioreactor verification runs to reach 200 × 106 c/ml within 2 weeks at minimum cell-specific perfusion rates as low as 10-30 pL/c/d. Obtained STYs of 0.4-1.2 g/L/d represent a 10-fold increase compared to batch cultures. This general workflow is universally applicable to any perfusion platform combining a specific cell line, basal medium, and established feed solutions.


Assuntos
Meios de Cultura/farmacologia , Perfusão , Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Células Cultivadas , Cricetulus , Meios de Cultura/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/efeitos dos fármacos , Análise de Regressão
6.
J Cheminform ; 11(1): 61, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33430974

RESUMO

Scaffold analysis of compound data sets has reemerged as a chemically interpretable alternative to machine learning for chemical space and structure-activity relationships analysis. In this context, analog series-based scaffolds (ASBS) are synthetically relevant core structures that represent individual series of analogs. As an extension to ASBS, we herein introduce the development of a general conceptual framework that considers all putative cores of molecules in a compound data set, thus softening the often applied "single molecule-single scaffold" correspondence. A putative core is here defined as any substructure of a molecule complying with two basic rules: (a) the size of the core is a significant proportion of the whole molecule size and (b) the substructure can be reached from the original molecule through a succession of retrosynthesis rules. Thereafter, a bipartite network consisting of molecules and cores can be constructed for a database of chemical structures. Compounds linked to the same cores are considered analogs. We present case studies illustrating the potential of the general framework. The applications range from inter- and intra-core diversity analysis of compound data sets, structure-property relationships, and identification of analog series and ASBS. The molecule-core network herein presented is a general methodology with multiple applications in scaffold analysis. New statistical methods are envisioned that will be able to draw quantitative conclusions from these data. The code to use the method presented in this work is freely available as an additional file. Follow-up applications include analog searching and core structure-property relationships analyses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa