Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Translat ; 38: 229-240, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36474855

RESUMO

Background: Glucocorticoid (GC) is one of frequently used anti-inflammatory agents, but its administration is unfortunately accompanied with bone loss. Although sporadic studies indicated that osteocytes are subject to a series of pathological changes under GC stress, including overexpression of cathepsin K, the definite role of osteocytes in GC-induced bone loss remains largely unclear. Methods: Gene expression of Ctsk and protein levels of cathepsin K were assessed in MLO-Y4 cell lines exposed to dexamethasone (Dex) of different time (0, 12, 24 hours) and dose (0, 10-8 and 10-6 M) courses by RT-qPCR and western blotting, respectively. Confocal imaging and immunostaining were then performed to evaluate the effects of osteocyte-derived cathepsin K on type I collagen in a primary osteocyte ex vivo culture system. MitoTracker Red was used to stain mitochondria for mitochondria morphology assessment and JC-1 assay was employed to evaluate the mitochondria membrane potential in MLO-Y4 cells following Dex treatment. Activation of PINK1-mediated mitophagy was evaluated by immunostaining of the PINK1 protein and CytoID assay. Mdivi-1 was used to inhibit mitophagy and siRNAs were used for the inhibition of Pink1 and Atg5. Results: GC triggered osteocytes to produce excessive cathepsin K which in turn led to the degradation of type I collagen in the extracellular matrix in a primary osteocyte ex vivo culture system. Meanwhile, GC administration increased mitochondrial fission and membrane depolarization in osteocytes. Further, the activation of PINK1-mediated mitophagy was demonstrated to be responsible for the diminishment of dysfunctional mitochondria in osteocytes. Examination of relationship between mitophagy and cathepsin K production revealed that inhibition of mitophagy via knocking down Pink1 gene abolished the GC-triggered cathepsin K production. Interestingly, GC's activation effect towards cathepsin K via mitophagy was found to be independent on the canonical autophagy as this effect was not impeded when inhibiting the canonical autophagy via Atg5 suppression. Conclusion: GC-induced PINK1-mediated mitophagy substantially modulates the production of cathepsin K in osteocytes, which could be an underlying mechanism by which osteocytes contribute to the extracellular matrix degradation during bone loss. The Translational potential of this article: Findings of the current study indicate a possible role of osteocyte mitophagy in GC-induced bone loss, which provides a potential therapeutic approach to alleviate GC-induced osteoporosis by targeting PINK1-mediated osteocytic mitophagy.

2.
Bioact Mater ; 21: 547-565, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36185749

RESUMO

The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.

3.
Mater Today Bio ; 14: 100223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243298

RESUMO

Inflammatory arthritis is a major cause of disability in the elderly. This condition causes joint pain, loss of function, and deterioration of quality of life, mainly due to osteoarthritis (OA) and rheumatoid arthritis (RA). Currently, available treatment options for inflammatory arthritis include anti-inflammatory medications administered via oral, topical, or intra-articular routes, surgery, and physical rehabilitation. Novel alternative approaches to managing inflammatory arthritis, so far, remain the grand challenge owing to catastrophic financial burden and insignificant therapeutic benefit. In the view of non-targeted systemic cytotoxicity and limited bioavailability of drug therapies, a major concern is to establish stimuli-responsive drug delivery systems using nanomaterials with on-off switching potential for biomedical applications. This review summarizes the advanced applications of triggerable nanomaterials dependent on various internal stimuli (including reduction-oxidation (redox), pH, and enzymes) and external stimuli (including temperature, ultrasound (US), magnetic, photo, voltage, and mechanical friction). The review also explores the progress and challenges with the use of stimuli-responsive nanomaterials to manage inflammatory arthritis based on pathological changes, including cartilage degeneration, synovitis, and subchondral bone destruction. Exposure to appropriate stimuli induced by such histopathological alterations can trigger the release of therapeutic medications, imperative in the joint-targeted treatment of inflammatory arthritis.

4.
Bone Rep ; 15: 101114, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34401407

RESUMO

The transcription factor NFATc1 and its binding partner AP-1 (a complex containing c-fos and c-Jun) play a central role in osteoclast differentiation. NFATc1 and AP-1 promote the expression of target genes such as Acp5, Ctsk and also auto-regulate NFATc1 expression as well. We previously reported that protein phosphatase 1 regulatory subunit 18 (PPP1r18) is a negative regulator of osteoclast bone resorption by inhibiting cell attachment to bone matrix. We also reported that PPP1r18 potentially regulates NFATc1 expression during osteoclast differentiation. To further explore this, in this study we have examined the effect of PPP1r18 on NFATc1 expression and activity by overexpressing PPP1r18 during the early stage of osteoclast differentiation. We found that PPP1r18 suppressed NFATc1 expression through inhibition of the transcriptional activity of NFATc1. Since PPP1r18 does not regulate NFATc1 directly, we next explored the involvement of AP-1. Our data showed that c-fos phosphorylation and nuclear localization were reduced by PPP1r18 overexpression. Further experiments showed that overexpression of c-fos together with PPP1r18 rescued NFATc1 expression and transcriptional activity. Moreover, c-fos activity inhibition by PPP1r18 was canceled by mutation of the phosphatase binding site of PPP1r18. Taken together, PPP1r18-regulated phosphatase activity targets c-fos phosphorylation and suppresses subsequent NFATc1 expression and activity.

5.
J Bone Oncol ; 26: 100337, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33240786

RESUMO

Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.

6.
J Cancer ; 7(6): 722-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27076854

RESUMO

Ovarian carcinomas (OC) are often found in the advanced stage with wide peritoneal dissemination. Differentially-expressed genes (DEGs) between primary ovarian carcinoma (POC) and peritoneal metastatic ovarian carcinomas (PMOC) may have diagnostic and therapeutic values. In this study, we identified 246 DEGs by in-silico analysis using microarrays for 153 POCs and 57 PMOCs. Pathway analysis shows that many of these genes are associated with lipid metabolism. Microfluidic, card-based, quantitative PCR validated 19 DEGs in PMOCs versus POCs (p<0.05). Immunohistochemistry confirmed overexpression of MMP13, CTSK, FGF1 and GREM1 in PMOCs (p<0.05). ELISA detection indicated that serum CTSK levels were significantly increased in OCs versus controls (p<0.001). CTSK levels discriminated between OCs and healthy controls (ROC 0.739; range 0.685-0.793). Combining CA125 and HE4 with CTSK levels produced an improved specificity in the predictive of OCs (sensitivity 88.3%, specificity 92.0%, Youden's index 80.3%). Our study suggests that CTSK levels may be helpful in the diagnosis of primary, ovarian carcinoma.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa