Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Genes Dev ; 33(1-2): 61-74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573454

RESUMO

Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.


Assuntos
Endopeptidases/metabolismo , Leucemia/terapia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Cromatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Leucemia/enzimologia , Leucemia/genética , Células MCF-7 , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estabilidade Proteica , Análise de Sobrevida
2.
Mol Biol Rep ; 50(11): 9691-9698, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658930

RESUMO

INTRODUCTION: During skin aging, the extracellular matrix (ECM) concomitantly breaks down. Out of the various protein components that comprise ECM, collagen is the most abundant one. Matrix metalloproteinase-1 (MMP-1) is a major collagenase that can degrade collagen. Therefore, the inhibition of MMP-1 may be critical for skin aging prevention. CX4945 is an inhibitor of casein kinase 2 and shows anticancer effects on various types of cancer cells. METHODS AND RESULTS: In this report, we investigated the MMP-1-inhibiting effect of CX4945 in HaCaT human keratinocyte cells. We performed zymography assays, Western blot analysis and immunoprecipitation assay to investigate the anti-MMP-1 effects of CX4945. CX4945 was found to inhibit collagen degradation via attenuation of the MMP-1 secretion out of HaCaT cells. This activity of CX4945 may be mediated by the induction of MMP-1 ubiquitylation via c-Jun N-terminal kinase (JNK) signaling. In wound healing cell migration assay, CX4945 also showed suppressive effect on the migration of HaCaT cells. This finding was closely related to the attenuation of CREB transcription factor via the downregulation of ERK mitogen-activated protein kinase as observed in Western blot analysis. CONCLUSION: Our report suggests that the inhibitory effects of CX4945 on MMP-1 in epidermal cells may offer a basis for further studying its therapeutic potential as an anti-wrinkle agent.


Assuntos
Caseína Quinase II , Metaloproteinase 1 da Matriz , Humanos , Caseína Quinase II/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Células HaCaT/metabolismo , Queratinócitos/metabolismo , Colágeno/metabolismo
3.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683032

RESUMO

Overexpression of casein kinase 2 (CK2) has an oncogenic and pro-survival role in many cancers. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-angiogenic effects. Up to date, the anti-cancer effect and mechanism of CX-4945 on human cholangiocarcinoma (CCA) remain unclear. This study investigated whether CX-4945 inhibits growth and induces apoptosis of HuCCT-1 cells, a human CCA cell line. Of note, treatment with CX-4945 at 20 µM markedly reduced survival and induced apoptosis of HuCCT-1 cells, as evidenced by nuclear DNA fragmentation, PARP cleavage, activation of caspase-9/3, and up-regulation of DR-4. Although CX-4945 did not affect the phosphorylation and expression of CK2, it vastly inhibited the phosphorylation of CK2 substrates, supporting the drug's efficacy in inhibiting CK2 and its downstream pathway. Importantly, knockdown of CK2 that partially suppressed the phosphorylation of CK2 substrates resulted in a significant reduction of HuCCT-1 cell survival. In addition, CX-4945 reduced the phosphorylation and expression of STAT-3 and STAT-5 in HuCCT-1 cells, and pharmacological inhibition or respective knockdown of these proteins resulted in significant growth suppression of HuCCT-1 cells. CX-4945 also had abilities to decrease Mcl-1 expression while increasing eIF-2α phosphorylation in HuCCT-1 cells. Furthermore, there was a time-differential negative regulation of HIF-1α expression by CX-4945 in HuCCT-1 cells, and knockdown of HIF-1α caused a significant reduction of the cell survival. In summary, these results demonstrated that CX-4945 has anti-growth, anti-angiogenic, and pro-apoptotic effects on HuCCT-1 cells, which are mediated through control of CK2, caspase-9/3, DR-4, STAT-3/5, Mcl-1, eIF-2α, and HIF-1α.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Caseína Quinase II/genética , Caspase 9 , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Fator de Iniciação 2 em Eucariotos , Humanos , Naftiridinas , Fenazinas
4.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806278

RESUMO

Casein kinase 2 (CK2) is a ubiquitously expressed serine/threonine kinase and is upregulated in human obesity. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-adipogenic activities. However, the anti-adipogenic and pro-lipolytic effects and the mode of action of CX-4945 in (pre)adipocytes remain elusive. Here, we explored the effects of CX-4945 on adipogenesis and lipolysis in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte cell line. CX-4945 at 15 µM strongly reduced lipid droplet (LD) accumulation and triglyceride (TG) content in differentiating 3T3-L1 cells, indicating the drug's anti-adipogenic effect. Mechanistically, CX-4945 reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and perilipin A in differentiating 3T3-L1 cells. Strikingly, CX-4945 further increased the phosphorylation levels of cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) while decreasing the intracellular ATP content in differentiating 3T3-L1 cells. In differentiated 3T3-L1 cells, CX-4945 had abilities to stimulate glycerol release and elevate the phosphorylation levels of hormone-sensitive lipase (HSL), pointing to the drug's pro-lipolytic effect. In addition, CX-4945 induced the activation of extracellular signal-regulated kinase-1/2 (ERK-1/2), and PD98059, an inhibitor of ERK-1/2, attenuated the CX4945-induced glycerol release and HSL phosphorylation in differentiated 3T3-L1 cells, indicating the drug's ERK-1/2-dependent lipolysis. In summary, this investigation shows that CX-4945 has strong anti-adipogenic and pro-lipolytic effects on differentiating and differentiated 3T3-L1 cells, mediated by control of the expression and phosphorylation levels of CK2, C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, AMPK, LKB-1, ERK-1/2, and HSL.


Assuntos
Adipogenia , Caseína Quinase II , Naftiridinas , Fenazinas , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicerol/farmacologia , Humanos , Lipólise/efeitos dos fármacos , Camundongos , Naftiridinas/farmacologia , PPAR gama/metabolismo , Perilipina-1/metabolismo , Fenazinas/farmacologia , Esterol Esterase/metabolismo
5.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458589

RESUMO

Silmitasertib (CX-4945) is currently being investigated in clinical trials against various types of cancer. The U.S. Food and Drug Administration (FDA) has already granted orphan drug designation to the compound for the treatment of advanced cholangiocarcinoma, medulloblastoma, and biliary tract cancer. Silmitasertib inhibits the serine/threonine protein kinase CK2, which exerts a proliferation-promoting and anti-apoptotic effect on cancer cells. In view of current and future applications, the measurement of silmitasertib levels in plasma is expected to play an important role in the evaluation of therapeutic and toxic concentrations in cancer patients. In the present work, we therefore present an LC-MS/MS method for the quantification of silmitasertib in human plasma. Using a simple liquid-liquid extraction with ethyl acetate and a mixture of n-hexane and ethyl acetate, this method can be performed in any laboratory with mass spectrometry. The validation was carried out according to the FDA guideline.


Assuntos
Naftiridinas , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Humanos , Naftiridinas/farmacologia , Fenazinas/farmacologia , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
6.
Biochem Biophys Res Commun ; 531(3): 409-415, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32800562

RESUMO

Viable clones of C2C12 myoblasts where both catalytic subunits of protein kinase CK2 had been knocked out by the CRISPR/Cas9 methodology have recently been generated, thus challenging the concept that CK2 is essential for cell viability. Here we present evidence that these cells are still endowed with a residual "CK2-like" activity that is able to phosphorylate Ser-13 of endogenous CDC37. Searching for a molecular entity accounting for such an activity we have identified a band running slightly ahead of CK2α' on SDS-PAGE. This band is not detectable by in-gel casein kinase assay but it co-immuno-precipitates with the ß-subunit being downregulated by specific CK2α' targeting siRNA treatment. Its size and biochemical properties are consistent with those of CK2α' mutants deleted upstream of Glu-15 generated during the knockout process. This mutant sheds light on the role of the CK2 N-terminal segment as a regulator of activity and stability. Comparable cytotoxic efficacy of two selective and structurally unrelated CK2 inhibitors support the view that survival of CK2α/α'-/- cells relies on this deleted form of CK2α', whose discovery provides novel perspectives about the biological role of CK2.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Deleção de Sequência , Sequência de Aminoácidos , Animais , Caseína Quinase II/deficiência , Linhagem Celular , Sobrevivência Celular , Camundongos Knockout , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Estabilidade Proteica , Especificidade por Substrato
7.
BMC Cancer ; 20(1): 184, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131762

RESUMO

BACKGROUND: Casein kinase II (CK2) is involved in multiple tumor-relevant signaling pathways affecting proliferation and apoptosis. CK2 is frequently upregulated in acute B-lymphoblastic leukemia (B-ALL) and can be targeted by the ATP-competitive CK2 inhibitor CX-4945. While reduced proliferation of tumor entities including B-ALL after CX-4945 incubation has been shown in vitro and in vivo, the detailed way of action is unknown. Here, we investigated the influence on the PI3K/AKT and apoptosis cascades in vivo and in vitro for further clarification. METHODS: A B-ALL xenograft model in NSG mice was used to perform in vivo longitudinal bioluminescence imaging during six day CX-4945 treatment. CX-4945 serum levels were determined at various time points. Flow cytometry of bone marrow and spleen cells was performed to analyze CX-4945-induced effects on tumor cell proliferation and distribution in B-ALL engrafted mice. ALL cells were enriched and characterized by targeted RNA sequencing. In vitro, B-ALL cell lines SEM, RS4;11 and NALM-6 were incubated with CX-4945 and gene expression of apoptosis regulators BCL6 and BACH2 was determined. RESULTS: In B-ALL-engrafted mice, overall tumor cell proliferation and distribution was not significantly influenced by CK2 inhibition. CX-4945 was detectable in serum during therapy and serum levels declined rapidly after cessation of CX-4945. While overall proliferation was not affected, early bone marrow and spleen blast frequencies seemed reduced after CK2 inhibition. Gene expression analyses revealed reduced expression of anti-apoptotic oncogene BCL6 in bone marrow blasts of CX-4945-treated animals. Further, BCL6 protein expression decreased in B-ALL cell lines exposed to CX-4945 in vitro. Surprisingly, levels of BCL6 opponent and tumor suppressor BACH2 also declined after prolonged incubation. Simultaneously, increased phosphorylation of direct CK2 target and tumor initiator AKT was detected at respective time points, even in initially pAKT-negative cell line NALM-6. CONCLUSIONS: The CK2 inhibitor CX-4945 has limited clinical effects in an in vivo B-ALL xenograft model when applied as a single drug over a six day period. However, gene expression in B-ALL cells was altered and suggested effects on apoptosis via downregulation of BCL6. Unexpectedly, the BCL6 opponent BACH2 was also reduced. Interactions and regulation loops have to be further evaluated.


Assuntos
Naftiridinas/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Medições Luminescentes , Camundongos , Naftiridinas/farmacocinética , Fenazinas , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630015

RESUMO

The regulation of insulin biosynthesis and secretion in pancreatic ß-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic ß-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Caseína Quinase II/metabolismo , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Ratos
9.
Bioorg Chem ; 81: 536-544, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30245235

RESUMO

As a ubiquitous, highly pleiotropic and constitutively active serine/threonine protein kinase, casein kinase 2 (CK2) is closely associated with tumorigenesis by its overexpression in cancer cells. Here we report several proteolysis targeting chimeras (PROTACs) via "click reaction" to connect a CK2 inhibitor (CX-4945) and pomalidomide for degradation of CK2 protein. Among them, compound 2 degraded CK2 in a dose and time-dependent manner, and kept CK2 at a low basal level by recruiting ubiquitin-proteasome system. The degradation of CK2 resulted in the reduced phosphorylation of Akt and the up-regulation of p53. As a CK2 protein degrader, 2 showed the analogous cytotoxicity to CX-4945 but with a quite different mechanism of action from the CK2 inhibitor, hinting that degradation of CK2 proteins by PROTACs is a potential way for cancer treatments.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caseína Quinase II/metabolismo , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ubiquitina/metabolismo
10.
J Cell Biochem ; 118(8): 2463-2473, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28133777

RESUMO

Liver fibrosis is a reversible wound-healing response to any etiology of chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) is the key event in liver fibrogenesis. Generally, persistent activation and proliferation of HSCs results in liver fibrosis progression, while primary mechanisms of liver fibrosis resolution are apoptosis and reversion to a quiescent phenotype of activated HSCs. NS5ATP13 (HCV NS5A-transactivated protein 13) is involved in nucleologenesis and tumorigenesis, but its role in liver fibrosis and HSC activation remains unclear. This study found that NS5ATP13 was upregulated in both fibrotic liver tissues and activated human HSCs induced by TGF-ß1. Moreover, NS5ATP13 enhanced extracellular matrix (ECM) production and HSC activation, with or without TGF-ß1 treatment, likely involving the TGF-ß1/Smad3 signaling pathway. Additionally, NS5ATP13 boosted HSC proliferation by inhibiting cell apoptosis. Furthermore, HCV NS5A promoted the profibrogenic effect of NS5ATP13 partly through TGF-ß1 and NF-κB p65 (RelA) upregulation. Meanwhile, NS5ATP13 was required for the pro-fibrogenic effect of NF-κB. Moreover, NS5ATP13 and NF-κB phosphorylation as well as HSC activation were reduced by CX-4945, a CK2 specific inhibitor. These findings indicated that NS5ATP13 acts as a profibrogenic factor, providing a potential target for antifibrotic therapies. J. Cell. Biochem. 118: 2463-2473, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Proteínas/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Imuno-Histoquímica , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/metabolismo , Naftiridinas/farmacologia , Fenazinas , Proteínas/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
11.
Mol Cell Biochem ; 435(1-2): 193-196, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28501934

RESUMO

CX-4945 is a selective inhibitor of protein kinase CK2 exhibiting clinical significance. Its antitumor properties arise from the abrogation of CK2-mediated pro-survival cellular pathways. The presented data reveal the influence of CX-4945 on the growth of yeast cells showing variable potency against Saccharomyces cerevisiae deletion strains with different contents of CK2 subunits. The catalytic subunit CK2α appears to sensitize yeast to the CX-4945 action. Moreover, the compound suppresses hyphal growth and cell adhesion of Candida albicans, thereby abolishing some hallmarks of invasiveness of the pathogen. It is known that cancer patients are more prone to fungal infections. Our data unveil the dual-activity of CX-4945; when used in anti-cancer therapy, it may simultaneously prevent cancer-associated candidiasis.


Assuntos
Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Caseína Quinase II/antagonistas & inibidores , Naftiridinas/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fenazinas
12.
World J Urol ; 35(8): 1213-1221, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28105499

RESUMO

PURPOSE: The aberrant expression of casein kinase 2 (CK2) has been reported to be involved in the tumorigenesis and progression of prostate cancer. The inhibition of CK2 activity represses androgen-dependent prostate cancer cells by attenuating the androgen receptor (AR) signaling pathway. In this study, we examined the effect of CK2 inhibition in castration-resistant prostate cancer (CRPC) cells, in which AR variants (ARVs) play a predominant role. METHODS: A newly synthetic CK2 selective inhibitor CX4945 was utilized to study the effect of CK2 inhibition in CRPC cells by CCK8 assay and colony formation assay. Protein and mRNA levels of full-length AR (AR-FL) and AR-V7 were determined by qPCR and western blot, respectively. The nuclear translocation of p50 and p65 was assessed to reflect the activity of the NF-κB pathway. RESULTS: CX4945 reduced the proliferation of CRPC cells in a dose-dependent and time-dependent manner. AR-V7 rather than AR-FL was downregulated by CX4945 in both the mRNA and protein level. Furthermore, CX4945 could restore the sensitivity of CRPC cells to bicalutamide. The analysis of possible mechanisms demonstrated that the inhibition of CK2 diminished the phosphorylation of p65 at ser529 and thus attenuated the activity of the NF-κB pathway. CONCLUSION: The inhibition of CK2 by CX4945 can repress the viability of CRPC cells and restore their sensitivity to anti-androgen therapy by suppressing AR-V7. This finding presents a potential option for the treatment of prostate cancer, especially CRPC.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Naftiridinas/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Antagonistas de Androgênios/farmacologia , Anilidas/farmacologia , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Variação Genética , Humanos , Masculino , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/efeitos dos fármacos , Subunidade p50 de NF-kappa B/metabolismo , Nitrilas/farmacologia , Fenazinas , Neoplasias de Próstata Resistentes à Castração/genética , RNA Mensageiro/efeitos dos fármacos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais , Compostos de Tosil/farmacologia , Fator de Transcrição RelA/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Ensaio Tumoral de Célula-Tronco
13.
Anticancer Res ; 44(5): 1939-1946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677763

RESUMO

BACKGROUND/AIM: Macropinocytosis is a non-selective form of endocytosis that facilitates the uptake of extracellular substances, such as nutrients and macromolecules, into the cells. In KRAS-driven cancers, including pancreatic ductal adenocarcinoma, macropinocytosis and subsequent lysosomal utilization are known to be enhanced to overcome metabolic stress. In this study, we investigated the role of Casein Kinase 2 (CK2) inhibition in macropinocytosis and subsequent metabolic processes in KRAS mutant cholangiocarcinoma (CCA) cell lines. MATERIALS AND METHODS: The bovine serum albumin (BSA) uptake indicating macropinocytosis was performed by flow cytometry using the HuCCT1 KRAS mutant CCA cell line. To validate macropinosome, the Rab7 and LAMP2 were labeled and analyzed via immunocytochemistry and western blot. The CX-4945 (Silmitasertib), CK2 inhibitor, was used to investigate the role of CK2 in macropinocytosis and subsequent lysosomal metabolism. RESULTS: The TFK-1, a KRAS wild-type CCA cell line, showed only apoptotic morphological changes. However, the HuCCT1 cell line showed macropinocytosis. Although CX-4945 induced morphological changes accompanied by the accumulation of intracellular vacuoles and cell death, the level of macropinocytosis did not change. These intracellular vacuoles were identified as late macropinosomes, representing Rab7+ vesicles before fusion with lysosomes. In addition, CX-4945 suppressed LAMP2 expression following the inhibition of the Akt-mTOR signaling pathway, which interrupts mature macropinosome and lysosomal metabolic utilization. CONCLUSION: Macropinocytosis is used as an energy source in the KRAS mutant CCA cell line HuCCT1. The inhibition of CK2 by CX-4945 leads to cell death in HuCCT1 cells through alteration of the lysosome-dependent metabolism.


Assuntos
Neoplasias dos Ductos Biliares , Caseína Quinase II , Colangiocarcinoma , Lisossomos , Mutação , Naftiridinas , Fenazinas , Pinocitose , Piperazinas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Lisossomos/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Pinocitose/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/antagonistas & inibidores , Piperazinas/farmacologia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , proteínas de unión al GTP Rab7/metabolismo , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética
14.
Behav Brain Res ; 465: 114960, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38494129

RESUMO

Cognitive behavioral therapy, rooted in exposure therapy, is currently the primary approach employed in the treatment of anxiety-related conditions, including post-traumatic stress disorder (PTSD). In laboratory settings, fear extinction in animals is a commonly employed technique to investigate exposure therapy; however, the precise mechanisms underlying fear extinction remain elusive. Casein kinase 2 (CK2), which regulates neuroplasticity via phosphorylation of its substrates, has a significant influence in various neurological disorders, such as Alzheimer's disease and Parkinson's disease, as well as in the process of learning and memory. In this study, we adopted a classical Pavlovian fear conditioning model to investigate the involvement of CK2 in remote fear memory extinction and its underlying mechanisms. The results indicated that the activity of CK2 in the medial prefrontal cortex (mPFC) of mice was significantly upregulated after extinction training of remote cued fear memory. Notably, administration of the CK2 inhibitor CX-4945 prior to extinction training facilitated the extinction of remote fear memory. In addition, CX-4945 significantly upregulated the expression of p-ERK1/2 and p-CREB in the mPFC. Our results suggest that CK2 negatively regulates remote fear memory extinction, at least in part, by inhibiting the ERK-CREB pathway. These findings contribute to our understanding of the underlying mechanisms of remote cued fear extinction, thereby offering a theoretical foundation and identifying potential targets for the intervention and treatment of PTSD.


Assuntos
Medo , Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Caseína Quinase II/metabolismo , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo
15.
ACS Chem Neurosci ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38908003

RESUMO

Protein kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2ß) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes, including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP-binding site. Using computational analyses, we found a potential type IV ("D" pocket) allosteric site that contained different residues between CK2α and CK2α' and was distal from the ATP-binding pocket featured in both kinases. We decided to look for allosteric modulators that might interact in a biased fashion with the type IV pocket on both CK2α and CK2α'. We screened a commercial library containing ∼29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo Kinase assay. Obtained hits were counter-screened against CK2α using the ADP-Glo Kinase assay, revealing two CK2α'-biased compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.

16.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328231

RESUMO

Protein Kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2ß) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP binding site. Using computational analyses, we found a potential Type IV ("D" pocket) allosteric site on CK2α' that contained different residues than CK2α and was distal from the ATP binding pocket featured in both kinases. With this potential allosteric site in mind, we screened a commercial library containing ~29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo™ Kinase assay. Obtained hits were counter-screened against CK2α revealing two CK2α' selective compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.

17.
Bioorg Med Chem Lett ; 23(20): 5609-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24012124

RESUMO

Casein kinase 2 (CK2) is known to be involved in various cellular processes such as cell cycle, apoptosis and proliferation. It has been reported that the inhibition of CK2 induced by recently developed small molecule CX4945 shows anti-cancer effects including anti-proliferation and anti-angiogenesis in several different cancers including prostate cancer. Here we report that migration and invasion of A549 human lung cancer cells are suppressed by the inhibition of CK2 induced by CX4945. We found that CX4945 sequentially attenuates the proteins in PI3K/Akt and MAPK pathways, two signaling pathways related with cell migration. This sequential control of signal pathways inhibits the expression of membrane type 1-matrix metalloproteinase and this leads to the selective attenuation of one of the gelatinases, MMP-2, which can degrade components of extracellular matrix, and metastasis of A549 human lung cancer cell.


Assuntos
Antineoplásicos/química , Caseína Quinase II/antagonistas & inibidores , Naftiridinas/química , Antineoplásicos/toxicidade , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Gelatinases/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Naftiridinas/toxicidade , Fenazinas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Anticancer Res ; 43(12): 5425-5436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030206

RESUMO

BACKGROUND/AIM: Cholangiocarcinoma is a lethal cancer, and current chemotherapeutic drugs are not very effective. Recent studies reported that cholangiocarcinoma cells were sensitive to adenosine. One adenosine analog, 8-chloroadenosine (8-CA), was shown to be more potent than adenosine and induced apoptosis in leukemia cells. This study examined effects of 8-CA in cholangiocarcinoma cells and immortalized cholangiocytes. MATERIALS AND METHODS: Cell growth was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell invasion was examined by transwell assay. Cell cycle and cell death were evaluated by flow cytometry. Colorimetric absorbance assay was used to assessed RNA and protein synthesis as well as mitochondrial membrane potential. Protein levels were examined by western blot analysis. Animal experiment was performed in Balb/cAJcl-Nu mice. RESULTS: 8-CA reduced cholangiocarcinoma cell growth, prevented colony formation and caused endoplasmic reticulum stress and cell-cycle arrest. Eventually, apoptosis was induced. However, treatment with 8-CA did not interfere with RNA synthesis or protein synthesis and did not alter mitochondrial membrane potential. Combination of 8-CA with several chemotherapeutic drugs in vitro was less effective than 8-CA alone and the drugs alone, except for the combination of 8-CA with hydroxychloroquine, which had an additive effect on RMCCA-1 cells. However, further in vivo study showed that treatment with 8-CA alone inhibited tumor growth more than treatment with a combination of 8-CA with hydroxychloroquine. CONCLUSION: 8-Chloroadenosine inhibited CCA cells by inducing endoplasmic reticulum stress and apoptosis. In vivo study showed that 8-CA inhibited cholangiocarcinoma tumor growth better when administered alone as compared to a combination with hydroxychloroquine.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Hidroxicloroquina/farmacologia , Linhagem Celular Tumoral , Apoptose , Colangiocarcinoma/patologia , Proliferação de Células , Estresse do Retículo Endoplasmático , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Adenosina/farmacologia , RNA
19.
Int Immunopharmacol ; 119: 110163, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060808

RESUMO

Fibroblast-like synoviocytes (FLS) mediate many pathological processes in rheumatoid arthritis (RA), including pannus formation, bone erosion, and inflammation. RA FLS have unique aggressive phenotypes and exhibit several tumor cell-like characteristics, including hyperproliferation, excessive migration and invasion. Casein kinase 2 (CK2) is reportedly overexpressed in numerous tumor types, and targeted inhibition of CK2 has therapeutic benefits for tumors. However, the expression level of CK2 and its functions in RA FLS remain unclear. Herein, we aimed to elucidate whether CK2 is responsible for the aggressive phenotypes of RA FLS and whether targeted therapy can alleviate the severity of RA. We found that CK2 subunits were elevated in RA FLS compared with osteoarthritis FLS, and the activity of CK2 also markedly increased in RA FLS. Targeted inhibition of CK2 using CX-4945 suppressed RA FLS proliferation through cell cycle arrest. Cell migration and invasion were also inhibited by CX-4945 treatment. Moreover, CX-4945 reduced Interleukin-6 (IL-6), CC motif chemokine ligand 2 (CCL2) and Matrix metalloproteinase-3 (MMP-3) secretion in RA FLS. Further proteomic investigation revealed that p53 signaling pathway significantly changes after CX-4945 treatment in RA FLS. The siRNA-mediated p53 knockdown partly abolished the anti-proliferation and reduced IL-6, MMP-3 secretion effects of CX-4945. Furthermore, CX-4945 administration alleviates arthritis severity in CIA mice. Collectively, our results demonstrated the abnormal elevation of CK2 and its positive association with abnormal phenotypes in RA FLS. Our novel findings suggest the possible therapeutic potential of CX-4945 for RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Camundongos , Animais , Caseína Quinase II/metabolismo , Caseína Quinase II/farmacologia , Caseína Quinase II/uso terapêutico , Metaloproteinase 3 da Matriz/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Interleucina-6/metabolismo , Proteômica , Proliferação de Células , Células Cultivadas , Artrite Reumatoide/metabolismo , Fibroblastos , Gravidade do Paciente , Membrana Sinovial/patologia
20.
ASN Neuro ; 15: 17590914231158218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890725

RESUMO

SUMMARY STATEMENT: HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Fosforilação , Caseína Quinase II/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteínas de Ligação a DNA , HIV-1/metabolismo , Gânglios da Base/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa