RESUMO
Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, ß-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following ß-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.
Assuntos
Diferenciação Celular , Sistema Enzimático do Citocromo P-450 , Doenças Neurodegenerativas , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Linhagem Celular Tumoral , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios/metabolismoRESUMO
Drug-drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems namely HepatoPac, spheroids, and Liver-on-a-chip to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1 and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation towards the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides. Significance Statement At present, there are no guidelines for drug-drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.
RESUMO
We investigated the acute and chronic effects of efavirenz, a widely used antiretroviral drug, and CYP2B6 genotypes on the disposition of racemic and stereoisomers of bupropion (BUP) and its active metabolites, 4-hydroxyBUP, threohydroBUP and erythrohydroBUP. The primary objective of this study was to test how multiple processes unique to the efavirenz-CYP2B6 genotype interaction influence the extent of efavirenz-mediated drug-drug interaction (DDI) with the CYP2B6 probe substrate BUP. In a three-phase, sequential, open-label study, healthy volunteers (N=53) were administered a single 100 mg oral dose of BUP alone (control phase), with a single 600 mg oral efavirenz dose (inhibition phase), and after 17-days pretreatment with efavirenz (600 mg/day) (induction phase). Compared to the control phase, we show for the first time that efavirenz significantly decreases and chronically increases the exposure of hydroxyBUP and its diastereomers, respectively, and these interactions were CYP2B6 genotype dependent. Chronic efavirenz enhances the elimination of racemic BUP and its enantiomers as well as of threo- and erythro-hydroBUP and their diastereomers, suggesting additional novel mechanisms underlying efavirenz interaction with BUP. The effects of efavirenz and genotypes were nonstereospecific. In conclusion, acute and chronic administration of efavirenz inhibits and induces CYP2B6 activity. Efavirenz-BUP interaction is complex involving time- and CYP2B6 genotype-dependent inhibition and induction of primary and secondary metabolic pathways. Our findings highlight important implications to the safety and efficacy of BUP, study design considerations for future efavirenz interactions, and individualized drug therapy based on CYP2B6 genotypes. Significance Statement The effects of acute and chronic doses of efavirenz on the disposition of racemic and stereoisomers of BUP and its active metabolites were investigated in healthy volunteers. Efavirenz causes an acute inhibition, but chronic induction of CYP2B6 in a genotype dependent manner. Chronic efavirenz induces BUP reduction and the elimination of BUP active metabolites. Efavirenz's effects were non-stereospecific. These data reveal novel mechanisms underlying efavirenz DDI with BUP and provide important insights into time- and CYP2B6 genotype dependent DDIs.
RESUMO
Emvododstat was identified as a potent inhibitor of dihydroorotate dehydrogenase and is now in clinical development for the treatment of acute myeloid leukaemia and COVID-19. The objective of this paper is to evaluate the metabolism, pharmacokinetics, and drug interaction potentials of emvododstat.Emvododstat showed high binding to plasma protein with minimal distribution into blood cells in mouse, rat, dog, monkey, and human whole blood.O-Demethylation followed by glucuronidation appeared to be the major metabolic pathway in rat, dog, monkey, and human hepatocytes. CYP2C8, 2C19, 2D6, and 3A4 were involved in O-desmethyl emvododstat metabolite formation. Both emvododstat and O-desmethyl emvododstat inhibited CYP2D6 activity and induced CYP expression to different extents in vitro.Emvododstat and O-desmethyl emvododstat inhibited BCRP transporter activity but did not inhibit bile salt transporters and other efflux or uptake transporters. Neither emvododstat nor O-desmethyl emvododstat was a substrate for common efflux or uptake transporters investigated.Emvododstat is bioavailable in mice, rats, dogs, and monkeys following a single oral dose. The absorption was generally slow with the mean plasma Tmax ranging from 2 to 5 h; plasma exposure of O-desmethyl emvododstat was lower in rodents, but relatively higher in dogs and monkeys.
Assuntos
COVID-19 , Microssomos Hepáticos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Carbamatos , Carbazóis , Di-Hidro-Orotato Desidrogenase , Cães , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Proteínas de Neoplasias/metabolismo , RatosRESUMO
We investigated the effect of deglucuronidation on the plasma concentration of the constituents of the Basel phenotyping cocktail and on the interpretation of the phenotyping results under basal conditions and after cytochrome P450 (CYP) induction with metamizole. The cocktail containing caffeine (CYP1A2), efavirenz (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6) and midazolam (CYP3A4) was administered to 12 healthy subjects before (basal) and after treatment with metamizole for 1 week. In the basal state, deglucuronidation caused an increase in the plasma concentrations and area under the curve (AUC) of metoprolol, 8'-hydroxyefavirenz, 4'-hydroxyflurbiprofen and 1'-hydroxymidazolam. This effect could be visualized in Bland-Altman plots, where the values for 8'-hydroxyefavirenz, 4'-hydroxyflurbiprofen and 1'-hydroxymidazolam were mostly above the +20% threshold. As a result, the metabolic ratio (MR), calculated as AUCparent drug /AUCmetabolite , decreased with deglucuronidation for CYP2B6, CYP2C9 and CYP3A4 and increased for CYP2D6. Treatment with metamizole, a constitutive androstane receptor-dependent inducer of CYP2B6, CYP2C9, CYP2C19 and CYP3A4, accentuated the effect of deglucuronidation on AUC and MR. The correlation of MRs calculated as the plasma concentration ratio parent drug/metabolite with the MR calculated as the AUC ratio showed that 1 sample obtained between 2 and 6 hours after cocktail ingestion and analysed with and without deglucuronidation is sufficient to obtain reliable phenotyping results. Importantly, CYP2C9 and 3A4 induction would have been missed without deglucuronidation of the plasma samples. In conclusion, deglucuronidation of the plasma samples improves the stability of the phenotyping results of the Basel phenotyping cocktail and is necessary to reliably detect CYP induction.
Assuntos
Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Glucuronídeos , Cafeína , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Combinação de Medicamentos , Flurbiprofeno/farmacocinética , Glucuronídeos/metabolismo , Humanos , Metoprolol/farmacocinética , Midazolam/farmacocinética , Omeprazol/farmacocinéticaRESUMO
The potential for drug-drug interactions (DDI) of EST73502 was preliminary explored in vitro. EST73502 is a new chemical entity intended for oral pain treatment with dual sigma-1 receptor (σ1R) antagonism and µ-opioid receptor (MOR) partial agonism, that presents a promising potent analgesic activity.Several enzymes were involved in EST73502 metabolism catalysing the formation of different metabolites, CYP3A4 and CYP2D6 being the main ones.Fraction unbound was determined due to its impact in interactions, a considerable proportion of EST73502 being available.EST73502 showed a low potential for CYP inhibition, except for CYP2D6 that showed time-dependent inhibition.No induction potential was found for CYP1A2 and 3A4, while CYP2B6 was induced at high concentration.EST73502 seemed to be a potential efflux transporter substrate (efflux ratio ≥ 2) but a negligible in vivo impact would be expected due to its high solubility and permeability in Caco-2 cells. P-gp inhibition was observed while no BCRP inhibition was detected.Preliminary in vitro interaction studies suggested that neither CYPs nor efflux transporters interactions would preclude further development of EST73502 to thoroughly assess the clinical relevance of these findings.
Assuntos
Preparações Farmacêuticas , Receptores sigma , Células CACO-2 , Interações Medicamentosas , Humanos , Receptores Opioides mu/agonistas , Receptor Sigma-1RESUMO
EST64401 and EST64514 are two selective sigma-1 receptor ligands that showed a good profile in a lead optimization process for oral pain treatment. Their potential for pharmacokinetic-based drug-drug interactions was assessed to anticipate clinical interactions.Both compounds showed a low potential for CYP inhibition with percentages of inhibition <50% at 1 µM in recombinant human CYPs (CYP1A2, 2C9, 2C19, 2D6 and 3A4) and IC50 ≥75 µM for CYP3A4 and 2D6 in human liver microsomes.No CYP induction was observed for CYP1A2, 2B6 and 3A4 at concentrations ≤25 µM (EST64401) or ≤50 µM (EST64514) in human hepatocytes using as endpoints CYP activities and mRNA levels.More than one enzyme participated in compound metabolism. The main enzymes involved were CYP3A4 for EST64401 and CYP2D6 besides CYP3A4 for EST64514.Neither EST64401 nor EST64514 seemed to be substrates of P-gp or BCRP in Caco-2 cells (efflux ratio ≤2). Transporter inhibition was observed at concentrations ≥20 µM; EST64401 only inhibiting P-gp at higher concentrations (≥125 µM).Preliminary in vitro interaction studies suggest a similar profile for EST64401 and EST64514. Therefore, other properties will have to be considered for compound differentiation and selection for further development.
Assuntos
Inibidores das Enzimas do Citocromo P-450 , Preparações Farmacêuticas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Células CACO-2 , Interações Medicamentosas , Humanos , Microssomos Hepáticos , Proteínas de Neoplasias , Receptores sigma , Receptor Sigma-1RESUMO
EST64454 is a selective sigma-1 receptor ligand intended for orally administered pain treatment that showed a promising profile in the lead optimization process. As part of the preliminary compound profiling, the potential for future drug-drug interactions was explored in vitro. Both direct and time-dependent CYP inhibition for CYP1A2, 2C9, 2C19, 2D6 and 3A4 was studied in human liver microsomes. EST64454 showed a low potential for CYP inhibition (IC50 between 100 and 1000 µM) and as time-dependent inhibitor (IC50 shift mainly around 1). CYP induction studies with HepaRG™ cells revealed no CYP induction at concentrations ≤50 µM, as shown by the CYP1A2, 3A4 and 2B6 activities measured. Reaction phenotyping was assessed after incubation with recombinant human enzymes. Although a very low metabolism was observed, several enzymes catalyzed the formation of metabolites, including CYP3A4, 2C19 and flavin monooxygenases (FMO) 1 and 3. EST64454 was not a P-glycoprotein (P-gp) substrate and was highly permeable in Caco-2 cells. P-gp inhibition was only observed at 200 µM, the highest concentration studied. Preliminary studies suggest that neither CYP nor P-gp interaction of EST64454 would be of any concern for further development. At later stages, the interaction kinetics and the clinical relevance of these findings will be thoroughly evaluated.
Assuntos
Analgésicos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Receptores sigma/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Analgésicos/farmacocinética , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Feminino , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Receptor Sigma-1RESUMO
The 1-methyl-4-phenylpyridinium (MPP+) is a parkinsonian-inducing toxin that promotes neurodegeneration of dopaminergic cells by directly targeting complex I of mitochondria. Recently, it was reported that some Cytochrome P450 (CYP) isoforms, such as CYP 2D6 or 2E1, may be involved in the development of this neurodegenerative disease. In order to study a possible role for CYP induction in neurorepair, we designed an in vitro model where undifferentiated neuroblastoma SH-SY5Y cells were treated with the CYP inducers ß-naphthoflavone (ßNF) and ethanol (EtOH) before and during exposure to the parkinsonian neurotoxin, MPP+. The toxic effect of MPP+ in cell viability was rescued with both ßNF and EtOH treatments. We also report that this was due to a decrease in reactive oxygen species (ROS) production, restoration of mitochondrial fusion kinetics, and mitochondrial membrane potential. These treatments also protected complex I activity against the inhibitory effects caused by MPP+, suggesting a possible neuroprotective role for CYP inducers. These results bring new insights into the possible role of CYP isoenzymes in xenobiotic clearance and central nervous system homeostasis.
Assuntos
Etanol/farmacologia , Mitocôndrias/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , beta-Naftoflavona/farmacologia , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Humanos , Cinética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Isoformas de Proteínas , Espécies Reativas de Oxigênio/metabolismo , XenobióticosRESUMO
Previous reports from our laboratory disclosed the structure and activity of a novel 1H-pyrazolo[4,3-b]pyridine-3-amine scaffold (VU8506) which showed excellent potency, selectivity and in vivo efficacy in preclinical rodent models of Parkinson's disease. Unfortunately, this compound suffered from significant CYP1A2 induction as measured through upstream AhR activation (125-fold) and thus was precluded from further advancement in chronic studies. Herein, we report a new scaffold developed recently which was systematically studied in order to mitigate the CYP1A2 liabilities presented in the earlier scaffolds. We have identified a novel structure that maintains the potency and selectivity of other mGlu4 PAMs, leading to 9i (hmGlu4 EC50â¯=â¯43â¯nM; AhR activationâ¯=â¯2.3-fold).
Assuntos
Indutores do Citocromo P-450 CYP1A2/farmacologia , Citocromo P-450 CYP1A2/biossíntese , Descoberta de Drogas , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Antiparkinsonianos/farmacologia , Indução Enzimática/efeitos dos fármacos , Humanos , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Relação Estrutura-AtividadeRESUMO
Pinostrobin (PI, 5-hydroxy-7-methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI after an incubation with pooled human liver microsomes (HLMs). The relative contributions of different CYP450s were evaluated using CYP450-selective inhibitors in HLMs and recombinant human CYP450 enzymes, and the results revealed the major involvement of CYP1A2, CYP2C9 and CYP2E1 in PI metabolism. We also evaluated the ability of PI to inhibit and induce human cytochrome P450 enzymes in vitro. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques were used to estimate the enzymatic activities of seven drug-metabolizing CYP450 isozymes in vitro. In HLMs, PI did not inhibit CYP 1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 (IC50 > 100 µm). In the induction studies, PI had minimal effects on CYP1A2, CYP2B6and CYP3A4 activity. Based on these results, PI would not be expected to cause clinically significant CYP450 inhibition or induction.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Flavanonas/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/biossíntese , Indução Enzimática , Humanos , Microssomos Hepáticos/enzimologia , Espectrometria de Massas em TandemRESUMO
Huperzine A (HupA), one of the reversible and selective acetylcholinesterase inhibitors derived from Chinese herb Huperzia Serrata, possesses affirmative action of ameliorating cognitive dysfunction of Alzheimer's disease. Up to now, the effects of HupA on human cytochrome P450s (CYPs) have not been fully elucidated. The purpose of the present study was to clarify the metabolic pathway of HupA in vitro and in vivo, and to evaluate the CYPs inhibition/induction profile of HupA in vitro. The catalytic activity of CYP enzymes (CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1 and 3A4) was measured by the quantification of specific enzyme substrates using validated liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods. The in vivo metabolic pathway evaluation was performed in an open, single-dose pharmacokinetic study of HupA in fourteen elderly subjects, with urine collecting at certain intervals. In human liver microsomes, HupA (10 ng/mL) was not metabolized within 90 min, and it showed negligible inhibition against these CYP isoforms within 0.2-100 ng/mL. In human liver hepatocytes, the activities of CYP1A2 and CYP3A4 were not significantly altered when incubated at 2 or 20 ng/mL of HupA. After oral administration of 0.1 mg HupA, the total proportion of HupA excreted through urine was relatively high, accounting to 35± 9% at the limited time period of 48 h. These results suggest that HupA is substantially excreted by kidney unchanged rather than metabolized by human liver, and is unlikely to cause clinically relevant drug-drug interaction (DDI) when co-administrated with drugs that are metabolized by CYP isoenzyme system.
Assuntos
Alcaloides/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Idoso , Alcaloides/farmacocinética , Alcaloides/urina , Indutores do Citocromo P-450 CYP1A2/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Indutores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/urina , Estabilidade de Medicamentos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inativação Metabólica , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Sesquiterpenos/farmacocinética , Sesquiterpenos/urinaRESUMO
The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition.
Assuntos
Ração Animal/análise , Ácido Butírico/farmacocinética , Galinhas , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Fígado/enzimologia , Fenobarbital/farmacocinética , Administração Oral , Animais , Ácido Butírico/administração & dosagem , Sistema Enzimático do Citocromo P-450/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Fígado/efeitos dos fármacos , Masculino , Fenobarbital/administração & dosagemRESUMO
Drug-drug interaction is an important element of modern drug development. In the case of antituberculosis drugs, which are frequently administered as combinations of multiple therapeutic agents, the potential for interactions between coadministered drugs and between new and existing drugs should be considered during the development of new antituberculosis drugs and combination regimens. The current understanding of drug-drug interactions involving the first-line antituberculosis drugs is reviewed in this article, along with the approaches that are used to prospectively delineate potential interactions during development of new therapies. In addition, current knowledge gaps are identified, and future directions for enhancing the understanding of drug-drug interactions that will further facilitate the development of novel antituberculosis therapies are discussed.
Assuntos
Antituberculosos/metabolismo , Antituberculosos/uso terapêutico , Interações Medicamentosas/fisiologia , Tuberculose/tratamento farmacológico , Quimioterapia Combinada/métodos , Humanos , Tuberculose/metabolismoRESUMO
AIMS: Understanding drug-drug interactions (DDI) is a critical part of the drug development process as polypharmacy has become commonplace in many therapeutic areas including the cancer patient population. The objectives of this study were to investigate cytochrome P450 (CYP)-mediated DDI profiles available for therapies used in the oncology setting and evaluate how models based on in vitro-in vivo extrapolation performed in predicting CYP-mediated DDI risk. METHODS: A dataset of 125 oncology therapies was collated using drug label and approval history information, incorporating in vitro and clinical PK data. The predictive accuracy of the basic and net effect mechanistic static models was assessed using this oncology drug dataset, for both victim and perpetrator potential of CYP3A-mediated DDI. RESULTS: The incidence of CYP3A-mediated interaction potential was 47%, 22% and 11% for substrates, inhibitors and inducers, respectively. The basic models for precipitants gave conservative predictions with no false negatives, whilst the mechanistic static models provided reasonable quantitative predictions (2.3-3-fold error). Further analysis revealed that incorporating DDI at the level of the intestine was in most cases over-predicting interaction magnitude due to overestimates of the rate and extent of oral absorption of the precipitant. Quantifying victim DDI potential was also demonstrated using fmCYP3A estimates from ketoconazole clinical DDI studies to predict the magnitude of interaction on co-administration with the CYP3A inducer, rifampicin (1.6-3.3 fold error). CONCLUSIONS: This work illustrates the utility and limitations of current DDI risk assessment approaches applied to a range of contemporary anti-cancer agents, and discusses the implications for therapeutic combination strategies.
Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Oncologia , Modelos Biológicos , Polimedicação , Biotransformação , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/efeitos adversos , Inibidores do Citocromo P-450 CYP3A/efeitos adversos , Bases de Dados de Produtos Farmacêuticos , Aprovação de Drogas , Interações Medicamentosas , Rotulagem de Medicamentos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Medição de Risco , Fatores de RiscoRESUMO
Conventional two-dimensional (2D) monolayer cultures of HepaRG cells allow in vitro maintenance of many liver-specific functions. However, cellular dedifferentiation and functional deterioration over an extended culture period in the conventional 2D HepaRG culture have hampered its applications in drug testing. To address this issue, we developed tethered spheroids of HepaRG cells on Arg-Gly-Asp (RGD) and galactose-conjugated substratum with an optimized hybrid ratio as an in vitro three-dimensional (3D) human hepatocyte model. The liver-specific gene expression level and drug metabolizing enzyme activities in HepaRG-tethered spheorids were markedly higher than those in 2D cultures throughout the culture period of 7 days. The inducibility of three major cytochrome P450 (CYP) enzymes, namely CYP1A2, CYP2B6 and CYP3A4, was improved in both mRNA and activity level in tethered spheroids. Drug-induced cytotoxic responses to model hepatotoxins (acetaminophen, chlorpromazine and ketoconazole) in tethered spheroids were comparable to 2D cultures as well as other studies in the literature. Our results suggested that the HepaRG-tethered spheroid would be an alternative in vitro model suitable for drug safety screening.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Oligopeptídeos , Esferoides Celulares/efeitos dos fármacos , Testes de Toxicidade/métodos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Indução Enzimática/efeitos dos fármacos , Galactose/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Modelos Biológicos , Oligopeptídeos/metabolismo , RNA Mensageiro/biossíntese , Esferoides Celulares/ultraestrutura , Células Tumorais CultivadasRESUMO
Herein we report the successful incorporation of a lactam as an amide replacement in the design of hepatitis C virus NS5B Site II thiophene carboxylic acid inhibitors. Optimizing potency in a replicon assay and minimizing potential risk for CYP3A4 induction led to the discovery of inhibitor 22a. This lead compound has a favorable pharmacokinetic profile in rats and dogs.
Assuntos
Antivirais/farmacologia , Ácidos Carboxílicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Lactamas/química , Estrutura Molecular , RNA Polimerase Dependente de RNA/metabolismo , Ratos , Relação Estrutura-Atividade , Tiofenos/química , Proteínas não Estruturais Virais/metabolismoRESUMO
Despite the availability of effective vaccines and treatments for SARS-CoV-2, managing COVID-19 in patients with systemic lupus erythematosus (SLE) remains challenging, particularly considering drug-drug interactions (DDIs). Here, we present a case of DDIs between Tacrolimus (Tac) and nirmatrelvir/ritonavir (NMV/r) in a 32-year-old male with SLE. Following self-administration of NMV/r and resumption of Tac after 5 days, the patient experienced acute nephrotoxicity and neurotoxicity, accompanied by supratherapeutic Tac levels, despite Tac being withheld during NMV/r. The primary cause of this acute toxicity is attributed to ritonavir's inhibitory effect on both CYP3A4 enzymes and P-glycoprotein. Upon admission, Tac was discontinued, and supportive therapies were initiated. Phenytoin, a CYP3A4 inducer, was administered to lower Tac levels under the guidance of clinical pharmacists, effectively alleviating the patient's acute toxic symptoms. The half-life of Tac during the treatment of phenytoin was calculated to be 55.87 h. And no adverse reactions to phenytoin were observed. This case underscores the persistence of enzyme inhibition effects and demonstrates the effectiveness and safety of utilizing CYP3A4 enzyme inducers to mitigate Tac concentrations. Furthermore, it emphasizes the importance of healthcare providers and patients being vigilant about DDIs in Tac recipients. Lastly, it highlights the indispensable role of pharmacist involvement in clinical decision-making and close monitoring in complex clinical scenarios. Although our findings are based on a single case, they align with current knowledge and suggest the potential of individualized combination therapy in managing challenging COVID-19 cases in immunocompromised patients.
RESUMO
Induction of cytochrome P450 (CYP) genes constitutes an important cause of drug-drug interactions and preclinical evaluation of induction liability is mandatory for novel drug candidates. YAP/TEAD signaling has emerged as an attractive target for various oncological indications and multiple chemically distinct YAP/TEAD inhibitors are rapidly progressing towards clinical stages. Here, we tested the liability for CYP induction of a diverse set of YAP/TEAD inhibitors with different modes of action and TEAD isoform selectivity profiles in monolayers and 3D spheroids of primary human hepatocytes (PHH). We found that YAP/TEAD inhibition resulted in broad induction of CYPs in 2D monolayers, whereas, if at all, only marginal induction was seen in spheroid culture. Comprehensive RNA-Seq indicated that YAP/TEAD signaling was increased in 2D culture compared to spheroids, which was paralleled by elevated activities of the interacting transcription factors LXR and ESRRA, likely at least in part due to altered mechanosensing. Inhibition of this YAP/TEAD hyperactivation resulted in an overall reduction of hepatocyte dedifferentiation marked by increased hepatic functionality, including CYPs. These results thus demonstrate that the observed induction is due to on-target effects of the compounds rather than direct activation of xenobiotic sensing nuclear receptors. Combined, the presented data link hepatocyte dedifferentiation to YAP/TEAD dysregulation, reveal a novel non-canonical pathway of CYP induction and highlight the advantage of organotypic 3D cultures to predict clinically relevant pharmacokinetic properties, particularly for atypical induction mechanisms.
Assuntos
Sistema Enzimático do Citocromo P-450 , Transdução de Sinais , Humanos , Sistema Enzimático do Citocromo P-450/genética , Desdiferenciação Celular , Hepatócitos , Fatores de TranscriçãoRESUMO
Lysiphyllum strychnifolium (Craib) A. Schmitz (LS) has been traditionally used as a medicinal herb by folk healers in Thailand with rare evidence-based support. Hepatic cytochrome P450s (CYPs450) are well known as the drug-metabolizing enzymes that catalyze all drugs and toxicants. In this study, we investigated the mRNA levels of six clinically important CYPs450, i.e., CYP1A2, 3A2, 2C11, 2D1, 2D2, and 2E1, in rats given LS extracts. Seventy Wistar rats were randomized into seven groups (n = 10). Each group was given LS stem ethanol (SE) and leaf water (LW) extracts orally at doses of 300, 2000, and 5000 mg/kg body weight (mg/kg.bw) for twenty-eight consecutive days. After treatment, the expression of CYPs450 genes was measured using quantitative real-time PCR. The results revealed that SE and LW, which contained quercetin and gallic acid, promoted the upregulation of all CYPs450. Almost all CYPs450 genes were downregulated in all male LW-treated rats but upregulated in female-treated groups, suggesting that CYP gene expressions in LS-treated rats were influenced by gender. Moderate and high doses of the LS extracts had a tendency to induce six CYP450s' transcription levels in both rat genders. CYP2E1 gene showed a unique expression level in male rats receiving SE at a dose of 2000 mg/kg.bw, whereas a low dose of 300 mg/kg.bw was found in the LW-treated female group. As a result, our findings suggest that different doses of LS extracts can moderate the varying mRNA expression of clinically relevant CYP genes. In this study, we provide information about CYP induction and inhibition in vivo, which could be a desirable condition for furthering the practical use of LS extracts in humans.