RESUMO
Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
Assuntos
Calmodulina , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Animais , Calmodulina/metabolismo , Calmodulina/química , Humanos , Ativação do Canal Iônico , Cálcio/metabolismo , Ligação Proteica , Miócitos Cardíacos/metabolismoRESUMO
The modulation of K+ channels plays a crucial role in cell migration and proliferation, but the effect of K+ channels on human cutaneous wound healing (CWH) remains underexplored. This study aimed to determine the necessity of modulating K+ channel activity and expression for human CWH. The use of 25 mM KCl as a K+ channel blocker markedly improved wound healing in vitro (in keratinocytes and fibroblasts) and in vivo (in rat and porcine models). K+ channel blockers, such as quinine and tetraethylammonium, aided in vitro wound healing, while Ba2+ was the exception and did not show similar effects. Single-channel recordings revealed that the Ba2+-insensitive large conductance Ca2+-activated K+ (BKCa) channel was predominantly present in human keratinocytes. NS1619, an opener of the BKCa channel, hindered wound healing processes like proliferation, migration, and filopodia formation. Conversely, charybdotoxin and iberiotoxin, which are BKCa channel blockers, dramatically enhanced these processes. The downregulation of BKCa also improved CWH, whereas its overexpression impeded these healing processes. These findings underscore the facilitative effect of BKCa channel suppression on CWH, proposing BKCa channels as potential molecular targets for enhancing human cutaneous wound healing.
Assuntos
Fibroblastos , Hidrolases , Humanos , Animais , Ratos , Suínos , Movimento Celular , Regulação para Baixo , Canais de Potássio Ativados por Cálcio de Condutância Alta , CicatrizaçãoRESUMO
This review paper delves into the current body of evidence, offering a thorough analysis of the impact of large-conductance Ca2+-activated K+ (BKCa or BK) channels on the electrical dynamics of the heart. Alterations in the activity of BKCa channels, responsible for the generation of the overall magnitude of Ca2+-activated K+ current at the whole-cell level, occur through allosteric mechanisms. The collaborative interplay between membrane depolarization and heightened intracellular Ca2+ ion concentrations collectively contribute to the activation of BKCa channels. Although fully developed mammalian cardiac cells do not exhibit functional expression of these ion channels, evidence suggests their presence in cardiac fibroblasts that surround and potentially establish close connections with neighboring cardiac cells. When cardiac cells form close associations with fibroblasts, the high single-ion conductance of these channels, approximately ranging from 150 to 250 pS, can result in the random depolarization of the adjacent cardiac cell membranes. While cardiac fibroblasts are typically electrically non-excitable, their prevalence within heart tissue increases, particularly in the context of aging myocardial infarction or atrial fibrillation. This augmented presence of BKCa channels' conductance holds the potential to amplify the excitability of cardiac cell membranes through effective electrical coupling between fibroblasts and cardiomyocytes. In this scenario, this heightened excitability may contribute to the onset of cardiac arrhythmias. Moreover, it is worth noting that the substances influencing the activity of these BKCa channels might influence cardiac electrical activity as well. Taken together, the BKCa channel activity residing in cardiac fibroblasts may contribute to cardiac electrical function occurring in vivo.
Assuntos
Fibroblastos , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismoRESUMO
The tumor suppressor gene F-box and WD repeat domain-containing (FBXW) 7 reduces cancer stemness properties by promoting the protein degradation of pluripotent stem cell markers. We recently demonstrated the transcriptional repression of FBXW7 by the three-dimensional (3D) spheroid formation of several cancer cells. In the present study, we found that the transcriptional activity of FBXW7 was promoted by the inhibition of the Ca2+-activated K+ channel, KCa1.1, in a 3D spheroid model of human prostate cancer LNCaP cells through the Akt-Nrf2 signaling pathway. The transcriptional activity of FBXW7 was reduced by the siRNA-mediated inhibition of the CCAAT-enhancer-binding protein C/EBP δ (CEBPD) after the transfection of miR223 mimics in the LNCaP spheroid model, suggesting the transcriptional regulation of FBXW7 through the Akt-Nrf2-CEBPD-miR223 transcriptional axis in the LNCaP spheroid model. Furthermore, the KCa1.1 inhibition-induced activation of FBXW7 reduced (1) KCa1.1 activity and protein levels in the plasma membrane and (2) the protein level of the cancer stem cell (CSC) markers, c-Myc, which is a molecule degraded by FBXW7, in the LNCaP spheroid model, indicating that KCa1.1 inhibition-induced FBXW7 activation suppressed CSC conversion in KCa1.1-positive cancer cells.
Assuntos
Proteína 7 com Repetições F-Box-WD , Regulação Neoplásica da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Neoplasias da Próstata , Transdução de Sinais , Esferoides Celulares , Humanos , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Regulação para Cima , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
In neocortical layer-5 pyramidal neurons, the action potential (AP) is generated in the axon initial segment (AIS) when the membrane potential (Vm ) reaches the threshold for activation of the voltage-gated Na+ channels (VGNCs) Nav 1.2 and Nav 1.6. Yet, whereas these VGNCs are known to differ in spatial distribution along the AIS and in biophysical properties, our understanding of the functional differences between the two channels remains elusive. Here, using ultrafast Na+ , Vm and Ca2+ imaging in combination with partial block of Nav 1.2 by the peptide G1 G4 -huwentoxin-IV, we demonstrate an exclusive role of Nav 1.2 in shaping the generating AP. Precisely, we show that selective block of â¼30% of Nav 1.2 widens the AP in the distal part of the AIS and we demonstrate that this effect is due to a loss of activation of BK Ca2+ -activated K+ channels (CAKCs). Indeed, Ca2+ influx via Nav 1.2 activates BK CAKCs, determining the amplitude and the early phase of repolarization of the AP in the AIS. By using control experiments using 4,9-anhydrotetrodotoxin, a moderately selective inhibitor of Nav 1.6, we concluded that the Ca2+ influx shaping the early phase of the AP is exclusive of Nav 1.2. Hence, we mimicked this result with a neuron model in which the role of the different ion channels tested reproduced the experimental evidence. The exclusive role of Nav 1.2 reported here is important for understanding the physiology and pathology of neuronal excitability. KEY POINTS: We optically analysed the action potential generated in the axon initial segment of mouse layer-5 neocortical pyramidal neurons and its associated Na+ and Ca2+ currents using ultrafast imaging techniques. We found that partial selective block of the voltage-gated Na+ channel Nav 1.2, produced by a recently developed peptide, widens the shape of the action potential in the distal part of the axon initial segment. We demonstrate that this effect is due to a reduction of the Ca2+ influx through Nav 1.2 that activates BK Ca2+ -activated K+ channels. To validate our conclusions, we generated a neuron model that reproduces the ensemble of our experimental results. The present results indicate a specific role of Nav 1.2 in the axon initial segment for shaping of the action potential during its generation.
Assuntos
Segmento Inicial do Axônio , Camundongos , Animais , Segmento Inicial do Axônio/fisiologia , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta , Células Piramidais/fisiologia , Peptídeos/farmacologiaRESUMO
Large-conductance Ca2+ and voltage-activated K+ (BK) channels control membrane excitability in many cell types. BK channels are tetrameric. Each subunit is composed of a voltage sensor domain (VSD), a central pore-gate domain, and a large cytoplasmic domain (CTD) that contains the Ca2+ sensors. While it is known that BK channels are activated by voltage and Ca2+, and that voltage and Ca2+ activations interact, less is known about the mechanisms involved. We explore here these mechanisms by examining the gating contribution of an interface formed between the VSDs and the αB helices located at the top of the CTDs. Proline mutations in the αB helix greatly decreased voltage activation while having negligible effects on gating currents. Analysis with the Horrigan, Cui, and Aldrich model indicated a decreased coupling between voltage sensors and pore gate. Proline mutations decreased Ca2+ activation for both Ca2+ bowl and RCK1 Ca2+ sites, suggesting that both high-affinity Ca2+ sites transduce their effect, at least in part, through the αB helix. Mg2+ activation also decreased. The crystal structure of the CTD with proline mutation L390P showed a flattening of the first helical turn in the αB helix compared to wild type, without other notable differences in the CTD, indicating that structural changes from the mutation were confined to the αB helix. These findings indicate that an intact αB helix/VSD interface is required for effective coupling of Ca2+ binding and voltage depolarization to pore opening and that shared Ca2+ and voltage transduction pathways involving the αB helix may be involved.
Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Domínios Proteicos/genética , Regulação Alostérica , Animais , Cátions Bivalentes/metabolismo , Membrana Celular/metabolismo , Cristalografia por Raios X , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/ultraestrutura , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Oócitos , Técnicas de Patch-Clamp , Prolina/genética , Conformação Proteica em alfa-Hélice/genética , Relação Estrutura-Atividade , Xenopus laevisRESUMO
The large-conductance Ca2+-activated K+ channel, KCa1.1, plays a pivotal role in cancer progression, metastasis, and the acquisition of chemoresistance. Previous studies indicated that the pharmacological inhibition of KCa1.1 overcame resistance to doxorubicin (DOX) by down-regulating multidrug resistance-associated proteins in the three-dimensional spheroid models of human prostate cancer LNCaP, osteosarcoma MG-63, and chondrosarcoma SW-1353 cells. Investigations have recently focused on the critical roles of intratumoral, drug-metabolizing cytochrome P450 enzymes (CYPs) in chemoresistance. In the present study, we examined the involvement of CYPs in the acquisition of DOX resistance and its overcoming by inhibiting KCa1.1 in cancer spheroid models. Among the CYP isoforms involved in DOX metabolism, CYP3A4 was up-regulated by spheroid formation and significantly suppressed by the inhibition of KCa1.1 through the transcriptional repression of CCAAT/enhancer-binding protein, CEBPB, which is a downstream transcription factor of the Nrf2 signaling pathway. DOX resistance was overcome by the siRNA-mediated inhibition of CYP3A4 and treatment with the potent CYP3A4 inhibitor, ketoconazole, in cancer spheroid models. The phosphorylation levels of Akt were significantly reduced by inhibiting KCa1.1 in cancer spheroid models, and KCa1.1-induced down-regulation of CYP3A4 was reversed by the treatment with Akt and Nrf2 activators. Collectively, the present results indicate that the up-regulation of CYP3A4 is responsible for the acquisition of DOX resistance in cancer spheroid models, and the inhibition of KCa1.1 overcame DOX resistance by repressing CYP3A4 transcription mainly through the Akt-Nrf2-CEBPB axis.
Assuntos
Neoplasias Ósseas , Citocromo P-450 CYP3A , Humanos , Masculino , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Kidney organoids derived from human or rodent pluripotent stem cells have glomerular structures and differentiated/polarized nephron segments. Although there is an increasing understanding of the patterns of expression of transcripts and proteins within kidney organoids, there is a paucity of data regarding functional protein expression, in particular on transporters that mediate the vectorial transport of solutes. Using cells derived from kidney organoids, we examined the functional expression of key ion channels that are expressed in distal nephron segments: the large-conductance Ca2+-activated K+ (BKCa) channel, the renal outer medullary K+ (ROMK, Kir1.1) channel, and the epithelial Na+ channel (ENaC). RNA-sequencing analyses showed that genes encoding the pore-forming subunits of these transporters, and for BKCa channels, key accessory subunits, are expressed in kidney organoids. Expression and localization of selected ion channels was confirmed by immunofluorescence microscopy and immunoblot analysis. Electrophysiological analysis showed that BKCa and ROMK channels are expressed in different cell populations. These two cell populations also expressed other unidentified Ba2+-sensitive K+ channels. BKCa expression was confirmed at a single channel level, based on its high conductance and voltage dependence of activation. We also found a population of cells expressing amiloride-sensitive ENaC currents. In summary, our results show that human kidney organoids functionally produce key distal nephron K+ and Na+ channels.NEW & NOTEWORTHY Our results show that human kidney organoids express key K+ and Na+ channels that are expressed on the apical membranes of cells in the aldosterone-sensitive distal nephron, including the large-conductance Ca2+-activated K+ channel, renal outer medullary K+ channel, and epithelial Na+ channel.
Assuntos
Células-Tronco Pluripotentes Induzidas , Canais de Potássio Corretores do Fluxo de Internalização , Aldosterona/metabolismo , Amilorida/farmacologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Organoides/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA/metabolismo , Sódio/metabolismoRESUMO
Atrial fibrillation (AF) is associated with electrical remodeling processes that promote a substrate for the maintenance of AF. Although the small-conductance Ca2+-activated K+ (SK) channel is a key factor in atrial electrical remodeling, the mechanism of its activation remains unclear. Regional nitric oxide (NO) production by neuronal nitric oxide synthase (nNOS) is involved in atrial electrical remodeling. In this study, atrial tachyarrhythmia (ATA) induction and optical mapping were performed on perfused rat hearts. nNOS is pharmacologically inhibited by S-methylthiocitrulline (SMTC). The influence of the SK channel was examined using a specific channel inhibitor, apamin (APA). Parameters such as action potential duration (APD), conduction velocity, and calcium transient (CaT) were evaluated using voltage and calcium optical mapping. The dominant frequency was examined in the analysis of AF dynamics. SMTC (100 nM) increased the inducibility of ATA and apamin (100 nM) mitigated nNOS inhibition-induced arrhythmogenicity. SMTC caused abbreviations and enhanced the spatial dispersion of APD, which was reversed by apamin. By contrast, conduction velocity and other parameters associated with CaT were not affected by SMTC or apamin administration. Apamin reduced the frequency of SMTC-induced ATA. In summary, nNOS inhibition abbreviates APD by modifying the SK channels. A specific SK channel blocker, apamin, mitigated APD abbreviation without alteration of CaT, implying an underlying mechanism of posttranslational modification of SK channels.NEW & NOTEWORTHY We demonstrated that pharmacological nNOS inhibition increased the atrial arrhythmia inducibility and a specific small-conductance Ca2+-activated K+ channel blocker, apamin, reversed the enhanced atrial arrhythmia inducibility. Apamin mitigated APD abbreviation without alteration of Ca2+ transient, implying an underlying mechanism of posttranslational modification of SK channels.
Assuntos
Fibrilação Atrial , Remodelamento Atrial , Animais , Apamina/farmacologia , Cálcio/metabolismo , Óxido Nítrico , Óxido Nítrico Sintase Tipo I , Ratos , Canais de Potássio Ativados por Cálcio de Condutância BaixaRESUMO
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Assuntos
Cálcio , Canais Iônicos , Cálcio/metabolismo , Membrana Celular/metabolismo , Descoberta de Drogas , Canais Iônicos/fisiologia , Transdução de Sinais/fisiologiaRESUMO
Background: We previously found that intermediate conductance Ca2+-activated K+ channel (SK4) might be an important target in atrial fibrillation (AF). Objective: To investigate the role of SK4 in AF maintenance. Methods: Twenty beagles were randomly assigned to the sham group (n=6), pacing group (n=7), and pacing+TRAM-34 group (n=7). Rapid atrial pacing continued for 7 days in the pacing and TRAM-34 groups. During the pacing, the TRAM-34 group received TRAM-34 intravenous injection (10 mg/Kg) 3 times per day. Atrial fibroblasts isolated from canines were treated with angiotensin II or adenovirus carrying the SK4 gene (Ad-SK4) to overexpress SK4 channels. Results: TRAM-34 treatment significantly suppressed the increased intra-atrial conducting time (CT) and AF duration in canines after rapid atrial pacing (P<0.05). Compared with the sham group, the expression of SK4 in atria was higher in the pacing group, which was associated with an increased number of myofibroblasts and levels of extracellular matrix in atrium (all P<0.05), and this effect was reversed by TRAM-34 treatment (all P<0.05). In atrial fibroblasts, the increased expression of SK4 induced by angiotensin II stimulation or Ad-SK4 transfection contributed to higher levels of P38, ERK1/2 and their downstream factors c-Jun and c-Fos, leading to the increased expression of α-SMA (all P<0.05), and all these increases were markedly reduced by TRAM-34 treatment. Conclusion: SK4 blockade suppressed AF by attenuating cardiac fibroblast activity and atrial fibrosis, which was realized through not only a decrease in fibrogenic factors but also inhibition of fibrotic signaling pathways.
Assuntos
Fibrilação Atrial , Animais , Cães , Fibrilação Atrial/genética , Fibrilação Atrial/terapia , Angiotensina II , Proteína Quinase 3 Ativada por Mitógeno , FibroseRESUMO
Rufinamide (RFM) is a clinically utilized antiepileptic drug that, as a triazole derivative, has a unique structure. The extent to which this drug affects membrane ionic currents remains incompletely understood. With the aid of patch clamp technology, we investigated the effects of RFM on the amplitude, gating, and hysteresis of ionic currents from pituitary GH3 lactotrophs. RFM increased the amplitude of Ca2+-activated K+ currents (IK(Ca)) in pituitary GH3 lactotrophs, and the increase was attenuated by the further addition of iberiotoxin or paxilline. The addition of RFM to the cytosolic surface of the detached patch of membrane resulted in the enhanced activity of large-conductance Ca2+-activated K+ channels (BKCa channels), and paxilline reversed this activity. RFM increased the strength of the hysteresis exhibited by the BKCa channels and induced by an inverted isosceles-triangular ramp pulse. The peak and late voltage-gated Na+ current (INa) evoked by rapid step depolarizations were differentially suppressed by RFM. The molecular docking approach suggested that RFM bound to the intracellular domain of KCa1.1 channels with amino acid residues, thereby functionally affecting BKCa channels' activity. This study is the first to present evidence that, in addition to inhibiting the INa, RFM effectively modifies the IK(Ca), which suggests that it has an impact on neuronal function and excitability.
Assuntos
Anticonvulsivantes , Triazóis , Anticonvulsivantes/farmacologia , Simulação de Acoplamento Molecular , Triazóis/farmacologia , ÍonsRESUMO
QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one) has been regarded to be an activator of KV7 channels with analgesic properties. However, whether and how the presence of this compound can result in any modifications of other types of membrane ion channels in native cells are not thoroughly investigated. In this study, we investigated its perturbations on M-type K+ current (IK(M)), Ca2+-activated K+ current (IK(Ca)), large-conductance Ca2+-activated K+ (BKCa) channels, and erg-mediated K+ current (IK(erg)) identified from pituitary tumor (GH3) cells. Addition of QO-58 can increase the amplitude of IK(M) and IK(Ca) in a concentration-dependent fashion, with effective EC50 of 3.1 and 4.2 µM, respectively. This compound could shift the activation curve of IK(M) toward a leftward direction with being void of changes in the gating charge. The strength in voltage-dependent hysteresis (Vhys) of IK(M) evoked by upright triangular ramp pulse (Vramp) was enhanced by adding QO-58. The probabilities of M-type K+ (KM) channels that will be open increased upon the exposure to QO-58, although no modification in single-channel conductance was seen. Furthermore, GH3-cell exposure to QO-58 effectively increased the amplitude of IK(Ca) as well as enhanced the activity of BKCa channels. Under inside-out configuration, QO-58, applied at the cytosolic leaflet of the channel, activated BKCa-channel activity, and its increase could be attenuated by further addition of verruculogen, but not by linopirdine (10 µM). The application of QO-58 could lead to a leftward shift in the activation curve of BKCa channels with neither change in the gating charge nor in single-channel conductance. Moreover, cell exposure of QO-58 (10 µM) resulted in a minor suppression of IK(erg) amplitude in response to membrane hyperpolarization. The docking results also revealed that there are possible interactions of the QO-58 molecule with the KCNQ or KCa1.1 channel. Overall, dual activation of IK(M) and IK(Ca) caused by the presence of QO-58 eventually may have high impacts on the functional activity (e.g., anti-nociceptive effect) residing in electrically excitable cells. Care must be exercised when interpreting data generated with QO-58 as it is not entirely KCNQ/KV7 selective.
Assuntos
Neoplasias Hipofisárias , Humanos , Técnicas de Patch-Clamp , Neoplasias Hipofisárias/patologiaRESUMO
Vascular stiffening, an early and common characteristic of cardiovascular diseases (CVDs), stimulates vascular smooth muscle cell (VSMC) proliferation which reciprocally accelerates the progression of CVDs. However, the mechanisms by which extracellular matrix stiffness accompanying vascular stiffening regulates VSMC proliferation remain largely unknown. In the present study, we examined the role of the intermediate-conductance Ca2+ -activated K+ (IKCa ) channel in the matrix stiffness regulation of VSMC proliferation by growing A7r5 cells on soft and stiff polydimethylsiloxane substrates with stiffness close to these of arteries under physiological and pathological conditions, respectively. Stiff substrates stimulated cell proliferation and upregulated the expression of the IKCa channel. Stiff substrate-induced cell proliferation was suppressed by pharmacological inhibition using TRAM34, an IKCa channel blocker, or genetic depletion of the IKCa channel. In addition, stiff substrate-induced cell proliferation was also suppressed by reducing extracellular Ca2+ concentration using EGTA or intracellular Ca2+ concentration using BAPTA-AM. Moreover, stiff substrate induced activation of extracellular signal-regulated kinases (ERKs), which was inhibited by treatment with TRAM34 or BAPTA-AM. Stiff substrate-induced cell proliferation was suppressed by treatment with PD98059, an ERK inhibitor. Taken together, these results show that substrates with pathologically relevant stiffness upregulate the IKCa channel expression to enhance intracellular Ca2+ signaling and subsequent activation of the ERK signal pathway to drive cell proliferation. These findings provide a novel mechanism by which vascular stiffening regulates VSMC function.
Assuntos
Sinalização do Cálcio , Proliferação de Células , Dimetilpolisiloxanos/química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Mecanotransdução Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , RatosRESUMO
Small-conductance Ca2+-activated K+ (SK, KCa2) channels are encoded by KCNN genes, including KCNN1, 2, and 3. The channels play critical roles in the regulation of cardiac excitability and are gated solely by beat-to-beat changes in intracellular Ca2+. The family of SK channels consists of three members with differential sensitivity to apamin. All three isoforms are expressed in human hearts. Studies over the past two decades have provided evidence to substantiate the pivotal roles of SK channels, not only in healthy heart but also with diseases including atrial fibrillation (AF), ventricular arrhythmia, and heart failure (HF). SK channels are prominently expressed in atrial myocytes and pacemaking cells, compared to ventricular cells. However, the channels are significantly upregulated in ventricular myocytes in HF and pulmonary veins in AF models. Interests in cardiac SK channels are further fueled by recent studies suggesting the possible roles of SK channels in human AF. Therefore, SK channel may represent a novel therapeutic target for atrial arrhythmias. Furthermore, SK channel function is significantly altered by human calmodulin (CaM) mutations, linked to life-threatening arrhythmia syndromes. The current review will summarize recent progress in our understanding of cardiac SK channels and the roles of SK channels in the heart in health and disease.
Assuntos
Cardiopatias/metabolismo , Coração/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , HumanosRESUMO
The large-conductance Ca2+ -activated K+ channel KCa 1.1 plays a pivotal role in tumor development and progression in several solid cancers. The three-dimensional (3D) in vitro cell culture system is a powerful tool for cancer spheroid formation, and mimics in vivo solid tumor resistance to chemotherapy in the tumor microenvironment (TME). KCa 1.1 is functionally expressed in osteosarcoma and chondrosarcoma cell lines. KCa 1.1 activator-induced hyperpolarizing responses were significantly larger in human osteosarcoma MG-63 cells isolated from 3D spheroid models compared with in those from adherent 2D monolayer cells. The present study investigated the mechanisms underlying the upregulation of KCa 1.1 and its role in chemoresistance using a 3D spheroid model. KCa 1.1 protein expression levels were significantly elevated in the lipid-raft-enriched compartments of MG-63 spheroids without changes in its transcriptional level. 3D spheroid formation downregulated the expression of the ubiquitin E3 ligase FBXW7, which is an essential contributor to KCa 1.1 protein degradation in breast cancer. The siRNA-mediated inhibition of FBXW7 in MG-63 cells from 2D monolayers upregulated KCa 1.1 protein expression. Furthermore, a treatment with a potent and selective KCa 1.1 inhibitor overcame the chemoresistance of the MG-63 and human chondrosarcoma SW-1353 spheroid models to paclitaxel, doxorubicin, and cisplatin. Among several multidrug resistance ATP-binding cassette transporters, the expression of the multidrug resistance-associated protein MRP1 was upregulated in both spheroids and restored by the inhibition of KCa 1.1. Therefore, the pharmacological inhibition of KCa 1.1 may be an attractive new strategy for acquiring resistance to chemotherapeutic drugs in the TME of KCa 1.1-positive sarcomas.
Assuntos
Neoplasias Ósseas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Osteossarcoma/metabolismo , Esferoides Celulares/metabolismo , Regulação para Cima/genética , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Humanos , Indóis/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Osteossarcoma/patologia , Paclitaxel/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , RNA Interferente Pequeno/genética , Transfecção , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genéticaRESUMO
Midazolam (MDZ) could affect lymphocyte immune functions. However, the influence of MDZ on cell's K+ currents has never been investigated. Thus, in the present study, the effects of MDZ on Jurkat T lymphocytes were studied using the patch-clamp technique. Results showed that MDZ suppressed the amplitude of delayed-rectifier K+ current (IK(DR)) in concentration-, time-, and state-dependent manners. The IC50 for MDZ-mediated reduction of IK(DR) density was 5.87 µM. Increasing MDZ concentration raised the rate of current-density inactivation and its inhibitory action on IK(DR) density was estimated with a dissociation constant of 5.14 µM. In addition, the inactivation curve of IK(DR) associated with MDZ was shifted to a hyperpolarized potential with no change on the slope factor. MDZ-induced inhibition of IK(DR) was not reversed by flumazenil. In addition, the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels was suppressed by MDZ. Furthermore, inhibition by MDZ on both IK(DR) and IKCa-channel activity appeared to be independent from GABAA receptors and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes. In conclusion, MDZ suppressed current density of IK(DR) in concentration-, time-, and state-dependent manners in Jurkat T-lymphocytes and affected immune-regulating cytokine expression in LPS/PMA-treated human T lymphocytes.
Assuntos
Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Midazolam/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Citocinas/metabolismo , Canais de Potássio de Retificação Tardia/metabolismo , Relação Dose-Resposta a Droga , Flumazenil/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Células Jurkat , Cinética , Lipopolissacarídeos/farmacologia , Ativação Linfocitária , Microscopia Confocal , Midazolam/administração & dosagem , Técnicas de Patch-Clamp , Fito-Hemaglutininas/farmacologia , Linfócitos T/imunologiaRESUMO
Bipolar tetraether lipids (BTL) have been long thought to play a critical role in allowing thermoacidophiles to thrive under extreme conditions. In the present study, we demonstrated that not all BTLs from the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibit the same membrane behaviors. We found that free-standing planar membranes (i.e., black lipid membranes, BLM) made of the polar lipid fraction E (PLFE) isolated from S. acidocaldarius formed over a pinhole on a cellulose acetate partition in a dual-chamber Teflon device exhibited remarkable stability showing a virtually constant capacitance (~28 pF) for at least 11 days. PLFE contains exclusively tetraethers. The dominating hydrophobic core of PLFE lipids is glycerol dialky calditol tetraether (GDNT, ~90%), whereas glycerol dialkyl glycerol tetraether (GDGT) is a minor component (~10%). In sharp contrast, BLM made of BTL extracted from microvesicles (Sa-MVs) released from the same cells exhibited a capacitance between 36 and 39 pF lasting for only 8 h before membrane dielectric breakdown. Lipids in Sa-MVs are also exclusively tetraethers; however, the dominating lipid species in Sa-MVs is GDGT (>99%), not GDNT. The remarkable stability of BLMPLFE can be attributed to strong PLFE-PLFE and PLFE-substrate interactions. In addition, we compare voltage-dependent channel activity of calcium-gated potassium channels (MthK) in BLMPLFE to values recorded in BLMSa-MV. MthK is an ion channel isolated from a methanogenic that has been extensively characterized in diester lipid membranes and has been used as a model for calcium-gated potassium channels. We found that MthK can insert into BLMPLFE and exhibit channel activity, but not in BLMSa-MV. Additionally, the opening/closing of the MthK in BLMPLFE is detectable at calcium concentrations as low as 0.1 mM; conversely, in diester lipid membranes at such a low calcium concentration, no MthK channel activity is detectable. The differential effect of membrane stability and MthK channel activity between BLMPLFE and BLMSa-MV may be attributed to their lipid structural differences and thus their abilities to interact with the substrate and membrane protein. Since Sa-MVs that bud off from the plasma membrane are exclusively tetraether lipids but do not contain the main tetraether lipid component GDNT of the plasma membrane, domain segregation must occur in S. acidocaldarius. The implication of this study is that lipid domain formation is existent and functionally essential in all kinds of cells, but domain formation may be even more prevalent and pronounced in hyperthermophiles, as strong domain formation with distinct membrane behaviors is necessary to counteract randomization due to high growth temperatures while BTL in general make archaea cell membranes stable in high temperature and low pH environments whereas different BTL domains play different functional roles.
Assuntos
Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Sulfolobus acidocaldarius/química , Fenômenos Biofísicos , Cálcio/metabolismo , Diglicerídeos/química , Diglicerídeos/metabolismo , Estabilidade de Medicamentos , Éteres/química , Éteres/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Ativação do Canal Iônico , Estrutura Molecular , Sulfolobus acidocaldarius/metabolismoRESUMO
Vascular dysfunction resulting from diabetes is an important factor in arteriosclerosis. Previous studies have shown that during hyperglycaemia and diabetes, AKAP150 promotes vascular tone enhancement by intensifying the remodelling of the BK channel. However, the interaction between AKAP150 and the BK channel remains open to discussion. In this study, we investigated the regulation of impaired BK channel-mediated vascular dysfunction in diabetes mellitus. Using AKAP150 null mice (AKAP150-/- ) and wild-type (WT) control mice (C57BL/6J), diabetes was induced by intraperitoneal injection of streptozotocin. We found that knockout of AKAP150 reversed vascular remodelling and fibrosis in mice with diabetes and in AKAP150-/- diabetic mice. Impaired Akt/GSK3ß signalling contributed to decreased BK-ß1 expression in aortas from diabetic mice, and the silencing of AKAP150 increased Akt phosphorylation and BK-ß1 expression in MOVAS cells treated with HG medium. The inhibition of Akt activity caused a decrease in BK-ß1 expression, and treatment with AKAP150 siRNA suppressed GSK3ß expression in the nuclei of MOVAS cells treated with HG. Knockout of AKAP150 reverses impaired BK channel-mediated vascular dysfunction through the Akt/GSK3ß signalling pathway in diabetes mellitus.
Assuntos
Proteínas de Ancoragem à Quinase A/genética , Complicações do Diabetes/genética , Diabetes Mellitus Experimental/genética , Glicogênio Sintase Quinase 3 beta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Animais , Arteriosclerose/complicações , Arteriosclerose/genética , Arteriosclerose/patologia , Arteriosclerose/terapia , Complicações do Diabetes/patologia , Complicações do Diabetes/terapia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Hiperglicemia/complicações , Hiperglicemia/genética , Hiperglicemia/patologia , Hiperglicemia/terapia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologiaRESUMO
14-3-3γ is a small protein regulating its target proteins through binding to phosphorylated serine/threonine residues. Sequence analysis of large-conductance Ca2+-activated K+ (BK) channels revealed a putative 14-3-3 binding site in the COOH-terminal region. Our previous data showed that 14-3-3γ is widely expressed in the mouse kidney. Therefore, we hypothesized that 14-3-3γ has a novel role in the regulation of BK channel activity and protein expression. We used electrophysiology, Western blot analysis, and coimmunoprecipitation to examine the effects of 14-3-3γ on BK channels both in vitro and in vivo. We demonstrated the interaction of 14-3-3γ with BK α-subunits (BKα) by coimmunoprecipitation. In human embryonic kidney-293 cells stably expressing BKα, overexpression of 14-3-3γ significantly decreased BK channel activity and channel open probability. 14-3-3γ inhibited both total and cell surface BKα protein expression while enhancing ERK1/2 phosphorylation in Cos-7 cells cotransfected with flag-14-3-3γ and myc-BK. Knockdown of 14-3-3γ by siRNA transfection markedly increased BKα expression. Blockade of the ERK1/2 pathway by incubation with the MEK-specific inhibitor U0126 partially abolished 14-3-3γ-mediated inhibition of BK protein expression. Similarly, pretreatment of the lysosomal inhibitor bafilomycin A1 reversed the inhibitory effects of 14-3-3γ on BK protein expression. Furthermore, overexpression of 14-3-3γ significantly increased BK protein ubiquitination in embryonic kidney-293 cells stably expressing BKα. Additionally, 3 days of dietary K+ challenge reduced 14-3-3γ expression and ERK1/2 phosphorylation while enhancing renal BK protein expression and K+ excretion. These data suggest that 14-3-3γ modulates BK channel activity and protein expression through an ERK1/2-mediated ubiquitin-lysosomal pathway.