Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.295
Filtrar
1.
Annu Rev Physiol ; 86: 123-147, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931168

RESUMO

In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.


Assuntos
Proteínas de Membrana , Retículo Sarcoplasmático , Humanos , Proteínas de Membrana/fisiologia , Membrana Celular/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo
2.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38305737

RESUMO

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Assuntos
Células-Tronco Neurais , Fatores de Transcrição , Animais , Camundongos , Calpaína/genética , Calpaína/metabolismo , Diferenciação Celular , Proliferação de Células , Endopeptidases/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/metabolismo
3.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199568

RESUMO

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Neurônios , Animais , Camundongos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Calpaína/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Transdução de Sinais
4.
FASEB J ; 38(2): e23404, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197290

RESUMO

The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.


Assuntos
Calpaína , Proteômica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Calpaína/genética , Transporte de Elétrons , Complexo I de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Estresse do Retículo Endoplasmático , Mitocôndrias Cardíacas
5.
EMBO Rep ; 24(4): e55069, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36744297

RESUMO

Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Melanoma/genética , Membrana Celular/metabolismo , Neoplasias Cutâneas/genética , Canais de Cátion TRPV/genética , Movimento Celular/genética , Invasividade Neoplásica/patologia , Cálcio/metabolismo
6.
Mol Ther ; 32(4): 1096-1109, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38291756

RESUMO

Spasticity, affecting ∼75% of patients with spinal cord injury (SCI), leads to hyperreflexia, muscle spasms, and cocontractions of antagonist muscles, greatly affecting their quality of life. Spasticity primarily stems from the hyperexcitability of motoneurons below the lesion, driven by an upregulation of the persistent sodium current and a downregulation of chloride extrusion. This imbalance results from the post-SCI activation of calpain1, which cleaves Nav1.6 channels and KCC2 cotransporters. Our study was focused on mitigating spasticity by specifically targeting calpain1 in spinal motoneurons. We successfully transduced lumbar motoneurons in adult rats with SCI using intrathecal administration of adeno-associated virus vector serotype 6, carrying a shRNA sequence against calpain1. This approach significantly reduced calpain1 expression in transduced motoneurons, leading to a noticeable decrease in spasticity symptoms, including hyperreflexia, muscle spasms, and cocontractions in hindlimb muscles, which are particularly evident in the second month post-SCI. In addition, this decrease, which prevented the escalation of spasticity to a severe grade, paralleled the restoration of KCC2 levels in transduced motoneurons, suggesting a reduced proteolytic activity of calpain1. These findings demonstrate that inhibiting calpain1 in motoneurons is a promising strategy for alleviating spasticity in SCI patients.


Assuntos
Traumatismos da Medula Espinal , Simportadores , Animais , Ratos , Neurônios Motores/metabolismo , Espasticidade Muscular/genética , Espasticidade Muscular/terapia , Qualidade de Vida , Reflexo Anormal , Espasmo/metabolismo , Espasmo/patologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Simportadores/genética
7.
Cell Mol Life Sci ; 81(1): 258, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878112

RESUMO

Pulmonary hypertension (PAH) is a cardiopulmonary disease in which pulmonary artery pressure continues to rise, leading to right heart failure and death. Otud6b is a member of the ubiquitin family and is involved in cell proliferation, apoptosis and inflammation. The aim of this study was to understand the role and mechanism of Otud6b in PAH. C57BL/6 and Calpain-1 knockout (KO) mice were exposed to a PAH model induced by 10% oxygen. Human pulmonary artery endothelial cells (HPACEs) and human pulmonary artery smooth muscle cells (HPASMCs) were exposed to 3% oxygen to establish an in vitro model. Proteomics was used to determine the role of Otud6b and its relationship to Calpain-1/HIF-1α signaling. The increased expression of Otud6b is associated with the progression of PAH. ROtud6b activates Otud6b, induces HIF-1α activation, increases the production of ET-1 and VEGF, and further aggravates endothelial injury. Reducing Otud6b expression by tracheal infusion of siOtud6b has the opposite effect, improving hemodynamic and cardiac response to PAH, reducing the release of Calpain-1 and HIF-1α, and eliminating the pro-inflammatory and apoptotic effects of Otud6b. At the same time, we also found that blocking Calpain-1 reduced the effect of Otud6b on HIF-1α, and inhibiting HIF-1α reduced the expression of Calpain-1 and Otud6b. Our study shows that increased Otud6b expression during hypoxia promotes the development of PAH models through a positive feedback loop between HIF-1α and Calpain-1. Therefore, we use Otud6b as a biomarker of PAH severity, and regulating Otud6b expression may be an effective target for the treatment of PAH.


Assuntos
Calpaína , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Calpaína/metabolismo , Calpaína/genética , Modelos Animais de Doenças , Endopeptidases/metabolismo , Endopeptidases/genética , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia
8.
J Mol Cell Cardiol ; 194: 85-95, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960317

RESUMO

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.

9.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35373296

RESUMO

Detyrosination is a major post-translational modification of microtubules (MTs), which has significant impact on MT function in cell division, differentiation, growth, migration and intracellular trafficking. Detyrosination of α-tubulin occurs mostly via the recently identified complex of vasohibin 1 or 2 (VASH1 and VASH2, respectively) with small vasohibin binding protein (SVBP). However, there is still remaining detyrosinating activity in the absence of VASH1 and/or VASH2 and SVBP, and little is known about the regulation of detyrosination. Here, we found that intracellular Ca2+ is required for efficient MT detyrosination. Furthermore, we show that the Ca2+-dependent proteases calpains 1 and 2 (CAPN1 and CAPN2, respectively) regulate MT detyrosination in VASH1- and SVBP-overexpressing human embryonic kidney (HEK293T) cells. We identified new calpain cleavage sites in the N-terminal disordered region of VASH1. However, this cleavage did not affect the enzymatic activity of vasohibins. In conclusion, we suggest that the regulation of VASH1-mediated MT detyrosination by calpains could occur independently of vasohibin catalytic activity or via another yet unknown tubulin carboxypeptidase. Importantly, the Ca2+ dependency of calpains could allow a fine regulation of MT detyrosination. Thus, identifying the calpain-regulated pathway of MT detyrosination can be of major importance for basic and clinical research.


Assuntos
Cálcio , Calpaína , Proteínas Angiogênicas/metabolismo , Cálcio/metabolismo , Calpaína/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38940916

RESUMO

Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared to sinus rhythm atria. Atrial cardiomyocytes showed reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and TnI altering calcium sensitivity. We measured degradation of other myofilament proteins including cMyBP-C and actininshowing significant degradation in the AFib samples compared to sinus rhythm atria. Many of the protein degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.

11.
J Transl Med ; 22(1): 538, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844946

RESUMO

Apalutamide, a novel endocrine therapy agent, has been shown to significantly improve the prognosis of patients with metastatic hormone-sensitive prostate cancer (mHSPC). However, resistance to apalutamide has also been reported, and the underlying mechanism for this response has yet to be clearly elucidated. First, this study established apalutamide-resistant prostate cancer (PCa) cells, and confirmed that apalutamide activated the release of calcium ions (Ca2+) and endoplasmic reticulum stress (ERS) to enhance autophagy. Second, RNA sequencing, western blotting, and immunohistochemistry revealed significantly decreased Calpain 2 (CAPN2) expression in the apalutamide-resistant PCa cells and tissues. Furthermore, immunofluorescence and transmission electron microscopy (TEM) showed that CAPN2 promoted apalutamide resistance by activating protective autophagy. CAPN2 promoted autophagy by reducing Forkhead Box O1 (FOXO1) degradation while increasing nuclear translocation via nucleoplasmic protein isolation and immunofluorescence. In addition, FOXO1 promoted protective autophagy through the transcriptional regulation of autophagy-related gene 5 (ATG5). Furthermore, a dual-fluorescence assay confirmed that transcription factor 3 (ATF3) stimulation promoted CAPN2-mediated autophagy activation via transcriptional regulation. In summary, CAPN2 activated protective autophagy by inhibiting FOXO1 degradation and promoting its nuclear translocation via transcriptional ATG5 regulation. ATF3 activation and transcriptional CAPN2 regulation jointly promoted this bioeffect. Thus, our findings have not only revealed the mechanism underlying apalutamide resistance, but also provided a promising new target for the treatment of metastatic PCa.


Assuntos
Autofagia , Calpaína , Resistencia a Medicamentos Antineoplásicos , Metástase Neoplásica , Neoplasias da Próstata , Tioidantoínas , Humanos , Masculino , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Calpaína/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Tioidantoínas/farmacologia , Tioidantoínas/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Animais
12.
Plant Cell Environ ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935876

RESUMO

In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.

13.
Muscle Nerve ; 69(4): 472-476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38299438

RESUMO

INTRODUCTION/AIMS: Limb-girdle muscular dystrophy R1 (LGMDR1) calpain 3-related usually presents as a recessively transmitted weakness of proximal limb-girdle muscles due to pathogenic variants in the CAPN3 gene. Pathogenic variants in this gene have also been found in patients with an autosomal dominantly inherited transmission pattern (LGMDD4). The mechanism underlying this difference in transmission patterns has not yet been elucidated. Camptocormia, progressive limb weakness, myalgia, back pain, and increased CK levels are common clinical features associated with dominant forms. The p.Lys254del pathogenic variant was associated with camptocormia in two LGMDD4 families. This study aimed to present carriers found in recessively transmitted LGMDR1 families bearing the p.Lys254del variant that do not show muscle weakness. METHODS: DNA sequencing was performed on exon 5 of CAPN3 in family members to establish the carrier status of the pathogenic variant. They were evaluated clinically and MRI was performed when available. RESULTS: Two families presented with the p.Lys254del pathogenic variant in a homozygous or compound heterozygous state. Family members carrying only the pathogenic variant in the heterozygous state did not demonstrate the myopathic characteristics described in dominant patients. Camptocormia and other severe clinical symptoms were not observed. DISCUSSION: We conclude that the p.Lys254del pathogenic variant per se cannot be solely responsible for camptocormia in dominant patients. Other undisclosed factors may regulate the phenotype associated with the dominant inheritance pattern in CAPN3 pathogenic variant carriers.


Assuntos
Calpaína , Atrofia Muscular Espinal , Distrofia Muscular do Cíngulo dos Membros , Curvaturas da Coluna Vertebral , Humanos , Calpaína/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Debilidade Muscular , Família , Paresia , Mutação/genética , Proteínas Musculares/genética
14.
Mol Cell Biochem ; 479(4): 793-809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37184757

RESUMO

The N-terminal region of troponin T (TnT) does not bind any protein of the contractile machinery and the role of its hypervariability remains uncertain. In this review we report the evidence of the interaction between TnT and AMP deaminase (AMPD), a regulated zinc enzyme localized on the myofibril. In periods of intense muscular activity, a decrease in the ATP/ADP ratio, together with a decrease in the tissue pH, is the stimulus for the activation of the enzyme that deaminating AMP to IMP and NH3 displaces the myokinase reaction towards the formation of ATP. In skeletal muscle subjected to strong tetanic contractions, a calpain-like proteolytic activity produces the removal in vivo of a 97-residue N-terminal fragment from the enzyme that becomes desensitized towards the inhibition by ATP, leading to an unrestrained production of NH3. When a 95-residue N-terminal fragment is removed from AMPD by trypsin, simulating in vitro the calpain action, rabbit fast TnT or its phosphorylated 50-residue N-terminal peptide binds AMPD restoring the inhibition by ATP. Taking in consideration that the N-terminus of TnT expressed in human as well as rabbit white muscle contains a zinc-binding motif, we suggest that TnT might mimic the regulatory action of the inhibitory N-terminal domain of AMPD due to the presence of a zinc ion connecting the N-terminal and C-terminal regions of the enzyme, indicating that the two proteins might physiologically associate to modulate muscle contraction and ammonia production in fast-twitching muscle under strenuous conditions.


Assuntos
AMP Desaminase , Troponina T , Animais , Humanos , Coelhos , Trifosfato de Adenosina , Amônia , AMP Desaminase/química , AMP Desaminase/metabolismo , Calpaína/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Peptídeos , Proteínas , Troponina T/química , Zinco/metabolismo
15.
Exp Cell Res ; 433(2): 113859, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000772

RESUMO

Ischemic preconditioning (IPC) has been considered as the most important mean to protect against ischemia/reperfusion (I/R) induced heart injury. It has been reported that cardiac myosin binding protein-C (cMyBP-C) phosphorylation plays an essential role in cardiac protection against I/R-induced heart injury. However, it is still obscured whether IPC-mediated cardiac protection is causally related to cMyBP-C phosphorylation and proteolysis and, if so, what the underlying mechanism is. In this study, IPC was found to increase the phosphorylation level of cMyBP-C, companying with the decreased calpain activity in the collected perfusate samples. Mechanistically, we confirmed that IPC promoted cMyBP-C phosphorylation and inhibited calpain-mediated cMyBP-C proteolysis. Moreover, inhibition of calpain activity significantly increased the phosphorylated cMyBP-C level by using calpain inhibitor (MG-101), and subsequently promoted stabilization and secretion of cMyBP-C. Functionally, adeno-associated virus (AAV)-mediated overexpression of mutated phosphorylation motif site of cMyBP-C exhibited impaired IPC-mediated cardiac protection via proteolysis of the full-length cMyBP-C protein. We concluded that IPC promoted cMyBP-C phosphorylation via inhibition of calpain-mediated proteolysis and participated in IPC-mediated protection against I/R induced heart injury.


Assuntos
Traumatismos Cardíacos , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Humanos , Calpaína/metabolismo , Proteólise , Fosforilação , Traumatismo por Reperfusão/prevenção & controle
16.
Eur J Appl Physiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653795

RESUMO

PURPOSE: Resistance training (RT) induces muscle growth at varying rates across RT phases, and evidence suggests that the muscle-molecular responses to training bouts become refined or attenuated in the trained state. This study examined how proteolysis-related biomarkers and extracellular matrix (ECM) remodeling factors respond to a bout of RT in the untrained (UT) and trained (T) state. METHODS: Participants (19 women and 19 men) underwent 10 weeks of RT. Biopsies of vastus lateralis were collected before and after (24 h) the first (UT) and last (T) sessions. Vastus lateralis cross-sectional area (CSA) was assessed before and after the experimental period. RESULTS: There were increases in muscle and type II fiber CSAs. In both the UT and T states, calpain activity was upregulated and calpain-1/-2 protein expression was downregulated from Pre to 24 h. Calpain-2 was higher in the T state. Proteasome activity and 20S proteasome protein expression were upregulated from Pre to 24 h in both the UT and T. However, proteasome activity levels were lower in the T state. The expression of poly-ubiquitinated proteins was unchanged. MMP activity was downregulated, and MMP-9 protein expression was elevated from Pre to 24 h in UT and T. Although MMP-14 protein expression was acutely unchanged, this marker was lower in T state. TIMP-1 protein levels were reduced Pre to 24 h in UT and T, while TIMP-2 protein levels were unchanged. CONCLUSION: Our results are the first to show that RT does not attenuate the acute-induced response of proteolysis and ECM remodeling-related biomarkers.

17.
J Neurosci ; 42(25): 5102-5114, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35606145

RESUMO

Increasing loss of structure and function of neurons and decline in cognitive function is commonly seen during the progression of neurologic diseases, although the causes and initial symptoms of individual diseases are distinct. This observation suggests a convergence of common degenerative features. In myotonic dystrophy type 1 (DM1), the expression of expanded CUG RNA induces neurotransmission dysfunction before axon and dendrite degeneration and reduced MBNL2 expression associated with aberrant alternative splicing. The role of loss of function of MBNL2 in the pathogenesis of neurodegeneration and the causal mechanism of neurodegeneration-reduced expression of MBNL2 remain elusive. Here, we show that increased MBNL2 expression is associated with neuronal maturation and required for neuronal morphogenesis and the fetal to adult developmental transition of RNA processing. Neurodegenerative conditions including NMDA receptor (NMDAR)-mediated excitotoxicity and dysregulated calcium homeostasis triggered nuclear translocation of calpain-2, thus resulting in MBNL2 degradation and reversal of MBNL2-regulated RNA processing to developmental patterns. Nuclear expression of calpain-2 resembled its developmental pattern and was associated with MBNL2 degradation. Knock-down of calpain-2 expression or inhibition of calpain-2 nuclear translocation prevented neurodegeneration-reduced MBNL2 expression and dysregulated RNA processing. Increased calpain-2 nuclear translocation associated with reduced MBNL2 expression and aberrant RNA processing occurred in models for DM1 and Alzheimer's disease (AD) including EpA960/CaMKII-Cre mice of either sex and female APP/PS1 and THY-Tau22 mice. Our results identify a regulatory mechanism for MBNL2 downregulation and suggest that calpain-2-mediated MBNL2 degradation accompanied by re-induction of a developmental RNA processing program may be a converging pathway to neurodegeneration.SIGNIFICANCE STATEMENT Neurologic diseases share many features during disease progression, such as cognitive decline and brain atrophy, which suggests a common pathway for developing degenerative features. Here, we show that the neurodegenerative conditions glutamate-induced excitotoxicity and dysregulated calcium homeostasis induced translocation of the cysteine protease calpain-2 into the nucleus, resulting in MBNL2 degradation and reversal of MBNL2-regulated RNA processing to an embryonic pattern. Knock-down or inhibition of nuclear translocation of calpain-2 prevented MBNL2 degradation and maintained MBNL2-regulated RNA processing in the adult pattern. Models of myotonic dystrophy and Alzheimer's disease (AD) also showed calpain-2-mediated MBNL2 degradation and a developmental RNA processing program. Our studies suggest MBNL2 function disrupted by calpain-2 as a common pathway, thus providing an alternative therapeutic strategy for neurodegeneration.


Assuntos
Doença de Alzheimer , Calpaína/metabolismo , Distrofia Miotônica , Processamento Alternativo , Animais , Cálcio/metabolismo , Feminino , Camundongos , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
18.
J Cell Mol Med ; 27(2): 232-245, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562207

RESUMO

To explore the role of autophagic flux in the increased susceptibility of the experimental diabetic heart to ischaemia-reperfusion (I/R) injury, we established STZ-induced diabetic mice and performed I/R. In vitro, neonatal mouse cardiomyocytes were subjected to high glucose and hypoxia/reoxygenation challenge to mimic diabetic I/R injury. We found that experimental diabetes aggravated I/R-induced injury than compared with nondiabetic mice. Autophagic flux was impaired in I/R hearts, and the impairment was exacerbated in diabetic mice subjected to I/R with defective autophagosome formation and clearance. Calpains, calcium-dependent thiol proteases, were upregulated and highly activated after I/R of diabetes, while calpain inhibition attenuated cardiac function and cell death and partially restored autophagic flux. The expression levels of Atg5 and LAMP2, two crucial autophagy-related proteins, were significantly degraded in diabetic I/R hearts, alterations that were associated with calpain activation and could be reversed by calpain inhibition. Co-overexpression of Atg5 and LAMP2 reduced myocardial injury and normalized autophagic flux. In conclusion, experimental diabetes exacerbates autophagic flux impairment of cardiomyocytes under I/R stress, resulting in worse I/R-induced injury. Calpain activation and cleavage of Atg5 and LAMP2 at least partially account for the deterioration of autophagic flux impairment.


Assuntos
Diabetes Mellitus Experimental , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Calpaína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo
19.
J Biol Chem ; 298(6): 101990, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35490782

RESUMO

Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)-induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.


Assuntos
Proteína ORAI1 , Podócitos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Calpaína/genética , Calpaína/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Podócitos/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
20.
Curr Issues Mol Biol ; 45(6): 4749-4762, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367051

RESUMO

The single-nucleotide polymorphism (SNP) form of genes is a valuable source of information regarding their suitability for use as specific markers of desirable traits in beef cattle breeding. For several decades, breeding work focused on improving production efficiency through optimizing the feed conversion ratio and improving daily gains and meat quality. Many research teams previously undertook research work on single-nucleotide polymorphism in myostatin (MSTN), thyroglobulin (TG), calpain (CAPN), and calpastatin (CAST) proteins. The literature review focuses on the most frequently addressed issues concerning these genes in beef cattle production and points to a number of relevant studies on the genes' polymorphic forms. The four genes presented are worth considering during breeding work as a set of genes that can positively influence productivity and production quality.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa