Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108421

RESUMO

Cellular heterogeneity and extracellular matrix (ECM) stiffening have been shown to be drivers of breast cancer invasiveness. Here, we examine how stiffness-dependent crosstalk between cancer cells and mesenchymal stem cells (MSCs) within an evolving tumor microenvironment regulates cancer invasion. By analyzing previously published single-cell RNA sequencing datasets, we establish the existence of a subpopulation of cells in primary tumors, secondary sites and circulatory tumor cell clusters of highly aggressive triple-negative breast cancer (TNBC) that co-express MSC and cancer-associated fibroblast (CAF) markers. By using hydrogels with stiffnesses of 0.5, 2 and 5 kPa to mimic different stages of ECM stiffening, we show that conditioned medium from MDA-MB-231 TNBC cells cultured on 2 kPa gels, which mimic the pre-metastatic stroma, drives efficient MSC chemotaxis and induces stable differentiation of MSC-derived CAFs in a TGFß (TGFB1)- and contractility-dependent manner. In addition to enhancing cancer cell proliferation, MSC-derived CAFs on 2 kPa gels maximally boost local invasion and confer resistance to flow-induced shear stresses. Collectively, our results suggest that homing of MSCs at the pre-metastatic stage and their differentiation into CAFs actively drives breast cancer invasion and metastasis in TNBC.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Géis , Microambiente Tumoral/genética , Linhagem Celular Tumoral
2.
J Pathol ; 262(1): 90-104, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929635

RESUMO

Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation of stellate cells into myofibroblasts that drives tumour progression. To assess cooperative mechanisms in a 3D context, we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes underpinning invasion. This dataset highlighted stellate-specific expression of transcripts encoding the collagen-processing enzymes ADAMTS2 and ADAMTS14. Strikingly, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast differentiation and invasion independently of their primary role in collagen-processing. Functional and proteomic analysis demonstrated that these two enzymes regulate myofibroblast differentiation through opposing roles in the regulation of transforming growth factor ß availability, acting on the protease-specific substrates, Serpin E2 and fibulin 2, for ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we uncovered a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Miofibroblastos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Diferenciação Celular , Colágeno/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/patologia , Proteômica
3.
Bioorg Med Chem Lett ; 99: 129627, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272189

RESUMO

Metastasis is one of the major causes of death in patients with cancer, and cell invasion plays a fundamental part in this process. Because of the absence of efficacious treatments, caring for these patients is challenging. Recently, we optimized the structure of the naturally occurring lasso peptide sungsanpin. We identified two peptides, octapeptide S3 and cyclic peptide S4, which inhibited invasion into A549 cells effectively. We undertook an alanine scan of S3 to explore the structure-activity relationship. The linear octapeptide S3-4 and cyclic peptide S4-1 exhibited improved inhibition of invasion into A549 cells. We modified S3-4 to obtain S3-4K, which displayed much higher inhibitory activity against invasion into A549 cells than S3-4. Of all peptides tested, S4-1 upregulated significantly mRNA of tissue inhibitor matrix metalloproteinase TIMP-1 and TIMP-2.


Assuntos
Peptídeos , Inibidor Tecidual de Metaloproteinase-1 , Humanos , Inibidor Tecidual de Metaloproteinase-1/genética , Metaloproteinases da Matriz , Células A549 , Peptídeos Cíclicos
4.
Bull Math Biol ; 86(6): 64, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664343

RESUMO

We introduce in this paper substantial enhancements to a previously proposed hybrid multiscale cancer invasion modelling framework to better reflect the biological reality and dynamics of cancer. These model updates contribute to a more accurate representation of cancer dynamics, they provide deeper insights and enhance our predictive capabilities. Key updates include the integration of porous medium-like diffusion for the evolution of Epithelial-like Cancer Cells and other essential cellular constituents of the system, more realistic modelling of Epithelial-Mesenchymal Transition and Mesenchymal-Epithelial Transition models with the inclusion of Transforming Growth Factor beta within the tumour microenvironment, and the introduction of Compound Poisson Process in the Stochastic Differential Equations that describe the migration behaviour of the Mesenchymal-like Cancer Cells. Another innovative feature of the model is its extension into a multi-organ metastatic framework. This framework connects various organs through a circulatory network, enabling the study of how cancer cells spread to secondary sites.


Assuntos
Transição Epitelial-Mesenquimal , Conceitos Matemáticos , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias , Microambiente Tumoral , Humanos , Metástase Neoplásica/patologia , Microambiente Tumoral/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/patologia , Processos Estocásticos , Movimento Celular , Fator de Crescimento Transformador beta/metabolismo , Simulação por Computador , Distribuição de Poisson
5.
BMC Biol ; 21(1): 181, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635218

RESUMO

BACKGROUND: Functional role of Rho GDP-dissociation inhibitor beta (RhoGDIß) in tumor biology appears to be contradictory across various studies. Thus, the exploration of the molecular mechanisms underlying the differential functions of this protein in urinary bladder carcinogenesis is highly significant in the field. Here, RhoGDIß expression patterns, biological functions, and mechanisms leading to transformation and progression of human urothelial cells (UROtsa cells) were evaluated following varying lengths of exposure to the bladder carcinogen N-butyl-N-(4-hydmoxybutyl) nitrosamine (BBN). RESULTS: It was seen that compared to expression in vehicle-treated control cells, RhoGDIß protein expression was downregulated after 2-month of BBN exposure, but upregulated after 6-month of exposure. Assessments of cell function showed that RhoGDIß inhibited UROtsa cell growth in cells with BBN for 2-month exposure, whereas it promoted the invasion of cells treated with BBN for 6 months. Mechanistic studies revealed that 2-month of BBN exposure markedly attenuated DNMT3a abundance, and this led to reduced miR-219a promoter methylation, increased miR-219a binding to the RhoGDIß mRNA 3'UTR, and reduced RhoGDIß protein translation. While after 6-mo of BBN treatment, the cells showed increased PP2A/JNK/C-Jun axis phosphorylation and this in turn mediated overall RhoGDIß mRNA transcription and protein expression as well as invasion. CONCLUSIONS: These findings indicate that RhoGDIß is likely to inhibit the transformation of human urothelial cells during the early phase of BBN exposure, whereas it promotes invasion of the transformed/progressed urothelial cells in the late stage of BBN exposure. The studies also suggest that RhoGDIß may be a useful biomarker for evaluating the progression of human bladder cancers.


Assuntos
MicroRNAs , Nitrosaminas , Humanos , Inibidor beta de Dissociação do Nucleotídeo Guanina rho , Nitrosaminas/toxicidade , Células Epiteliais , Carcinogênese
6.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337393

RESUMO

The cancer invasion of the large intestine, a destructive process that begins within the mucous membrane, causes cancer cells to gradually erode specific layers of the intestinal wall. The normal tissues of the intestine are progressively replaced by a tumour mass, leading to the impairment of the large intestine's proper morphology and function. At the ultrastructural level, the disintegration of the extracellular matrix (ECM) by cancer cells triggers the activation of inflammatory cells (macrophages) and connective tissue cells (myofibroblasts) in this area. This accumulation and the functional interactions between these cells form the tumour microenvironment (TM). The constant modulation of cancer cells and cancer-associated fibroblasts (CAFs) creates a specific milieu akin to non-healing wounds, which induces colon cancer cell proliferation and promotes their survival. This review focuses on the processes occurring at the "front of cancer invasion", with a particular focus on the role of the desmoplastic reaction in neoplasm development. It then correlates the findings from the microscopic observation of the cancer's ultrastructure with the potential of modern radiological imaging, such as computer tomography (CT) and magnetic resonance imaging (MRI), which visualizes the tumour, its boundaries, and the tissue reactions in the large intestine.


Assuntos
Neoplasias Colorretais , Imageamento por Ressonância Magnética , Invasividade Neoplásica , Tomografia Computadorizada por Raios X , Microambiente Tumoral , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Matriz Extracelular/ultraestrutura , Animais
7.
J Cell Sci ; 134(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730180

RESUMO

The mechanisms by which the mechanoresponsive actin crosslinking protein α-actinin-4 (ACTN4) regulates cell motility and invasiveness remain incompletely understood. Here, we show that, in addition to regulating protrusion dynamics and focal adhesion formation, ACTN4 transcriptionally regulates expression of non-muscle myosin IIB (NMM IIB; heavy chain encoded by MYH10), which is essential for mediating nuclear translocation during 3D invasion. We further show that an indirect association between ACTN4 and NMM IIA (heavy chain encoded by MYH9) mediated by a functional F-actin cytoskeleton is essential for retention of NMM IIA at the cell periphery and modulation of focal adhesion dynamics. A protrusion-dependent model of confined migration recapitulating experimental observations predicts a dependence of protrusion forces on the degree of confinement and on the ratio of nucleus to matrix stiffness. Together, our results suggest that ACTN4 is a master regulator of cancer invasion that regulates invasiveness by controlling NMM IIB expression and NMM IIA localization. This article has an associated First Person interview with the first author of the paper.


Assuntos
Miosina não Muscular Tipo IIA , Actinina/genética , Actinas/genética , Movimento Celular/genética , Humanos , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética
8.
J Cell Sci ; 134(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602741

RESUMO

Phenotypic heterogeneity is increasingly acknowledged to confer several advantages to cancer progression and drug resistance. Here, we probe the collective importance of heterogeneity in cell size and deformability in breast cancer invasion. A computational model of invasion of a heterogeneous cell aggregate predicts that combined heterogeneity in cell size and deformability enhances invasiveness of the whole population, with maximum invasiveness at intermediate cell-cell adhesion. We then show that small cells of varying deformability, a subpopulation predicted to be enriched at the invasive front, exhibit considerable overlap with the biophysical properties of cancer stem cells (CSCs). In MDA-MB-231 cells, these include CD44 hi CD24- mesenchymal CSCs, which are small and soft, and CD44 hi CD24+ hybrid CSCs, which exhibit a wide range of size and deformability. We validate our predictions by tracking the pattern of cell invasion from spheroids implanted in three-dimensional collagen gels, wherein we show temporal enrichment of CD44 hi cells at the invasive front. Collectively, our results illustrate the advantages imparted by biophysical heterogeneity in enhancing cancer invasiveness.This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias da Mama , Antígeno CD24 , Neoplasias da Mama/genética , Adesão Celular , Linhagem Celular Tumoral , Tamanho Celular , Feminino , Humanos , Receptores de Hialuronatos , Invasividade Neoplásica , Células-Tronco Neoplásicas
9.
Phys Biol ; 20(6)2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37769666

RESUMO

Contemporary approaches to instance segmentation in cell science use 2D or 3D convolutional networks depending on the experiment and data structures. However, limitations in microscopy systems or efforts to prevent phototoxicity commonly require recording sub-optimally sampled data that greatly reduces the utility of such 3D data, especially in crowded sample space with significant axial overlap between objects. In such regimes, 2D segmentations are both more reliable for cell morphology and easier to annotate. In this work, we propose the projection enhancement network (PEN), a novel convolutional module which processes the sub-sampled 3D data and produces a 2D RGB semantic compression, and is trained in conjunction with an instance segmentation network of choice to produce 2D segmentations. Our approach combines augmentation to increase cell density using a low-density cell image dataset to train PEN, and curated datasets to evaluate PEN. We show that with PEN, the learned semantic representation in CellPose encodes depth and greatly improves segmentation performance in comparison to maximum intensity projection images as input, but does not similarly aid segmentation in region-based networks like Mask-RCNN. Finally, we dissect the segmentation strength against cell density of PEN with CellPose on disseminated cells from side-by-side spheroids. We present PEN as a data-driven solution to form compressed representations of 3D data that improve 2D segmentations from instance segmentation networks.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Microscopia
10.
Mol Cell Biochem ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041756

RESUMO

Since invasive cancer is associated with poor clinical outcomes, exploring the molecular mechanism underlying LUAD progression is crucial to improve the prognosis of patients with advanced disease. Herein, we found that MYO16-AS1 is expressed mainly in lung tissue but is notably downregulated in LUAD tissues. Overexpression of MYO16-AS1 inhibited the migration and invasion of LUAD cells. Mechanistic studies indicated that H3K27Ac modification mediated MYO16-AS1 transcription. Furthermore, we found that MYO16-AS1 competitively bound to the IGF2BP3 protein and in turn reduced IGF2BP3 protein binding to HK2 mRNA, decreasing HK2 mRNA stability and inhibiting glucose metabolism reprogramming and LUAD cell invasion in vitro and in vivo. The finding that the MYO16-AS1/IGF2BP3-mediated glucose metabolism reprogramming mechanism regulates HK2 expression provides novel insight into the process of LUAD invasion and suggests that MYO16-AS1 may be a therapeutic target for LUAD.

11.
Environ Res ; 232: 115942, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080268

RESUMO

Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.


Assuntos
Neoplasias Pulmonares , Feminino , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Nanotecnologia , Transição Epitelial-Mesenquimal/genética
12.
Environ Res ; 228: 115767, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36966991

RESUMO

The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestruturas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Proliferação de Células
13.
Cell Mol Life Sci ; 79(3): 134, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35171381

RESUMO

Cancer stem-like cells (CSCs) are a typically small subpopulation of highly tumorigenic cells that can self-renew, differentiate, drive tumor progression, and may mediate drug resistance and metastasis. Metastasis driving CSCs are expected to be highly invasive. To determine the relative invasiveness of CSCs, we isolate distinct subpopulations in the metastatic, MDA-MB-231 breast-cancer cell line, identified by the stem-cell markers aldehyde dehydrogenase (ALDH) and CD44. We determine CSC-subpopulation invasiveness levels using our rapid (2 h) mechanobiology-based assay. Specifically, invasive cells forcefully push and indent the surface of physiological-stiffness synthetic gels to cell-scale depths, where the percentage of indenting cells and their attained depths have previously provided clinically relevant predictions of the metastatic risk in different cancer types. We observe that the small (3.2%) CD44+ALDH+ cell-subpopulation indents more and attains significantly deeper depths (65% indenting to 6 ± 0.3 µm) relative to CD44+ALDH-, CD44-ALDH-, CD44-ALDH+ cells, and the whole-sample control (with 18-44% indenting cells reaching average depths of 4.4-5 µm). The CD44+ALDH+ similarly demonstrates twofold higher migratory capacity in Boyden chambers. The higher invasiveness of CD44+ALDH+ cells reveals their likely role in facilitating disease progression, providing prognostic markers for increased risk of recurrence and metastasis.


Assuntos
Biofísica , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/patologia , Aldeído Desidrogenase/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo
14.
J Math Biol ; 87(1): 8, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318599

RESUMO

Invasion of the surrounding tissue is a key aspect of cancer growth and spread involving a coordinated effort between cell migration and matrix degradation, and has been the subject of mathematical modelling for almost 30 years. In this current paper we address a long-standing question in the field of cancer cell migration modelling. Namely, identify the migratory pattern and spread of individual cancer cells, or small clusters of cancer cells, when the macroscopic evolution of the cancer cell colony is dictated by a specific partial differential equation (PDE). We show that the usual heuristic understanding of the diffusion and advection terms of the PDE being one-to-one responsible for the random and biased motion of the solitary cancer cells, respectively, is not precise. On the contrary, we show that the drift term of the correct stochastic differential equation scheme that dictates the individual cancer cell migration, should account also for the divergence of the diffusion of the PDE. We support our claims with a number of numerical experiments and computational simulations.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Modelos Teóricos , Movimento Celular , Difusão
15.
Oral Dis ; 29(2): 423-435, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33969595

RESUMO

OBJECTIVES: Peroxiredoxins (Prxs) are antioxidant enzymes that can coordinate cell signal transduction via reactive species scavenging or by acting as redox sensors. The mechanism by which Prxs promote cancer invasion and progression is not yet fully understood. This study aims to elucidate the precise mechanism through which Prx type 5 (Prx5) promotes cancer invasion and tumor growth. MATERIALS AND METHODS: We analyzed the Prx5 expression in oral squamous cell carcinoma (OSCC) by using microarray analysis for gene expression profiling. To identify Prx5 function in cancer, lentiviral short hairpin RNA was used for Prx5 depletion, and invasion assay and mouse xenograft were performed. RESULTS: In microarray data obtained from OSCC patients, Prx5 showed higher expression at the tumor margin (TM) compared to the tumor center (TC) of the collective invasion. The depletion of Prx5 in OSCC cells (Prx5dep ) led to decreased invasion activity. In orthotopic xenograft models, Prx5dep cells harbored delimited tumorigenicity compared to wild-type cells as well as the suppression of lymph node metastasis. Prx5dep cells showed growth retardation and increased cellular reactive oxygen species (ROS) levels. The growth retardation of Prx5dep cells resulted in G1 phase arrest. CONCLUSIONS: This study provides evidence that Prx5 removes excess ROS, especially in the TM, contributing to cancer invasion and tumor progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Neoplasias Bucais/genética , Invasividade Neoplásica , Transtornos do Crescimento , Linhagem Celular Tumoral
16.
Chem Biodivers ; 20(2): e202201221, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36651671

RESUMO

Cancer metastasis, including cell invasion, is a major cause of poor clinical outcomes and death in numerous cancer patients. In recent years, many efforts have been made to develop potent therapeutic molecules from naturally derived peptides. Sungsanpin is a naturally derived lasso peptide that inhibits A549 cell invasion. We aimed to evaluate the potential of sungsanpin derivatives as candidates for anti-invasion drugs. We synthesized an analog of sungsanpin (Sun A) using a solid-phase peptide synthesis strategy (SPPS) and further modified its structure to improve its anti-invasion activity. All peptides were tested for their proliferative inhibition and anti-invasion activities in the A549 cell lines. Octapeptide S3 and cyclooctapeptide S4 upregulated the expression of TIMP-1 and TIMP-2 mRNA effectively and thus improved the inhibitory effect on the invasion of A549 cells. The two peptides can inhibit the invasion of A549 cells by up to 60 %, suggesting that they have potential as lead molecules for the development of peptide inhibitors.


Assuntos
Neoplasias Pulmonares , Peptídeos , Humanos , Peptídeos/química , Células A549 , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico
17.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834012

RESUMO

Triple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive. Stable cell lines with ETHE1 overexpression or knockdown were constructed to explore the biological functions of ETHE1 during TNBC progression in vitro and in vivo. Mass spectrometry was used to analyze the molecular mechanism through which ETHE1 functions in TNBC progression. ETHE1 had no impact on TNBC cell proliferation and xenograft tumor growth but promoted TNBC cell migration and invasion in vitro and lung metastasis in vivo. The effect of ETHE1 on TNBC cell migratory potential was independent of its enzymatic activity. Mechanistic investigations revealed that ETHE1 interacted with eIF2α and enhanced its phosphorylation by promoting the interaction between eIF2α and GCN2. Phosphorylated eIF2α in turn upregulated the expression of ATF4, a transcriptional activator of genes involved in cell migration and tumor metastasis. Notably, inhibition of eIF2α phosphorylation through ISRIB or ATF4 knockdown partially abolished the tumor-promoting effect of ETHE1 overexpression. ETHE1 has a functional and mechanistic role in TNBC metastasis and offers a new therapeutic strategy for targeting ETHE1-propelled TNBC using ISRIB.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo
18.
Breast Cancer Res Treat ; 191(1): 63-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34698969

RESUMO

PURPOSE: Invasion of carcinoma cells into surrounding tissue affects breast cancer staging, influences choice of treatment, and impacts on patient outcome. KIF21A is a member of the kinesin superfamily that has been well-studied in congenital extraocular muscle fibrosis. However, its biological relevance in breast cancer is unknown. This study investigated the functional roles of KIF21A in this malignancy and examined its expression pattern in breast cancer tissue. METHODS: The function of KIF21A in breast carcinoma was studied in vitro by silencing its expression in breast cancer cells and examining the changes in cellular activities. Immunohistochemical staining of breast cancer tissue microarrays was performed to determine the expression patterns of KIF21A. RESULTS: Knocking down the expression of KIF21A using siRNA in MDA-MB-231 and MCF7 human breast cancer cells resulted in significant decreases in tumor cell migration and invasiveness. This was associated with reduced Patched 1 expression and F-actin microfilaments. Additionally, the number of focal adhesion kinase- and paxillin-associated focal adhesions was increased. Immunohistochemical staining of breast cancer tissue microarrays showed that KIF21A was expressed in both the cytoplasmic and nuclear compartments of carcinoma cells. Predominance of cytoplasmic KIF21A was significantly associated with larger tumors and high grade cancer, and prognostic of cause-specific overall patient survival and breast cancer recurrence. CONCLUSION: The data demonstrates that KIF21A is an important regulator of breast cancer aggressiveness and may be useful in refining prognostication of this malignant disease.


Assuntos
Neoplasias da Mama , Cinesinas , Neoplasias da Mama/genética , Citoplasma , Feminino , Humanos , Cinesinas/genética , Recidiva Local de Neoplasia/genética , Prognóstico
19.
BMC Cancer ; 22(1): 533, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549691

RESUMO

BACKGROUND: As a metastasis-related protein, NEDD9 has been reported in breast cancer (BC) metastasis research. However, there are few studies on the upstream regulators of NEDD9, especially involving the potential role of miRNAs. The purpose of this study was to explain whether miR-107 potentially regulates NEDD9, which may lead to invasion and metastasis of BC. METHODS: MCF-7 and MDA-MB-231 cells were transduced with lentiviruses to construct stably transduced cells with miR-107 overexpression, miR-107 silencing or empty vectors. A luciferase reporter assay was performed to verify the binding of miR-107 and NEDD9. The scratch test and Transwell assay were used to measure cell migration and invasion ability, respectively. For the study of metastasis in vivo, we injected MDA-MB-231 cells into the fat pad of nude mice to develop an orthotopic breast cancer model. RESULTS: We found that NEDD9 expression correlates with the prognosis of BC patients. In BC cell lines, NEDD9 was positively correlated with cell migration ability. Further research revealed that miR-107 inhibited NEDD9 expression by targeting the 3'-untranslated region of NEDD9. Overexpression of miR-107 suppressed the expression of NEDD9, thereby inhibiting the invasion, migration and proliferation of BC cells, but interference with miR-107 promoted the expression of NEDD9 as well as invasion, migration and proliferation. In an in vivo model, overexpression of miR-107 decreased the expression of NEDD9 and inhibited tumour growth, invasion and metastasis; however, these effects were reversed by inhibiting miR-107. CONCLUSIONS: These findings indicated the potential role of miR-107 in regulating NEDD9 in the invasion, migration and proliferation of BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica/genética
20.
Exp Mol Pathol ; 125: 104751, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122807

RESUMO

We have identified the novel protein GASP-1 (G protein coupled receptor-associated sorting protein 1) that appears to be a universal cancer marker and the expression of which in tumor tissue and patient sera is predictive of cancer severity (Tuszynski et al. 2011; Zheng et al. 2012; Zheng 2013; Chang and Tuszynski, 2020). In preliminary results we discovered that a GASP-1 antibody inhibited the growth of the triple negative breast cancer cell line MDA-MB-231 and transient reduction of GASP-1 in these cells decreased their proliferation. To further substantiate these results, we over and under-expressed GASP-1 in stable clones of MDA-MB-231 cells and evaluated their growth and invasive activities. Cells under-expressing GASP-1 failed to grow after 4 days in culture and eventually died. In contrast GASP-1 expressing cells grew exponentially. Similarly, GASP-1 under-expressing cells formed 30% fewer colonies in soft agar as compared to controls and whereas GASP-1 over-expressing cells formed 2-fold more colonies than controls. In tumor cell invasion assays GASP-1 over-expressing cells were over 10-fold more invasive than controls whereas GASP-1 under-expressing cells were over 10-fold less invasive than controls. In IHC staining studies of breast cancer cells, we found that the overexpressed GASP-1 appear in granules of different sizes that are directly correlated with cancer invasiveness. Our results strongly indicate that GASP-1 promotes proliferation and invasion of the triple negative breast cancer cell line MDA-MB-231 and targeting GASP-1 for treatment of breast cancer is indicated.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Invasividade Neoplásica , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa