Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
Mais filtros

País como assunto
Intervalo de ano de publicação
1.
Drug Resist Updat ; 74: 101085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636338

RESUMO

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


Assuntos
Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Recombinação Homóloga , Quinase Syk , Quinase Syk/metabolismo , Quinase Syk/genética , Quinase Syk/antagonistas & inibidores , Humanos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosforilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Reparo do DNA/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos
2.
Biochem Cell Biol ; 102(3): 213-225, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190650

RESUMO

Mitoxantrone (MX) is an effective treatment for breast cancer; however, high efflux of MX that is accomplished by breast cancer resistance protein (BCRP) leads to acquired multidrug resistance (MDR), reducing MX's therapeutic efficacy in breast cancer. Non-muscle myosin IIA (NMIIA) and its heavy phosphorylation at S1943 have been revealed to play key roles in tumor metastasis and progression, including in breast cancer; however, their molecular function in BCRP-mediated MDR in breast cancer remains unknown. In this study, we revealed that the expression of NMIIA heavy chain phosphorylation at S1943 was downregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and stable expression of NMIIA-S1943A mutant increased BCRP expression and promoted the resistance of MCF-7/MX cells to MX. Meanwhile, NMIIA S1943 phosphorylation induced by epidermal growth factor (EGF) was accompanied by the downregulation of BCRP in MCF-7/MX cells. Furthermore, stable expression of NMIIA-S1943A in MCF-7/MX cells resulted in upregulation of N-cadherin and the accumulation of ß-catenin on the cell surface, which inhibited the nucleus translocation of ß-catenin and Wnt/ß-catenin-based proliferative signaling. EGF stimulation of MCF-7/MX cells showed the downregulation of N-cadherin and ß-catenin. Our results suggest that decreased NMIIA heavy phosphorylation at S1943 increases BCRP expression and promotes MX resistance in breast cancer cells via upregulating N-cadherin expression.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama , Caderinas , Resistencia a Medicamentos Antineoplásicos , Mitoxantrona , Proteínas de Neoplasias , Regulação para Cima , Humanos , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Fosforilação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação para Cima/efeitos dos fármacos , Caderinas/metabolismo , Caderinas/genética , Células MCF-7 , Antineoplásicos/farmacologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
Biochem Biophys Res Commun ; 729: 150348, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38986260

RESUMO

Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/ß-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/ß-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/ß-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/ß-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/ß-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.

4.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527694

RESUMO

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Encéfalo , Indazóis , Morfolinas , Inibidores de Proteínas Quinases , Pirazinas , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Camundongos Knockout , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Administração Oral
5.
Artigo em Inglês | MEDLINE | ID: mdl-39044536

RESUMO

Lung cancer is a leading cause of death globally, with lung adenocarcinoma being the most common subtype. Despite advancements in targeted therapy, drug resistance remains a major challenge. This study investigated the impact of Bacillus coagulans on drug resistance in lung adenocarcinoma cells. The cells were pretreated with B. coagulans culture filtrate (BCCF), and functional assays were performed, including cell proliferation, cell cycle, apoptosis, and immunofluorescence staining. Results showed that BCCF induced cell cycle arrest at the S phase, reducing cell proliferation and suppressing drug resistance marker P-glycoprotein expression in BCCF-treated resistant cells rather than BCCF-treated control cells. Moreover, drug-resistant cells exhibited the ability for epithelial-mesenchymal transition, which could contribute to their necrosis through the iron-mediated cell death pathway upon BCCF treatment. Proteomic analysis identified downregulation of DNA mismatch repair protein PMS2 after BCCF treatment. These findings suggest that B. coagulans may modulate the DNA repair pathway, influencing drug resistance in lung adenocarcinoma cells. In conclusion, this study highlights the potential impact of B. coagulans on drug-resistant lung adenocarcinoma cells. Further investigation and understanding of the regulatory mechanisms by which B. coagulans modulates drug resistance in lung adenocarcinoma can aid in the development of more effective treatment strategies to improve the prognosis of lung cancer patients.

6.
Biol Pharm Bull ; 47(4): 750-757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556260

RESUMO

Breast cancer resistance protein (BCRP) is a drug efflux transporter expressed on the epithelial cells of the small intestine and on the lateral membrane of the bile duct in the liver; and is involved in the efflux of substrate drugs into the gastrointestinal lumen and secretion into bile. Recently, the area under the plasma concentration-time curve (AUC) of rosuvastatin (ROS), a BCRP substrate drug, has been reported to be increased by BCRP inhibitors, and BCRP-mediated drug-drug interaction (DDI) has attracted attention. In this study, we performed a ROS uptake study using human colon cancer-derived Caco-2 cells and confirmed that BCRP inhibitors significantly increased the intracellular accumulation of ROS. The correlation between the cell to medium (C/M) ratio of ROS obtained by the in vitro study and the absorption rate constant (ka) ratio obtained by clinical analysis was examined, and a significant positive correlation was observed. Therefore, it is suggested that the in vitro study using Caco-2 cells could be used to quantitatively estimate BCRP-mediated DDI with ROS in the gastrointestinal tract.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Neoplasias/metabolismo , Interações Medicamentosas , Rosuvastatina Cálcica , Trato Gastrointestinal/metabolismo
7.
Biol Pharm Bull ; 47(2): 427-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369341

RESUMO

It has recently been reported that cholangiocyte organoids can be established from primary human hepatocytes. The purpose of this study was to culture the organoids in monolayers on inserts to investigate the biliary excretory capacity of drugs. Cholangiocyte organoids prepared from hepatocytes had significantly higher mRNA expression of CK19, a bile duct epithelial marker, compared to hepatocytes. The organoids also expressed mRNA for efflux transporters involved in biliary excretion of drugs, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). The subcellular localization of each protein was observed. These results suggest that the membrane-cultured cholangiocyte organoids are oriented with the upper side being the apical membrane side (A side, bile duct lumen side) and the lower side being the basolateral membrane side (B side, hepatocyte side), and that each efflux transporter is localized to the apical membrane side. Transport studies showed that the permeation rate from the B side to the A side was faster than from the A side to the B side for the substrates of each efflux transporter, but this directionality disappeared in the presence of inhibitor of each transporter. In conclusion, the cholangiocyte organoid monolayer system has the potential to quantitatively evaluate the biliary excretion of drugs. The results of the present study represent an unprecedented system using human cholangiocyte organoids, which may be useful as a screening model to directly quantify the contribution of biliary excretion to the clearance of drugs.


Assuntos
Eliminação Hepatobiliar , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Hepatócitos/metabolismo , RNA Mensageiro/metabolismo
8.
BMC Biol ; 21(1): 79, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041515

RESUMO

BACKGROUND: Baleen whales are a clade of gigantic and highly specialized marine mammals. Their genomes have been used to investigate their complex evolutionary history and to decipher the molecular mechanisms that allowed them to reach these dimensions. However, many unanswered questions remain, especially about the early radiation of rorquals and how cancer resistance interplays with their huge number of cells. The pygmy right whale is the smallest and most elusive among the baleen whales. It reaches only a fraction of the body length compared to its relatives and it is the only living member of an otherwise extinct family. This placement makes the pygmy right whale genome an interesting target to update the complex phylogenetic past of baleen whales, because it splits up an otherwise long branch that leads to the radiation of rorquals. Apart from that, genomic data of this species might help to investigate cancer resistance in large whales, since these mechanisms are not as important for the pygmy right whale as in other giant rorquals and right whales. RESULTS: Here, we present a first de novo genome of the species and test its potential in phylogenomics and cancer research. To do so, we constructed a multi-species coalescent tree from fragments of a whole-genome alignment and quantified the amount of introgression in the early evolution of rorquals. Furthermore, a genome-wide comparison of selection rates between large and small-bodied baleen whales revealed a small set of conserved candidate genes with potential connections to cancer resistance. CONCLUSIONS: Our results suggest that the evolution of rorquals is best described as a hard polytomy with a rapid radiation and high levels of introgression. The lack of shared positive selected genes between different large-bodied whale species supports a previously proposed convergent evolution of gigantism and hence cancer resistance in baleen whales.


Assuntos
Neoplasias , Baleias , Animais , Filogenia , Genoma , Genômica , Neoplasias/genética
9.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542901

RESUMO

In CNS drug discovery, the estimation of brain exposure to lead compounds is critical for their optimization. Compounds need to cross the blood-brain barrier (BBB) to reach the pharmacological targets in the CNS. The BBB is a complex system involving passive and active mechanisms of transport and efflux transporters such as P-glycoproteins (P-gp) and breast cancer resistance protein (BCRP), which play an essential role in CNS penetration of small molecules. Several in vivo, in vitro, and in silico methods are available to estimate human brain penetration. Preclinical species are used as in vivo models to understand unbound brain exposure by deriving the Kp,uu parameter and the brain/plasma ratio of exposure corrected with the plasma and brain free fraction. The MDCK-mdr1 (Madin Darby canine kidney cells transfected with the MDR1 gene encoding for the human P-gp) assay is the commonly used in vitro assay to estimate compound permeability and human efflux. The in silico methods to predict brain exposure, such as CNS MPO, CNS BBB scores, and various machine learning models, help save costs and speed up compound discovery and optimization at all stages. These methods enable the screening of virtual compounds, building of a CNS penetrable compounds library, and optimization of lead molecules for CNS penetration. Therefore, it is crucial to understand the reliability and ability of these methods to predict CNS penetration. We review the in silico, in vitro, and in vivo data and their correlation with each other, as well as assess published experimental and computational approaches to predict the BBB penetrability of compounds.


Assuntos
Encéfalo , Proteínas de Neoplasias , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Reprodutibilidade dos Testes , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Barreira Hematoencefálica/metabolismo
10.
Semin Cancer Biol ; 86(Pt 2): 678-696, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35452820

RESUMO

Cancer is one of the dreadful diseases worldwide. Surgery, radiation and chemotherapy, are the three basic standard modes of cancer treatment. However, difficulties in cancer treatment are increasing due to immune escape, spreading of cancer to other places, and resistance of cancer cells to therapies. Various signaling mechanisms, including PI3K/Akt/mTOR, RAS, WNT/ß-catenin, TGF-beta, and notch pathways, are involved in cancer resistance. The adaptive inflammatory response is the initial line of defence against infection. However, chronic inflammation can lead to tumorigenesis, malignant transformation, tumor growth, invasion, and metastasis. The most commonly dysregulated inflammatory pathways linked to cancer include NF-κB, MAPK, JAK-STAT, and PI3K/AKT. To overcome major hurdles in cancer therapy, nanomedicine is receiving much attention due to its role as a vehicle for delivering chemotherapeutic agents that specifically target tumor sites. Several biocompatible nanocarriers including polymer and inorganic nanoparticles, liposomes, micellar nanoparticles, nanotubes, and exosomes have been extensively studied. Exosome has been reported as an important potential system that could be effectively used as a bioinspired, bioengineered, and biomimetic drug delivery solution considering its toxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system. Exosome-mimetic vesicles are receiving much interest for developing nano-sized delivery systems. In this review, exosomes in detail as well as certain other nanocarriers, and their potential therapeutic roles in cancer therapy has been thoroughly discussed. Additionally, we also reviewed on oncogenic and tumor suppressor proteins, inflammation, and their associated signaling pathways and their interference by exosomes based nanomedicine.


Assuntos
Exossomos , Neoplasias , Humanos , Nanomedicina , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inflamação/metabolismo
11.
Semin Cancer Biol ; 86(Pt 3): 769-781, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34799201

RESUMO

The tumor microenvironment (TME) is a major contributor to cancer malignancy including development of therapeutic resistance, a process mediated in part through intercellular crosstalk. Besides diverse soluble factors responsible for pro-survival pathway activation, immune evasion and extracellular matrix (ECM) remodeling further promote cancer resistance. Importantly, therapy-induced senescence (TIS) of cells in the TME is frequently observed in anticancer regimens, an off-target effect that can generate profound impacts on disease progression. By conferring the resistance and fueling the repopulation of remaining cancerous cells, TIS is responsible for tumor relapse and distant metastasis in posttreatment stage. This pathological trajectory can be substantially driven by the pro-inflammatory feature of senescent cells, termed as the senescence-associated secretory phenotype (SASP). Targeting strategies to selectively and efficiently remove senescent cells before they exert non-autonomous but largely deleterious effects, are emerging as an effective solution to prevent drug resistance acquired from a treatment-remodeled TME. In this review, we summarize the TME composition and key activities that affect tissue homeostasis and support treatment resistance. Promising opportunities that allow TME-manipulation and senescent cell-targeting (senotherapy) are discussed, with translational pipelines to overcome therapeutic barriers in clinical oncology projected.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia , Senescência Celular , Movimento Celular
12.
Semin Cancer Biol ; 83: 208-226, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-32717336

RESUMO

Skin, the largest organ of human body, is vital for the existence and survival of human beings. Further, developmental and physiological mechanisms associated with cutaneous biology are vital for homeostasis as their deregulations converge towards pathogenesis of a number of skin diseases, including cancer. It has now been well accepted that most of the transcribed human genome lacks protein translational potential and has been termed as non-coding RNAs (nc-RNAs), which includes circular RNA (circRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), micro RNA (miRNA), long noncoding RNA (lncRNA), and piwi-interacting RNA (piRNAs). These nc-RNAs have gained great attention in both preclinical and clinical research as they are critical in most of the regulatory mechanisms of biological homeostasis and disease development by controlling the gene expression at transcriptional, post-transcriptional and epigenetic level. In this review we have illustrated how nc-RNAs are critical in the development and maintenance of cutaneous homeostasis and functioning and also, most importantly, how the dysregulated expression and functioning of nc-RNAs play critical role in the pathogenesis of cutaneous diseases including cancer and the autoimmune skin diseases. Considering the vital role of nc-RNAs in cancer resistance, metastasis and autoimmune diseases, we have also highlighted their role as promising prognostic and therapeutic targets for the cutaneous diseases.


Assuntos
Doenças Autoimunes , MicroRNAs , RNA Longo não Codificante , Neoplasias Cutâneas , Doenças Autoimunes/genética , Humanos , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , RNA não Traduzido/genética , Neoplasias Cutâneas/genética
13.
J Mol Evol ; 91(2): 133-155, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693985

RESUMO

Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).


Assuntos
Carcinógenos Ambientais , Neoplasias , Humanos , Cavalos , Animais , Camundongos , Neoplasias/genética , Imunidade Inata , Ratos-Toupeira , Mamíferos , Microambiente Tumoral
14.
IUBMB Life ; 75(11): 896-910, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439402

RESUMO

Breast cancer is the prominent cause of cancer-related death in women globally in terms of incidence and mortality. Despite, recent advances in the management of breast cancer, there are still a lot of cases of resistance to medicines, which is currently one of the biggest problems faced by researchers across the globe. Out of several mechanisms, breast cancer resistance protein (BCRP) arbitrated drug resistance is a major concern. Hormonal, cytotoxic and immunotherapeutic drugs are used in the systemic therapy of breast cancer. It is vital to choose drugs based on the clinical and molecular attributes of the tumor to provide better treatment with greater efficacy and minimal harm. Given the aforementioned necessity, the use of marine flora in treating breast cancer cannot be neglected. The scientists also stressed the value of marine-derived goods in avoiding breast cancer resistance. Future research into the identification of anticancer drugs will heavily draw upon the marine environment's ample supply of marine-derived natural products (MNPs), which have a wide range of biological functions. Cell cycle arrest, induction of apoptosis and anti-angiogenic, anti-proliferative and anti-metastasis actions are all part of their processes. The overview of breast cancer, the mechanisms underlying its resistance, recent clinical trials based on marine-derived products in breast cancer and the use of marine products in the treatment of breast cancer are highlighted in this paper. Moreover, the authors also emphasised the importance of marine-derived products in preventing breast cancer resistance.

15.
Curr Top Microbiol Immunol ; 436: 95-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243841

RESUMO

The tumor suppressor PTEN (Phosphatase and Tensin homolog deleted on Chromosome 10) executes critical biological functions that limit cellular growth and proliferation. PTEN inhibits activation of the proto-oncogenic PI3K pathway and is required during embryogenesis and to suppress tumor formation and cancer progression throughout life. The critical role that PTEN plays in restraining cellular growth has been validated through the generation of a number of animal models whereby PTEN inactivation invariably leads to tumor formation in a cell-autonomous fashion. However, the increasing understanding of the mechanisms through which the immune system contributes to suppressing tumor progression has highlighted how, in a cell non-autonomous fashion, cancer-associated mutations can indirectly enhance oncogenesis by evading immune cell recognition. Here, in light of the essential role of PTEN in the regulation of immune cell development and function, and based on recent findings showing that PTEN loss can promote resistance to immune checkpoint inhibitors in various tumor types, we re-evaluate our understanding of the mechanisms through which PTEN functions as a tumor suppressor and postulate that this task is achieved through a combination of cell autonomous and non-autonomous effects. We highlight some of the critical studies that have delineated the functional role of PTEN in immune cell development and blood malignancies and propose new strategies for the treatment of PTEN loss-driven diseases.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Animais , Carcinogênese/genética , Inibidores de Checkpoint Imunológico , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Tensinas
16.
Toxicol Appl Pharmacol ; 459: 116344, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526072

RESUMO

P-glycoprotein (P-gp, encoded by the ABCB1 gene) and breast cancer resistance protein (BCRP/ABCG2) are efflux multidrug resistance (MDR) transporters localized at the syncytiotrophoblast barrier of the placenta and protect the conceptus from drug and toxin exposure throughout pregnancy. Infection is an important modulator of MDR expression and function. This review comprehensively examines the effect of infection on the MDR transporters, P-gp and BCRP in the placenta. Infection PAMPs such as bacterial lipopolysaccharide (LPS) and viral polyinosinic-polycytidylic acid (poly I:C) and single-stranded (ss)RNA, as well as infection with Zika virus (ZIKV), Plasmodium berghei ANKA (modeling malaria in pregnancy - MiP) and polymicrobial infection of intrauterine tissues (chorioamnionitis) all modulate placental P-gp and BCRP at the levels of mRNA, protein and or function; with specific responses varying according to gestational age, trophoblast type and species (human vs. mice). Furthermore, we describe the expression and localization profile of Toll-like receptor (TLR) proteins of the innate immune system at the maternal-fetal interface, aiming to better understand how infective agents modulate placental MDR. We also highlight important gaps in the field and propose future research directions. We conclude that alterations in placental MDR expression and function induced by infective agents may not only alter the intrauterine biodistribution of important MDR substrates such as drugs, toxins, hormones, cytokines, chemokines and waste metabolites, but also impact normal placentation and adversely affect pregnancy outcome and maternal/neonatal health.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Camundongos , Animais , Placenta/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Distribuição Tecidual , Proteínas de Neoplasias/genética , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/metabolismo
17.
FASEB J ; 36(4): e22245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262963

RESUMO

Antenatal synthetic glucocorticoids (sGCs) are a life-saving treatment in managing pre-term birth. However, off-target effects of sGCs can impact blood-brain barrier (BBB) drug transporters essential for fetal brain protection, including P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex-dependent manner. Thus, the objective of this study was to determine the long-term impact of a single or multiple courses of betamethasone on P-gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post-natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P-gp/Abcb1 and BCRP/Abcg2. P-gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P-gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P-gp function in males compared to females (p = .055). Reduced P-gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P-gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.


Assuntos
Barreira Hematoencefálica , Glucocorticoides , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Betametasona/metabolismo , Betametasona/farmacologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Cobaias , Masculino , Proteínas de Neoplasias/metabolismo , Gravidez
18.
Br J Clin Pharmacol ; 89(7): 2160-2167, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36654488

RESUMO

AIMS: This study aims to evaluate the drug-drug interaction (DDI) between hetrombopag and cyclosporine in healthy Chinese subjects. METHODS: Twenty-six eligible subjects enrolled in this single-centre, single-sequence, open-label, DDI study with 3 treatment periods, receiving 5 mg hetrombopag once on Day 1, 100 mg cyclosporine twice daily from Day 11 to Day 15 and 5 mg hetrombopag + 100 mg cyclosporine on Day 16. Serial blood samples were collected for pharmacokinetic evaluation. Adverse events were monitored throughout the study. RESULTS: The plasma hetrombopag geometric mean ratios (90% confidence interval) of maximum plasma concentration, area under the plasma concentration-time curve (AUC) from predose to time of last quantifiable sample and AUC to infinity of coadministration of hetrombopag with cyclosporine vs. hetrombopag alone were 95.97% (70.08-131.43%), 105.75% (75.04-149.04%) and 104.19% (74.71-145.32%), respectively, indicating multiple doses of cyclosporine had minimal effects on hetrombopag exposure. The geometric mean ratios (90% confidence interval) of maximum blood concentration and AUC at steady state during a dosing interval for blood cyclosporine of coadministration vs. cyclosporine alone were 100.49% (91.89-109.89%) and 100.81% (107.88-103.82%), respectively, suggesting a single dose of hetrombopag had no impact on the exposure of cyclosporine. Coadministration of hetrombopag with cyclosporine was generally well tolerated. CONCLUSION: No clinically significant DDI was observed when coadministration of hetrombopag with cyclosporine. The results of this study will inform the appropriate use of this combination therapy both in clinical trials and clinical settings.


Assuntos
Ciclosporina , População do Leste Asiático , Humanos , Área Sob a Curva , Ciclosporina/efeitos adversos , Ciclosporina/farmacocinética , Interações Medicamentosas , Hidrazonas
19.
Pharm Res ; 40(11): 2567-2584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37523014

RESUMO

PURPOSE: The differences between intestinal and systemic (hepatic and renal) P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) roles in drug disposition are difficult to define. Accordingly, we characterized Encequidar (ECD) as an intestinal P-gp and BCRP specific inhibitor to evaluate their role in drug disposition. METHODS: We assessed the in vitro and in vivo inhibition potential of ECD towards human and animal P-gp and BCRP. RESULTS: ECD is a potent inhibitor with a high degree of selectivity in inhibiting human P-gp (hP-gp) over human BCRP (hBCRP) (IC50s of 0.0058 ± 0.0006 vs. > 10 µM, respectively). In contrast, ECD is a potent inhibitor of rat and cynomolgus monkey BCRP (IC50 ranged from 0.059 to 0.18 µM). While the AUC of IV paclitaxel (PTX) was significantly increased by elacridar (ELD) (P < 0.05) but not ECD in rats (15 mg/kg; PO) (2.55- vs. 0.93-fold), that of PO PTX was significantly elevated to a similar extent between the inhibitors (39.5- vs. 33.5-fold). Similarly, the AUC of PO sulfasalazine (SFZ) was dramatically increased by ELD and ECD (16.6- vs. 3.04-fold) although that of IV SFZ was not significantly affected by ELD and ECD in rats (1.18- vs. 1.06-fold). Finally, a comparable ECD-induced increase of the AUC of PO talinolol in cynomolgus monkeys was observed compared with ELD (2.14- vs. 2.12-fold). CONCLUSIONS: ECD may allow an in-depth appraisal of the role of intestinal efflux transporter(s) in drug disposition in animals and humans through local intestinal drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Humanos , Ratos , Animais , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Macaca fascicularis/metabolismo , Proteínas de Neoplasias/metabolismo , Paclitaxel , Interações Medicamentosas
20.
Pharm Res ; 40(3): 651-660, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36539667

RESUMO

PURPOSE: The ATP-binding cassette (ABC) transport protein ABCG2 (also known as breast cancer resistance protein (BCRP)) is expressed at the luminal face of the blood-brain barrier (BBB), where it limits the brain uptake of a number of therapeutic drugs. We recently reported that the ABC efflux transporter P-glycoprotein (P-gp) was downregulated in human immortalised brain endothelial (hCMEC/D3) cells treated with ferric ammonium citrate (FAC). The aim of the present study, therefore, was to assess whether BCRP expression is also affected by FAC and identify any signalling mechanisms involved. METHODS: ABCG2 mRNA was assessed by RT-qPCR. Protein levels of BCRP, phosphorylated extracellular-regulated kinases 1 and 2 (p-ERK1/2) and total ERK 1/2 were assessed by Western blot. Reactive oxygen species (ROS) levels were determined using 2',7'-dichlorofluorescin diacetate. RESULTS: Treatment of hCMEC/D3 cells with FAC (250 µM, 72 h) significantly reduced ABCG2 mRNA levels (32.2 ± 3.7%) without a concomitant reduction in BCRP protein expression. ABCG2 mRNA levels were restored to control levels when co-treated with the antioxidant N-acetylcysteine (NAC), suggesting the effect of FAC was mediated by a ROS-sensitive pathway. We also found that FAC-treatment was associated with increased levels of p-ERK1/2, suggesting involvement of the ERK1/2 signalling pathway in the observed ABCG2 mRNA downregulation. The ERK1/2 signalling pathway inhibitor U0126 restored p-ERK1/2 levels and partially attenuated the FAC-induced reduction in ABCG2 mRNA. CONCLUSIONS: This study suggests that FAC-induced downregulation of ABCG2 mRNA is driven by ROS and ERK1/2 signalling, mechanisms which may be exploited to modulate BCRP expression at the BBB.


Assuntos
Células Endoteliais , Sistema de Sinalização das MAP Quinases , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa