Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 640: 114455, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788604

RESUMO

We recently demonstrated that capturing human monoclonal antibodies (hmAbs) using high affinity anti-human Fc (AHC) antibodies allows reliable characterization of antibody-antigen interactions. Here, we characterized six human Fc specific mouse monoclonal antibodies (mAbs) and compared their binding profiles with three previously characterized goat AHC polyclonal antibodies (pAbs), exhibiting properties of a good capture reagent. All six mouse AHC mAbs specifically bound with high affinity to the Fc region of hIgG1, hIgG2, hIgG4 and to 43 different hIgG variants, containing substitutions and/or mutations in the hinge and/or Fc region, that have been reported to exhibit modified antibody effector function and/or pharmacokinetics. Biacore sensor surfaces individually derivatized with mouse AHC mAbs exhibited >2.5-fold higher hIgG binding capacity compared to the three goat AHC pAb surfaces and reproducibly captured hIgG over 300 capture-regeneration cycles. The results of the capture kinetic analyses performed on 31 antibody-antigen interactions using surfaces derivatized with either of the two highest affinity AHC mAbs (REGN7942 or REGN7943) were in concordance with those performed using goat AHC pAb surfaces. Our data demonstrate that AHC mAbs such as REGN7942 and REGN7943 that have properties superior than the three goat AHC pAbs are highly valuable research reagents, especially to perform capture kinetic analyses of antibody-antigen interactions on optical biosensors.


Assuntos
Anticorpos Monoclonais
2.
Anal Biochem ; 593: 113580, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926892

RESUMO

Surface plasmon resonance (SPR) is a well-established method to characterize biomolecular interactions and is widely used in drug discovery and development. Here, we demonstrate that capture surfaces profoundly impact the binding kinetics parameters that are measured for antibody-antigen interactions. Six unique antibody-antigen interactions were characterized using eight different anti-human IgG capture surfaces. The antigen binding affinities for six different human monoclonal antibodies (hmAbs) captured using three different goat anti-human Fc (AHC) polyclonal antibody (pAb) surfaces were in reasonable agreement (3-7-fold weaker) with those measured by kinetic exclusion assay (KinExA). In contrast, up to 81, 32, 489, 2826, and 219-fold weaker antigen binding affinities were measured using mouse AHC mAb, Protein G, Protein A, Protein A/G, and Protein L surfaces, respectively. Protein A, Protein A/G and Protein G interacted with the Fab of hmAbs, possibly affecting antigen binding to hmAbs captured over these surfaces. Additional studies revealed that mouse AHC mAb binds hmAbs with a weak affinity (5.5-36.3 nM) and t½ values of 1.4-3.3min, compared to the sub-nanomolar affinities of the goat AHC pAbs. These results emphasize the value of measuring binding kinetics of the capture molecule before immobilizing them onto the sensor surface to perform capture kinetics assays on label-free biosensors.


Assuntos
Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Técnicas Biossensoriais/métodos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Animais , Cabras , Humanos , Cinética , Camundongos
3.
J Control Release ; 346: 148-157, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429574

RESUMO

Despite the successful treatment of drug intoxications, little information is available to quantitively predict the effect of lipid emulsions on pharmacokinetic features of overdosed drug molecules. We defined two new parameters, drug accommodation capacity and drug capture kinetics, to characterize the drug capture capability of lipid emulsions. By precisely characterizing their drug capture capability, the effect of lipid emulsions on pharmacokinetic features of overdosed drug molecules was quantitively described. This quantitative description enabled an accurate prediction of the reducing extent on the half-life and area under drug concentration-time curve, which was verified by the successful treatment of overdosed propafenone. Moreover, the capture effect prediction using drug capture capability was more accurate than that of directly using logP. Overall, the developed capture capability accurately described the effect of lipid emulsions on drug pharmacokinetic features, which can guide the clinical application of lipid emulsions for the treatment of drug overdose.


Assuntos
Overdose de Drogas , Overdose de Drogas/tratamento farmacológico , Emulsões/uso terapêutico , Meia-Vida , Humanos , Lipídeos/uso terapêutico
4.
Chemosphere ; 117: 139-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25000300

RESUMO

Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model.


Assuntos
Dióxido de Carbono/química , Cinza de Carvão/química , Coque/análise , Petróleo/análise , Eliminação de Resíduos/métodos , Cinética , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa