Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39013313

RESUMO

The dune ecosystem plays a significant role in the global carbon cycle. The Horqin Sandy Land is a typical semi-arid fragile ecosystem in northern China. Understanding the magnitudes and dynamics of carbon dioxide fluxes within this region is essential for understanding the carbon balance. Used 6 years (2013-2018) measurements from an eddy-covariance system, we analyzed the dynamic patterns of net ecosystem carbon exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco) of the dune ecosystem in Horqin Sandy Land and examined their responses to climate factors with a focus on the precipitation. The results showed that the NEE of the dune ecosystem fluctuated from -166 to 100 gCO2·m-2·year-1 across the 6 growing seasons, with an average of -56 gCO2·m-2·year-1. The precipitation was not a key factor influencing the carbon flux variability. During the mid-growth stage, GPP was primarily affected by the effective precipitation frequency (R2 ranging from 0.65 to 0.85, P < 0.05), followed by fractional vegetation cover (R2 ranging from 0.65 to 0.68, P < 0.05). However, in the early and late growth stages, temperature predominantly drove the carbon flux (R2 = 0.75, P < 0.01). The interannual variability of carbon flux can be predominantly elucidated by phenological indicators such as CO2 uptake (CUstart), end of CO2 uptake (CUend), CO2 uptake period (CUP), and Spring lag. The results demonstrated the dune ecosystem is a weak carbon sink in semi-arid ecosystems. Furthermore, we emphasized the significance of effective precipitation frequency in regulating carbon fluxes. Our results provide a foundational understanding of the carbon balance in semi-arid ecosystems.


Assuntos
Ciclo do Carbono , Carbono , Ecossistema , China , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Estações do Ano
2.
Int J Biometeorol ; 66(1): 213-224, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34694487

RESUMO

Environmental conditions (EV) changes not only affect temporal variations in carbon fluxes directly, but affect them indirectly by impacting plant biotic traits. Investigating the extent of the effects of EV and biotic changes can help deepen our understanding of ecosystem carbon cycling. Therefore, we partitioned and quantified the contributions of EV and biotic changes' effects on seasonal variations in carbon fluxes (net ecosystem carbon exchange (NEE), and its components, i.e., gross ecosystem carbon exchange (GEE) and ecosystem respiration (RE)) in a (winter) wheat-(summer) maize rotation ecosystem from 2010 to 2012. A path analysis accompanied by Granger causality tests (GCTs), which filtered out several variables that were not causal for dependent variables, was used to calculate their respective contributions by integrating path coefficients. The seasonal variations in NEE, RE, and GEE were significantly and jointly affected by EV and the leaf area index (LAI) with R2 values ranging from 0.63 to 0.94 after the GCT. The path analysis indicated that the seasonal variations of carbon fluxes were dominated by the effects of EV changes (induced from varying EV for different fluxes, crops, and years), which contributed 60.7% (mean of two years), 64.5%, and 58.2% to wheat NEE, RE, and GEE, respectively, and 62.5%, 82.3%, and 58.1% to maize NEE, RE, and GEE, respectively. Overall, our study provided a new basis that future climatic changes may have important impacts on carbon exchanges in this rotation cropland.


Assuntos
Triticum , Zea mays , Carbono , Dióxido de Carbono , Produtos Agrícolas , Ecossistema , Folhas de Planta , Estações do Ano
3.
Photosynth Res ; 147(3): 269-281, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511520

RESUMO

Fluxes of carbon and water along a vertical profile within a canopy, particularly the associations between canopy and ecosystem levels, are not well studied. In this study, gas exchange along the vertical profile in a maize canopy was examined. The relationships between leaf- and ecosystem-level carbon and water fluxes were compared. The results from research conducted over two growing seasons showed that during vegetative growth, the top and middle leaf layers in the canopy contribute most to the carbon and water fluxes of the entire canopy. During the grain-filling stage, gas exchange processes were performed mostly in the middle leaves with and near the ears. Significant relationships were observed between the net ecosystem CO2 exchange rate (NEE) plus soil respiration and the assumed canopy levels (Acanopy) and between evapotranspiration rates at the ecosystem (ET) and assumed canopy levels (Ecanopy). This highlights the close associations between these parameters by integrating the leaf gas exchange rates measured in a conventional leaf cuvette and those at the ecosystem level via the eddy covariance technique. These results improve our understanding of how carbon assimilation varies vertically within a canopy, highlighting the critical role of ear leaves.


Assuntos
Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Zea mays/fisiologia , Consumo de Oxigênio , Estações do Ano , Solo
4.
Glob Chang Biol ; 27(11): 2361-2376, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33528067

RESUMO

Need for regional economic development and global demand for agro-industrial commodities have resulted in large-scale conversion of forested landscapes to industrial agriculture across South East Asia. However, net emissions of CO2 from tropical peatland conversions may be significant and remain poorly quantified, resulting in controversy around the magnitude of carbon release following conversion. Here we present long-term, whole ecosystem monitoring of carbon exchange from two oil palm plantations on converted tropical peat swamp forest. Our sites compare a newly converted oil palm plantation (OPnew) to a mature oil palm plantation (OPmature) and combine them in the context of existing emission factors. Mean annual net emission (NEE) of CO2 measured at OPnew during the conversion period (137.8 Mg CO2  ha-1  year-1 ) was an order of magnitude lower during the measurement period at OPmature (17.5 Mg CO2  ha-1  year-1 ). However, mean water table depth (WTD) was shallower (0.26 m) than a typical drainage target of 0.6 m suggesting our emissions may be a conservative estimate for mature plantations, mean WTD at OPnew was more typical at 0.54 m. Reductions in net emissions were primarily driven by increasing biomass accumulation into highly productive palms. Further analysis suggested annual peat carbon losses of 24.9 Mg CO2 -C ha-1  year-1 over the first 6 years, lower than previous estimates for this early period from subsidence studies, losses reduced to 12.8 Mg CO2 -C ha-1  year-1 in the later, mature phase. Despite reductions in NEE and carbon loss over time, the system remained a large net source of carbon to the atmosphere after 12 years with the remaining 8 years of a typical plantation's rotation unlikely to recoup losses. These results emphasize the need for effective protection of tropical peatlands globally and strengthening of legislative enforcement where moratoria on peatland conversion already exist.


Assuntos
Carbono , Solo , Sudeste Asiático , Carbono/análise , Ecossistema , Florestas , Áreas Alagadas
5.
Ecol Lett ; 22(11): 1806-1816, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31397053

RESUMO

How do antecedent (past) conditions influence land-carbon dynamics after those conditions no longer persist? In particular, quantifying such memory effects associated with the influence of past environmental (exogenous) and biological (endogenous) conditions is crucial for understanding and predicting the carbon cycle. Here we show, using data from 42 eddy covariance sites across six major biomes, that ecological memory-decomposed into environmental and biological memory components-of daily net carbon exchange (NEE) is critical for understanding the land-carbon metabolism, especially in drylands for which memory explains ~ 32% of the variation in NEE. The strong environmental memory in drylands was primarily driven by short- and long-term moisture status. Moreover, the strength of environmental memory scales with increasing water stress. This universal scaling relationship, emerging within and among major biomes, suggests a potential adaptive response to water limitation. Our findings underscore the necessity of considering ecological memory in experiments, observations and modelling.


Assuntos
Carbono , Ecossistema , Ciclo do Carbono , Dióxido de Carbono , Ecologia
6.
Proc Natl Acad Sci U S A ; 113(14): 3832-7, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001849

RESUMO

Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.


Assuntos
Aclimatação/fisiologia , Respiração Celular/fisiologia , Metabolismo Energético/fisiologia , Folhas de Planta/metabolismo , Árvores/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Temperatura Alta
7.
Biol Lett ; 14(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30021861

RESUMO

The blue carbon paradigm has evolved in recognition of the high carbon storage and sequestration potential of mangrove, saltmarsh and seagrass ecosystems. However, fluxes of the potent greenhouse gases CH4 and N2O, and lateral export of carbon are often overlooked within the blue carbon framework. Here, we show that the export of dissolved inorganic carbon (DIC) and alkalinity is approximately 1.7 times higher than burial as a long-term carbon sink in a subtropical mangrove system. Fluxes of methane offset burial by approximately 6%, while the nitrous oxide sink was approximately 0.5% of burial. Export of dissolved organic carbon and particulate organic carbon to the coastal zone is also significant and combined may account for an atmospheric carbon sink similar to burial. Our results indicate that the export of DIC and alkalinity results in a long-term atmospheric carbon sink and should be incorporated into the blue carbon paradigm when assessing the role of these habitats in sequestering carbon and mitigating climate change.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Áreas Alagadas , Carbono/análise , Metano/análise , Óxido Nitroso/análise , Queensland
8.
Ecology ; 98(11): 2978, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833038

RESUMO

Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (Vcmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (Jmax ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax ), and leaf dark respiration (Rd ). The raw net photosynthesis by intercellular CO2 (A/Ci ) data used to calculate Vcmax , Jmax , and Vpmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange.


Assuntos
Carbono/metabolismo , Folhas de Planta/metabolismo , Dióxido de Carbono , América Central , Fotossíntese , Ribulose-Bifosfato Carboxilase , Árvores
9.
Glob Chang Biol ; 23(12): 5249-5259, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28614594

RESUMO

Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N-phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N-induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed-effects models to further determine the relative contributions of various factors to the N-induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N-induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment.


Assuntos
Ciclo do Carbono , Pradaria , Nitrogênio/metabolismo , Plantas/metabolismo , Carbono/análise , Dióxido de Carbono/metabolismo , Solo , Temperatura
10.
Glob Chang Biol ; 22(10): 3427-43, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27124119

RESUMO

Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub-Basin estimates have not been previously available.


Assuntos
Mudança Climática , Ecossistema , Ciclo do Carbono , Dióxido de Carbono , Estações do Ano
11.
J Integr Plant Biol ; 56(5): 492-504, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373600

RESUMO

This experiment aims to test the traits responsible for the increase in yield potential of winter wheat released in Henan Province, China. Seven established cultivars released in the last 20 years and three advanced lines were assayed. The results showed that grain yield was positively correlated with harvest index (HI), kernel number per square meter, and aboveground biomass. In addition, the HI and aboveground biomass showed an increasing trend with the year of release. Therefore, we can conclude that bread wheat breeding advances during recent decades in Henan Province, China, have been achieved through an increase in HI, kernel number per square meter, and aboveground biomass. A higher δ(13)C seems also to be involved in these advances, which suggests a progressive improvement in constitutive water use efficiency not associated with a trend towards lower stomatal conductance in the most recent genotypes. However, genetic advance does not appear related to changes in photosynthesis rates on area basis when measured in the flag leaf or the spike, but only to a higher, whole-spike photosynthesis. Results also indirectly support the concept that under potential yield conditions, the spike contributed more than the flag leaf to kernel formation.


Assuntos
Triticum/metabolismo , Triticum/fisiologia , Biomassa , Isótopos de Carbono/metabolismo , China
12.
Environ Sci Ecotechnol ; 21: 100389, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38293646

RESUMO

The evasion of carbon dioxide (CO2) from lakes significantly influences the global carbon equilibrium. Amidst global climatic transformations, the role of Qingzang Plateau (QZP) lakes as carbon (C) sources or sinks remains a subject of debate. Furthermore, accurately quantifying their contribution to the global carbon budget presents a formidable challenge. Here, spanning half a century (1970-2020), we utilize a synthesis of literature and empirical field data to assess the CO2 exchange flux of QZP lakes. We find markedly higher CO2 exchange flux in the southeast lakes than that in the northern and western regions from 1970 to 2000. During this time, both freshwater and saltwater lakes served primarily as carbon sources. The annual CO2 exchange flux was estimated at 2.04 ± 0.37 Tg (Tg) C yr-1, mainly influenced by temperature fluctuations. The CO2 exchange flux patterns underwent a geographical inversion between 2000 and 2020, with increased levels in the west and decreased levels in the east. Notably, CO2 emissions from freshwater lakes diminished, and certain saltwater lakes in the QTP transitioned from carbon sources to sinks. From 2000 to 2020, the annual CO2 exchange flux from QZP lakes is estimated at 1.34 ± 0.50 Tg C yr-1, with solar radiation playing a more pronounced role in carbon emissions. Cumulatively, over the past five decades, QZP lakes have generally functioned as carbon sources. Nevertheless, the total annual CO2 emissions have declined since the year 2000, indicating a potential shift trend from being a carbon source to a sink, mirroring broader patterns of global climate change. These findings not only augment our understanding of the carbon cycle in plateau aquatic systems but also provide crucial data for refining China's carbon budget.

13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 659-668, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646753

RESUMO

To accurately monitor the phenology of net ecosystem carbon exchange (NEE) in grasslands with remote sensing, we analyzed the variations in NEE and its phenology in the Stipa krylovii steppe and discussed the remote sensing vegetation index thresholds for NEE phenology, with the observational data from the Inner Mongolia Xilinhot National Climate Observatory's eddy covariance system and meteorological gradient observation system during 2018-2021, as well as Sentinel-2 satellite data from January 1, 2018 to December 31, 2021. Results showed that, from 2018 to 2021, NEE exhibited seasonal variations, with carbon sequestration occurring from April to October and carbon emission in other months, resulting in an overall carbon sink. The average Julian days for the start date (SCUP) and the end date (ECUP) of carbon uptake period were the 95th and 259th days, respectively, with an average carbon uptake period lasting 165 days. Photosynthetically active radiation showed a negative correlation with daily NEE, contributing to carbon absorption of grasslands. The optimal threshold for capturing SCUP was a 10% threshold of the red-edge chlorophyll index, while the normalized difference vegetation index effectively reflected ECUP with a threshold of 75%. These findings would provide a basis for remote sensing monitoring of grassland carbon source-sink dynamics.


Assuntos
Carbono , Ecossistema , Monitoramento Ambiental , Pradaria , Poaceae , Tecnologia de Sensoriamento Remoto , China , Carbono/metabolismo , Poaceae/metabolismo , Poaceae/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Sequestro de Carbono , Estações do Ano , Ciclo do Carbono
14.
Ecol Evol ; 14(6): e11528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932943

RESUMO

Livestock grazing can strongly determine how grasslands function and their role in the carbon cycle. However, how ecosystem carbon exchange responds to grazing and the underlying mechanisms remain unclear. We measured ecosystem carbon fluxes to explore the changes in carbon exchange and their driving mechanisms under different grazing intensities (CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing) based on a 16-year long-term grazing experimental platform in a desert steppe. We found that grazing intensity influenced aboveground biomass during the peak growing season, primarily by decreasing shrubs and semi-shrubs and perennial forbs. Furthermore, grazing decreased net ecosystem carbon exchange by decreasing aboveground biomass, especially the functional group of shrubs and semi-shrubs. At the same time, we found that belowground biomass and soil ammonium nitrogen were the driving factors of soil respiration in grazed systems. Our study indicates that shrubs and semi-shrubs are important factors in regulating ecosystem carbon exchange under grazing disturbance in the desert steppe, whereas belowground biomass and soil available nitrogen are important factors regulating soil respiration under grazing disturbance in the desert steppe; this results provide deeper insights for understanding how grazing moderates the relationships between soil nutrients, plant biomass, and ecosystem CO2 exchange, which provide a theoretical basis for further grazing management.

15.
Sci Total Environ ; 921: 170952, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360327

RESUMO

Climate change provides an opportunity for the northward expansion of mangroves, and thus, the afforestation of mangroves at higher latitude areas presents an achievable way for coastal restoration, especially where invasive species S. alterniflora needs to be clipped. However, it is unclear whether replacing S. alterniflora with northward-afforested mangroves would benefit carbon sequestration. In the study, we examined the key CO2 and CH4 exchange processes in a young (3 yr) northward-afforested wetland dominated by K. obovata. We also collected soil cores from various ages (3, 15, 30, and 60 years) to analyze the carbon storage characteristics of mangrove stands using a space-for-time substitution approach. Our findings revealed that the young northward mangroves exhibited obvious seasonal variations in net ecosystem CO2 exchange (NEE) and functioned as a moderate carbon sink, with an average annual NEE of -107.9 g C m-2 yr-1. Additionally, the CH4 emissions from the northward mangroves were lower in comparison to natural mangroves, with the primary source being the soil. Furthermore, when comparing the vertical distribution of soil carbon, it became evident that both S. alterniflora and mangroves contributed to organic carbon accumulation in the upper soil layers. Our study also identified a clear correlation that the biomass and carbon stocks of mangroves increased logarithmically with age (R2 = 0.69, p < 0.001). Notably, both vegetation and soil carbon stocks (especially in the deeper layers) of the 15 yr northward mangroves, were markedly higher than those of S. alterniflora. This suggests that replacing S. alterniflora with northward-afforested mangroves is an effective long-term strategy for future coasts to enhance blue carbon sequestration.


Assuntos
Carbono , Ecossistema , Carbono/análise , Dióxido de Carbono , Áreas Alagadas , Poaceae , Solo , Sequestro de Carbono , China
16.
Environ Sci Pollut Res Int ; 30(30): 74691-74708, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37243764

RESUMO

Understanding carbon cycling in blue carbon ecosystems is key to sequestrating more carbon in these ecosystems to mitigate climate change. However, limited information is available on the basic characteristics of publications, research hotspots, research frontiers, and the evolution of topics related to carbon cycling in different blue carbon ecosystems. Here, we conducted bibliometric analysis on carbon cycling in salt marsh, mangrove, and seagrass ecosystems. The results showed that interest in this field has dramatically increased with time, particularly for mangroves. The USA has substantially contributed to the research on all ecosystems. Research hotspots for salt marshes were sedimentation process, carbon sequestration, carbon emissions, lateral carbon exchange, litter decomposition, plant carbon fixation, and carbon sources. In addition, biomass estimation by allometric equations was a hotspot for mangroves, and carbonate cycling and ocean acidification were hotspots for seagrasses. Topics involving energy flow, such as productivity, food webs, and decomposition, were the predominant areas a decade ago. Current research frontiers mainly concentrated on climate change and carbon sequestration for all ecosystems, while methane emission was a common frontier for mangroves and salt marshes. Ecosystem-specific research frontiers included mangrove encroachment for salt marshes, ocean acidification for seagrasses, and aboveground biomass estimation and restoration for mangroves. Future research should expand estimates of lateral carbon exchange and carbonate burial and strengthen the exploration of the impacts of climate change and restoration on blue carbon. Overall, this study provides the research status of carbon cycling in vegetated blue carbon ecosystems, which favors knowledge exchanges for future research.


Assuntos
Carbono , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar , Áreas Alagadas , Sequestro de Carbono
17.
Sci Total Environ ; 856(Pt 2): 159075, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174685

RESUMO

Recently, drought events have occurred frequently and have profoundly altered the carbon sequestration in terrestrial ecosystems. How drought affects carbon sequestration is an important issue which may assist in understanding and confronting the challenges of extreme climate change. Nevertheless, drought-induced carbon-cycle effects remain scarce from the perspective of drought indices. In this study, we quantified the impacts of potential evapotranspiration (PET), standardized precipitation evapotranspiration index (SPEI), downward short-wave radiation flux (SWDown), and soil water (Soil_w) on net ecosystem productivity (NEP). We showed that the spatiotemporal heterogeneity of drought was extremely significant, and the hot spots of aridification were mainly distributed in the southwestern Yungui Plateau (YG) and Northwest China (NW). Moreover, the "pan evaporation paradox" appeared across the Chinese mainland before the 1990s and subsequently disappeared. Similarly, in contrast to the moderate NEP fluctuation between 1981 and 1999, since the beginning of the 21st century, NEP has increased significantly across Chinese mainland, YG, the plains region of Changjiang (CJ), and Southeast China (SE). Meanwhile, there are obvious directional, temporal, and spatial differences in the effects of the drought indices on NEP. Specifically, a higher SPEI value results in a more obvious promoting effect on NEP in SE, North China (NN), and northeastern YG. An increase in SWDown can promote an increase in NEP, especially in the northeastern YG and central SE. The increase in Soil_w in parts of the Qinghai-Tibetan Plateau, Xinjiang Region (XJ), southeastern NW, NN, and Northeast China with poor water conditions can promote carbon sinks. The inhibition effect is particularly obvious in some areas of CJ, where water resources are abundant. The fluctuation in PET has a relatively low influence on NEP. This study provides a comprehensive assessment of drought change and its impact on carbon sequestration and may help in formulating appropriate policies for carbon management and ecological security.


Assuntos
Sequestro de Carbono , Secas , Ecossistema , Mudança Climática , Solo , Carbono/análise , Água , China
18.
Ying Yong Sheng Tai Xue Bao ; 33(1): 51-58, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35224925

RESUMO

Alpine grassland is threatened by the import of chemicals, fertilizers and other external resources with increasing human activities on the Qinghai-Tibet Plateau. It is unclear how carbon cycle of alpine grasslands is affected by the inputs of external resources such as nitrogen, phosphorus, and potassium (N, P, K) and their interactions. We conducted a 3 year experiment on the interactive addition of N, P and K with alpine grassland as the research object to clarify ecosystem carbon exchange process in response to resource addition by measuring community coverage and ecosystem carbon exchange. The results showed the alpine meadow was represented by carbon sequestration during the growing season. The mean value of net ecosystem CO2 exchange (NEE) was -13.0 µmol·m-2·s-1 under the control treatment. NEE, ecosystem respiration (ER), and gross ecosystem productivity (GEP) showed no significant responses when N, P and K were added separately. NEE was significantly increased by 95.3% and 63.9%, GEP was significantly increased by 45.5% and 33.0% under the combined addition of NP and NPK, but ER remained stable. The combined addition of NP or NPK mainly increased NEE and GEP by increasing the coverage of plant communities and affecting ecosystem water use efficiency. Plant community coverage was increased by 18.1% and 21.4%, respectively. The addition of NP increased productivity and autotrophic respiration in alpine meadow. It might cause soil acidification to inhibit heterotrophic respiration, thereby did not change ER due to the two aspects canceling each other out. The addition of N, P, K alone and NK and PK did not change ecosystem carbon exchange, while the combined addition of NP increased NEE and GEP on the nutrient-deficient alpine meadows, indicating that ecosystem carbon uptake was co-limited by N and P in alpine meadow.


Assuntos
Ecossistema , Pradaria , Carbono , Humanos , Nitrogênio/análise , Fósforo , Solo , Tibet
19.
Sci Total Environ ; 811: 151619, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34780816

RESUMO

Mangroves have the potential to affect climate via C sequestration and methane (CH4) emissions. With half of the world's mangroves lost during the 20th century, mangrove restoration in mitigating greenhouse gases has been increasingly recognized. However, the carbon exchanges during restored processes still remain large uncertain. In this study, we analyzed the temporal variations of CO2 and CH4 fluxes and their environmental controls during 2019 and 2020 based on a closed-path eddy covariance (EC) system in a 12-year restored subtropical mangrove wetland, in estuary of the Pearl River, southeastern China. We also estimated the CO2 and CH4 fluxes and their climate effect from the beginning of restoration by Random Forest algorithm (RF). The EC observations showed that annually the 12-year restored mangrove acted as CO2 and CH4 sources, with net CO2 ecosystem exchange (NEE) of 82-175 gC·m- 2·a-1 and CH4 fluxes of 24.7-26.3 gC·m-2·a-1. Low vegetation gross primary productivity (GPP) and high ecosystem respiration (Re) caused net CO2 emissions in the mangroves. The estimation by RF indicated that the mangroves were always a CO2 source after the beginning of restoration, but the annual NEE was linearly decreased from 233 to 131 gC·m-2·a-1 from 2008 to 2020. The annual CH4 emissions continually increased from 19.0 to 25.8 gC·m-2·a-1 after restoration. As a result, the restored mangrove had a positive effect on climate warming, with increased GWP from 1276 to 1386 g CO2-eq ·m-2·a-1 from 2008 to 2020. This is mainly due to lower GPP and higher Re by young restored mangroves, large water area as well as low salinity induced strong CH4 emissions. Our results indicate new sights that young restored mangrove with large area of water surface may act as carbon sources. However, the long-term climate and ecosystem benefits due to mangrove restoration should not be ignored in future.


Assuntos
Dióxido de Carbono , Áreas Alagadas , Dióxido de Carbono/análise , China , Ecossistema , Estuários , Metano/análise , Rios
20.
Sci Bull (Beijing) ; 67(22): 2345-2357, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546224

RESUMO

Half of all of China's lakes are on the Qinghai-Tibet Plateau (QTP), which are mainly distributed at altitudes above 4000 m asl. Being under conditions of progressively intensifying anthropogenic activities and climate change, the debate on whether QTP lakes act as carbon (C) sinks or sources remains unresolved. This study explores QTP lake C exchange processes and characteristics over the past two decades through field monitoring and data integration. Results reveal high lake carbon dioxide (CO2) exchange flux distribution patterns in its western and southern regions and correspondingly low values in its eastern and northern regions. Lake CO2 exchange flux rates also show significant temporal differences where those in the 2000s and 2010s were significantly higher compared to the 2020s. Annual total CO2 emission flux from QTP lakes has increased from 1.60 Tg C a-1 in the 2000s to 6.87 Tg C a-1 in the 2010s before decreasing to 1.16 Tg C a-1 in the 2020s. However, QTP lakes have generally acted as C sinks when annual ice-cover periods are included in the estimation of annual C budgets. Consequently, QTP lakes are gradually evolving towards C sinks. Some small-sized freshwater lakes on the QTP exhibit C sequestration characteristics while low-mid altitude saltwater lakes also act as C sinks. Therefore, owing to the high uncertainties in the estimation of C exchange flux, the QTP lake C sink capacity has been largely underestimated.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Tibet , Dióxido de Carbono/análise , Lagos , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa