Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2118852119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727987

RESUMO

Carbon storage and cycling in boreal forests-the largest terrestrial carbon store-is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree-microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host-microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions.


Assuntos
Ascomicetos , Basidiomycota , Micorrizas , Picea , Ascomicetos/metabolismo , Basidiomycota/metabolismo , Carbono/metabolismo , Ecossistema , Florestas , Micorrizas/genética , Micorrizas/fisiologia , Picea/genética , Picea/microbiologia , Solo/química , Microbiologia do Solo , Taiga , Transcriptoma , Árvores/metabolismo , Árvores/microbiologia
2.
J Bacteriol ; 206(4): e0006924, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38488356

RESUMO

Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Cebolas/metabolismo , Proteínas de Bactérias/metabolismo , Citoplasma/metabolismo , Vacúolos/metabolismo , Salmonella/metabolismo , Ácidos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
BMC Plant Biol ; 24(1): 719, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069617

RESUMO

BACKGROUND: With the profound changes in the global climate, the issue of grassland degradation is becoming increasingly prominent. Grassland degradation poses a severe threat to the carbon cycle and carbon storage within grassland ecosystems. Additionally, it will adversely affect the sustainability of food production. The grassland ecosystem in the northwest region of Liaoning Province, China, is particularly vulnerable due to factors such as erosion from the northern Horqin Sandy Land, persistent arid climate, and issues related to overgrazing and mismanagement of grassland. The degradation issue is especially pronounced in this ecological environment. However, previous research on the carbon density of degraded grasslands in Northeast China has predominantly focused on Inner Mongolia, neglecting the impact on the grasslands in the northwest of Liaoning Province. Therefore, this experiment aims to assess the influence of grassland degradation intensity on the vegetation and soil carbon density in the northwest of Liaoning Province. The objective is to investigate the changes in grassland vegetation and soil carbon density resulting from different degrees of grassland degradation. METHODOLOGY: This study focuses on the carbon density of grasslands at different degrees of degradation in the northwest of Liaoning Province, exploring the variations in vegetation and soil carbon density under different levels of degradation. This experiment employed field sampling techniques to establish 100 × 100 m plots in grasslands exhibiting varying degrees of degradation. Six replications of 100 × 100 m plots per degradation intensity were sampled. Vegetation and soil samples were collected for analysis of carbon density. RESULTS: The results indicate that in the context of grassland degradation, there is a significant reduction in vegetation carbon density. Furthermore, it was found that root carbon density is the primary contributor to vegetation carbon density. In comparison to mildly degraded grasslands, moderately and severely degraded grasslands experience a reduction in vegetation carbon density by 25.6% and 52.6%, respectively. However, with regard to the impact of grassland degradation on soil carbon density, it was observed that while grassland degradation leads to a slight decrease in soil carbon density, there is no significant change in soil carbon density in the short term under the influence of grassland degradation. CONCLUSIONS: Therefore, grassland degradation has exerted a negative impact on aboveground vegetation carbon density, reducing the carbon storage of above-ground vegetation in grasslands. However, there was no significant effect on grassland soil carbon density.


Assuntos
Carbono , Pradaria , Solo , Solo/química , Carbono/metabolismo , China , Conservação dos Recursos Naturais , Poaceae/metabolismo , Ecossistema
4.
New Phytol ; 241(3): 1047-1061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087814

RESUMO

Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified. We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood). Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites. Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.


Assuntos
Ecossistema , Florestas , Biomassa , Austrália , Árvores , Madeira , Carbono , Clima Tropical
5.
New Phytol ; 242(6): 2763-2774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38605488

RESUMO

It has been proposed that ectomycorrhizal fungi can reduce decomposition while arbuscular mycorrhizal fungi may enhance it. These phenomena are known as the 'Gadgil effect' and 'priming effect', respectively. However, it is unclear which one predominates globally. We evaluated whether mycorrhizal fungi decrease or increase decomposition, and identified conditions that mediate this effect. We obtained decomposition data from 43 studies (97 trials) conducted in field or laboratory settings that controlled the access of mycorrhizal fungi to substrates colonized by saprotrophs. Across studies, mycorrhizal fungi promoted decomposition of different substrates by 6.7% overall by favoring the priming effect over the Gadgil effect. However, we observed significant variation among studies. The substrate C : N ratio and absolute latitude influenced the effect of mycorrhizal fungi on decomposition and contributed to the variation. Specifically, mycorrhizal fungi increased decomposition at low substrate C : N and absolute latitude, but there was no discernable effect at high values. Unexpectedly, the effect of mycorrhizal fungi was not influenced by the mycorrhizal type. Our findings challenge previous assumptions about the universality of the Gadgil effect but highlight the potential of mycorrhizal fungi to negatively influence soil carbon storage by promoting the priming effect.


Los hongos ectomicorrízicos puden reducir la descomposición mientras que los hongos micorrízico­arbusculares pueden potenciarla. Ambos fenómenos son conocidos como "Gadgil effect" y "priming effect", respectivamente. Sin embargo, no es claro cuál predomina mundialmente. En este trabajo evaluamos si los hongos micorrízicos disminuyen o promueven la descomposición, e identificamos las condiciones que regulan este efecto. Para ello, recopilamos datos de descomposición de 43 estudios (97 observaciones) realizados en condiciones de campo o laboratorio que controlaron el acceso de los hongos micorrízicos a sustratos colonizados por saprótrofos. Los hongos micorrízicos promovieron la descomposición de diferentes sustratos en un 6.7%. Sin embargo, observamos una variación significativa entre estudios. La relación C : N del sustrato y la latitud influyeron en el efecto de los hongos micorrícicos sobre la descomposición y contribuyeron a la variabilidad. Específicamente, los hongos micorrízicos aumentaron la descomposición a valores bajos de C : N del sustrato y latitud, pero no hubo un efecto discernible en valores altos. Inesperadamente, el tipo de micorriza no influyó en el efecto de los hongos micorrízicos. Nuestros hallazgos cuestionan la universalidad del Gadgil effect, y resaltan el potencial de los hongos micorrízicos para influir negativamente en el almacenamiento de carbono del suelo al promover el priming effect.


Assuntos
Micorrizas , Micorrizas/fisiologia , Solo/química , Carbono/metabolismo , Nitrogênio/metabolismo
6.
Glob Chang Biol ; 30(8): e17432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092542

RESUMO

How terrestrial ecosystems will accumulate carbon as the climate continues to change is a major source of uncertainty in projections of future climate. Under growth-stimulating environmental change, time lags inherent in population and community dynamic processes have been posed to dampen, or alternatively amplify, short-term carbon gain in terrestrial vegetation, but these outcomes can be difficult to predict. To theoretically frame this problem, we developed a simple model of vegetation dynamics that identifies the stage-structured demographic and competitive processes that could govern the timescales of carbon storage and loss. We show that demographic lags associated with growth-stimulating environmental change can allow a rapid increase in population-level carbon storage that is lost back to the atmosphere in later years. However, this transient carbon storage only emerges when environmental change increases the transition of adult individuals into a larger size class that suffers markedly higher mortality. Otherwise, demographic lags simply slow carbon accumulation. Counterintuitively, an analogous tradeoff between maximum adult size and survivorship in two-species models, coupled with environmental change-driven replacement, does not generate the transient carbon gain seen in the single-species models. Instead lags in competitive replacement slow the approach to the eventual carbon trajectory. Together, our results suggest that time lags inherent in demographic and compositional turnover tend to slow carbon accumulation in systems responding to growth-stimulating environmental change. Only under specific conditions will lagged demographic processes in such systems drive transient carbon accumulation, conditions that investigators can examine in nature to help project future carbon trajectories.


Assuntos
Mudança Climática , Ecossistema , Carbono/metabolismo , Carbono/análise , Plantas/metabolismo , Sequestro de Carbono , Modelos Biológicos , Dinâmica Populacional , Modelos Teóricos , Ciclo do Carbono
7.
Glob Chang Biol ; 30(8): e17446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109391

RESUMO

Tree-mycorrhizal associations are associated with patterns in nitrogen (N) availability and soil organic matter storage; however, we still lack a mechanistic understanding of what tree and fungal traits drive these patterns and how they will respond to global changes in soil N availability. To address this knowledge gap, we investigated how arbuscular mycorrhizal (AM)- and ectomycorrhizal (EcM)-associated seedlings alter rhizodeposition in response to increased seedling inorganic N acquisition. We grew four species each of EcM and AM seedlings from forests of the eastern United States in a continuously 13C-labeled atmosphere within an environmentally controlled chamber and subjected to three levels of 15N-labeled fertilizer. We traced seedling 15N uptake from, and 13C-labeled inputs (net rhizodeposition) into, root-excluded or -included soil over a 5-month growing season. N uptake by seedlings was positively related to rhizodeposition for EcM- but not AM-associated seedlings in root-included soils. Despite this contrast in rhizodeposition, there was no difference in soil C storage between mycorrhizal types over the course of the experiment. Instead root-inclusive soils lost C, while root-exclusive soils gained C. Our findings suggest that mycorrhizal associations mediate tree belowground C investment in response to inorganic N availability, but these differences do not affect C storage. Continued soil warming and N deposition under global change will increase soil inorganic N availability and our seedling results indicate this could lead to greater belowground C investment by EcM-associated trees. This potential for less efficient N uptake by EcM-trees could contribute to AM-tree success and a shift toward more AM-dominated temperate forests.


Assuntos
Carbono , Florestas , Micorrizas , Nitrogênio , Plântula , Solo , Micorrizas/fisiologia , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nitrogênio/metabolismo , Solo/química , Carbono/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Árvores/microbiologia , Árvores/crescimento & desenvolvimento , Microbiologia do Solo
8.
Glob Chang Biol ; 30(1): e17021, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962105

RESUMO

Climate change will impact gross primary productivity (GPP), net primary productivity (NPP), and carbon storage in wooded ecosystems. The extent of change will be influenced by thermal acclimation of photosynthesis-the ability of plants to adjust net photosynthetic rates in response to growth temperatures-yet regional differences in acclimation effects among wooded ecosystems is currently unknown. We examined the effects of changing climate on 17 Australian wooded ecosystems with and without the effects of thermal acclimation of C3 photosynthesis. Ecosystems were drawn from five ecoregions (tropical savanna, tropical forest, Mediterranean woodlands, temperate woodlands, and temperate forests) that span Australia's climatic range. We used the CABLE-POP land surface model adapted with thermal acclimation functions and forced with HadGEM2-ES climate projections from RCP8.5. For each site and ecoregion we examined (a) effects of climate change on GPP, NPP, and live tree carbon storage; and (b) impacts of thermal acclimation of photosynthesis on simulated changes. Between the end of the historical (1976-2005) and projected (2070-2099) periods simulated annual carbon uptake increased in the majority of ecosystems by 26.1%-63.3% for GPP and 15%-61.5% for NPP. Thermal acclimation of photosynthesis further increased GPP and NPP in tropical savannas by 27.2% and 22.4% and by 11% and 10.1% in tropical forests with positive effects concentrated in the wet season (tropical savannas) and the warmer months (tropical forests). We predicted minimal effects of thermal acclimation of photosynthesis on GPP, NPP, and carbon storage in Mediterranean woodlands, temperate woodlands, and temperate forests. Overall, positive effects were strongly enhanced by increasing CO2 concentrations under RCP8.5. We conclude that the direct effects of climate change will enhance carbon uptake and storage in Australian wooded ecosystems (likely due to CO2 enrichment) and that benefits of thermal acclimation of photosynthesis will be restricted to tropical ecoregions.


Assuntos
Mudança Climática , Ecossistema , Carbono , Dióxido de Carbono , Austrália , Florestas , Árvores/fisiologia , Fotossíntese , Aclimatação/fisiologia
9.
Glob Chang Biol ; 30(1): e17124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273488

RESUMO

The marine biological carbon pump (BCP) stores carbon in the ocean interior, isolating it from exchange with the atmosphere and thereby coregulating atmospheric carbon dioxide (CO2 ). As the BCP commonly is equated with the flux of organic material to the ocean interior, termed "export flux," a change in export flux is perceived to directly impact atmospheric CO2 , and thus climate. Here, we recap how this perception contrasts with current understanding of the BCP, emphasizing the lack of a direct relationship between global export flux and atmospheric CO2 . We argue for the use of the storage of carbon of biological origin in the ocean interior as a diagnostic that directly relates to atmospheric CO2 , as a way forward to quantify the changes in the BCP in a changing climate. The diagnostic is conveniently applicable to both climate model data and increasingly available observational data. It can explain a seemingly paradoxical response under anthropogenic climate change: Despite a decrease in export flux, the BCP intensifies due to a longer reemergence time of biogenically stored carbon back to the ocean surface and thereby provides a negative feedback to increasing atmospheric CO2 . This feedback is notably small compared with anthropogenic CO2 emissions and other carbon-climate feedbacks. In this Opinion paper, we advocate for a comprehensive view of the BCP's impact on atmospheric CO2 , providing a prerequisite for assessing the effectiveness of marine CO2 removal approaches that target marine biology.


Assuntos
Dióxido de Carbono , Proteínas de Membrana Transportadoras , Dióxido de Carbono/análise , Atmosfera , Mudança Climática , Oceanos e Mares
10.
Glob Chang Biol ; 30(1): e17053, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273544

RESUMO

Soil is a huge carbon (C) reservoir, but where and how much extra C can be stored is unknown. Current methods to estimate the maximum amount of mineral-associated organic carbon (MAOC) stabilized in the fine fraction (clay + silt, < 20 µm $$ <20\;\upmu \mathrm{m} $$ ) fit through the MAOC versus clay + silt relationship, not their maxima, making their estimates more uncertain and unreliable. We need a function that 'envelopes' that relationship. Here, using 5089 observations, we estimated that the uppermost 30 cm of Australian soil holds 13 Gt (10-18 Gt) of MAOC. We then fitted frontier lines, by soil type, to the relationship between MAOC and the percentage of clay + silt to estimate the maximum amounts of MAOC that Australian soils could store in their current environments, and calculated the MAOC deficit, or C sequestration potential. We propagated the uncertainties from the frontier line fitting and mapped the estimates of these values over Australia using machine learning and kriging with external drift. The maps show regions where the soil is more in MAOC deficit and has greater sequestration potential. The modelling shows that the variation over the whole continent is determined mainly by climate, linked to vegetation and soil mineralogy. We find that the MAOC deficit in Australian soil is 40 Gt (25-60 Gt). The deficit in the vast rangelands is 20.84 Gt (13.97-29.70 Gt) and the deficit in cropping soil is 1.63 Gt (1.12-2.32 Gt). Management could increase C sequestration in these regions if the climate allowed it. Our findings provide new information on the C sequestration potential of Australian soils and highlight priority regions for soil management. Australia could benefit environmentally, socially and economically by unlocking even a tiny portion of its soil's C sequestration potential.


Assuntos
Carbono , Solo , Argila , Carbono/análise , Sequestro de Carbono , Austrália , Minerais
11.
Environ Sci Technol ; 58(21): 9200-9212, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743440

RESUMO

In a boreal acidic sulfate-rich subsoil (pH 3-4) developing on sulfidic and organic-rich sediments over the past 70 years, extensive brownish-to-yellowish layers have formed on macropores. Our data reveal that these layers ("macropore surfaces") are strongly enriched in 1 M HCl-extractable reactive iron (2-7% dry weight), largely bound to schwertmannite and 2-line ferrihydrite. These reactive iron phases trap large pools of labile organic matter (OM) and HCl-extractable phosphorus, possibly derived from the cultivated layer. Within soil aggregates, the OM is of a different nature from that on the macropore surfaces but similar to that in the underlying sulfidic sediments (C-horizon). This provides evidence that the sedimentary OM in the bulk subsoil has been largely preserved without significant decomposition and/or fractionation, likely due to physiochemical stabilization by the reactive iron phases that also existed abundantly within the aggregates. These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the short run.


Assuntos
Carbono , Sedimentos Geológicos , Ferro , Solo , Solo/química , Ferro/química , Sedimentos Geológicos/química , Nutrientes , Fósforo/química , Concentração de Íons de Hidrogênio
12.
Environ Sci Technol ; 58(6): 2728-2738, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38232385

RESUMO

Understanding geochemical dissolution in porous materials is crucial, especially in applications such as geological CO2 storage. Accurate estimation of reaction rates enhances predictive modeling in geochemical-flow simulations. Fractured porous media, with distinct transport time scales in fractures and the matrix, raise questions about fracture-matrix interface dissolution rates compared to bulk dissolution rate and the scale-dependency of reaction rate averaging. Our investigation delves into these factors, studying the impact of flow rate and mineralogy on interface dissolution patterns. By injecting carbonated water into carbonate rock samples containing a central channel (mimicking fracture hydrodynamics), our study utilized µCT X-ray imaging at 3.3 µm spatial resolution to estimate the reaction rate and capture the change in pore morphology. Results revealed dissolution rates significantly lower (up to 4 orders of magnitude) than batch experiments. Flow rate notably influenced fracture profiles, causing uneven enlargement at low rates and uniform widening at higher ones. Ankerite presence led to a dissolution-altered layer on the fracture surface, showing high permeability and porosity without greatly affecting the dissolution rate, unlike clay-rich carbonates. This research sheds light on controlling factors influencing dissolution in subsurface environments, critical for accurate modeling in diverse applications.


Assuntos
Dióxido de Carbono , Carbonatos , Microtomografia por Raio-X
13.
Environ Res ; 260: 119623, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019140

RESUMO

Carbon storage and the aboveground biomass of farmland provide practical significance for understanding global changes and ensuring food production and quality. Based on soil carbon storage, aboveground biomass, climate, geochemistry, and other data from 19 farmland ecological stations in China, we analysed the distribution characteristics of farmland carbon storage in topsoil and aboveground biomass. We notably revealed the response direction and degree of climate and geochemical factors to farmland carbon storage in topsoil and aboveground biomass. The results indicated that the average carbon stocks of farmland in different regions ranged from 0.28 to 7.91 kg m-2, the average fresh weight of the aboveground biomass (FAB) ranged from 1370.64 to 5997.28 g m-2, and the average dry weight of the aboveground biomass (DAB) ranged from 119.95 to 852.35 g m-2. The least angle regression (LARS) and the best subsection selection regression (BSS) showed that evapotranspiration and extreme low temperatures were significant climatic factors affecting carbon sequestration and aboveground biomass on long-time scales. The linear mixed-effects model (LMM) further showed that AN and AP had significant long-term effects on carbon sequestration and aboveground biomass (p < 0.05), with AN having the highest contribution to SOC%, FAB, and DAB. The structural equation model (SEM) showed that carbon sequestration and aboveground biomass in agricultural fields were significantly positively correlated (p < 0.05). Moreover, the climate had a less direct contribution to carbon sequestration and above-ground biomass compared to geochemistry (PCc < 0.1

14.
Environ Res ; 247: 118392, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307178

RESUMO

Intensive anthropogenic activities have led to drastic changes in land use/land cover (LULC) and impacted the carbon storage in high-groundwater coal basins. In this paper, we conduct a case study on the Yanzhou Coalfield in Shandong Province of China. We further classify waterbodies by using the Google Earth Engine (GEE) to better investigate the process of LULC transformation and the forces driving it in four periods from 1985 to 2020 (i.e., 1985-1995, 1995-2005, 2005-2015, and 2015-2020). We modeled the spatiotemporal dynamics of carbon storage by using InVEST based on the transformation in LULC and its drivers, including mining (M), reclamation (R), urbanization and village relocation (U), and ecological restoration (E). The results indicate that carbon storage had depleted by 19.69 % (321099.06 Mg) owing to intensive transformations in LULC. The area of cropland shrank with the expansion of built-up land and waterbodies, and 56.31 % of the study area underwent transitions in land use in the study period. U was the primary driver of carbon loss while E was the leading driver of carbon gain. While the direct impact of M on carbon loss accounted for only 5.23 % of the total, it affected urbanization and led to village relocation. R led to the recovery of cropland and the reclamation of water for aquaculture, which in turn improved the efficiency of land use. However, it contributed only 2.09 % to the total increase in carbon storage. Numerous complicated and intertwined processes (211) drove the changes in carbon storage in the study area. The work here provides valuable information for decision-makers as well as people involved in reclamation and ecological restoration to better understand the link between carbon storage and the forces influencing it. The results can be used to integrate the goals of carbon sequestration into measures for land management.


Assuntos
Minas de Carvão , Água Subterrânea , Humanos , Carbono , China , Carvão Mineral , Ecossistema , Conservação dos Recursos Naturais
15.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845020

RESUMO

Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass. Our results suggest that biodiversity, likely in combination with the increased plant productivity caused by higher biodiversity, led to greater soil fertility. Moreover, plots with high plant functional diversity, those containing grasses, legumes, and forbs, accumulated significantly greater N, K, Ca, and Mg in the total nutrient pool (plant biomass and soil) than did plots containing just one of these three functional groups. Plant species in these functional groups had trade-offs between their tissue N content, tissue K content, and root mass, suggesting why species from all three functional groups were essential for regenerating soil fertility. Our findings suggest that efforts to regenerate soil C stores and soil fertility may be aided by creative uses of plant diversity.


Assuntos
Recuperação e Remediação Ambiental/métodos , Plantas/metabolismo , Solo/química , Biodiversidade , Biomassa , Carbono/metabolismo , Conservação dos Recursos Naturais/métodos , Ecossistema , Fabaceae/crescimento & desenvolvimento , Fertilidade/efeitos dos fármacos , Pradaria , Nitrogênio/análise , Nitrogênio/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Potássio/metabolismo , Microbiologia do Solo
16.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846252

RESUMO

Terrestrial ecosystem carbon (C) sequestration plays an important role in ameliorating global climate change. While tropical forests exert a disproportionately large influence on global C cycling, there remains an open question on changes in below-ground soil C stocks with global increases in nitrogen (N) deposition, because N supply often does not constrain the growth of tropical forests. We quantified soil C sequestration through more than a decade of continuous N addition experiment in an N-rich primary tropical forest. Results showed that long-term N additions increased soil C stocks by 7 to 21%, mainly arising from decreased C output fluxes and physical protection mechanisms without changes in the chemical composition of organic matter. A meta-analysis further verified that soil C sequestration induced by excess N inputs is a general phenomenon in tropical forests. Notably, soil N sequestration can keep pace with soil C, based on consistent C/N ratios under N additions. These findings provide empirical evidence that below-ground C sequestration can be stimulated in mature tropical forests under excess N deposition, which has important implications for predicting future terrestrial sinks for both elevated anthropogenic CO2 and N deposition. We further developed a conceptual model hypothesis depicting how soil C sequestration happens under chronic N deposition in N-limited and N-rich ecosystems, suggesting a direction to incorporate N deposition and N cycling into terrestrial C cycle models to improve the predictability on C sink strength as enhanced N deposition spreads from temperate into tropical systems.


Assuntos
Sequestro de Carbono/fisiologia , Nitrogênio/metabolismo , Solo/química , Carbono/química , Mudança Climática , Ecossistema , Florestas , Nitrogênio/química , Floresta Úmida , Microbiologia do Solo , Árvores/crescimento & desenvolvimento , Clima Tropical
17.
J Environ Manage ; 356: 120556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537457

RESUMO

Invasive alien plants (IAPs) pose significant threats to native ecosystems and biodiversity worldwide. However, the understanding of their precise impact on soil carbon (C) dynamics in invaded ecosystems remains a crucial area of research. This review comprehensively explores the mechanisms through which IAPs influence soil C pools, fluxes, and C budgets, shedding light on their effects and broader consequences. Key mechanisms identified include changes in litter inputs, rates of organic matter decomposition, alterations in soil microbial communities, and shifts in nutrient cycling, all driving the impact of IAPs on soil C dynamics. These mechanisms affect soil C storage, turnover rates, and ecosystem functioning. Moreover, IAPs tend to increase gross primary productivity and net primary productivity leading to the alterations in fluxes and C budgets. The implications of IAP-induced alterations in soil C dynamics are significant and extend to plant-soil interactions, ecosystem structure, and biodiversity. Additionally, they have profound consequences for C sequestration, potentially impacting climate change mitigation. Restoring native plant communities, promoting soil health, and implementing species-specific management are essential measures to significantly mitigate the impacts of IAPs on soil C dynamics. Overall, understanding and mitigating the effects of IAPs on soil C storage, nutrient cycling, and related processes will contribute to the conservation of native biodiversity and complement global C neutrality efforts.


Assuntos
Ecossistema , Espécies Introduzidas , Solo/química , Carbono , Biodiversidade , Plantas , Microbiologia do Solo
18.
J Environ Manage ; 361: 121249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820792

RESUMO

This study investigated the influence of biosolid applications on soil carbon storage and evaluated nutrient management strategies affecting soil carbon dynamics. The research assessed alterations in soil pH, soil carbon stock, and soil nitrogen content within short-term and long-term biosolids-amended soils in Bible Hill, Nova Scotia, Canada, extending to a depth of 0-60 cm. The findings indicated an increase in soil pH with alkaline treatment biosolids (ATB) applications across both study sites, with a legacy effect on soil pH noted in the long-term biosolids-amended soil following a single ATB application over 13 years. Both sites demonstrated significant increases in soil total carbon (STC) and soil organic carbon (SOC) within the 0-30 cm soil depth after biosolid application, and soil inorganic carbon (SIC) accounted for approximately 5-10% of STC, specifically in the surface soil layer (0-15 cm). In the long-term study site, annual 14, 28 and 42 Mg ATB ha-1 treatments resulted in a substantial rise in soil carbon stock (59.5, 60.1 and 68.0 Mg C ha-1), marking a 25% increase compared to control soil. The SOC content in biosolids-amended soil showed a declining trend with increasing soil depth at both study sites. Notably, the carbon stock in the short-term site was observed in composted biosolids (COMP) > ATB > liquid mesophilic anaerobically digested biosolids (LMAD) from the 0-60 cm soil depth. Approximately 79-80% of the variation in SOC response at both sites was concentrated within the top 30 cm soil. Soil total nitrogen (STN) showed no significant differences at the short-term site, and STN in biosolids-amended soil decreased with increasing soil depth at the long-term site. Biosolids-induced C retention coefficients (BCR) for ATB remained consistent at both sites, ranging from -13% to 31.4% with a mean of 11.12%. BCR values for COMP ranged from 1.9% to 34.4% with a mean of 18.73%, while those for LMAD exhibited variability, spanning from -6.2% to 106.3% with a mean of 53.9%.


Assuntos
Agricultura , Carbono , Solo , Solo/química , Carbono/análise , Nitrogênio/análise
19.
J Environ Manage ; 367: 122005, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079485

RESUMO

Soil organic carbon and nitrogen play pivotal roles as indicators of soil quality and ecological functioning in wetlands. The escalating impact of human activities and climate change has led to a severe degradation of wetland soils, particularly in semi-arid regions. However, an understanding of the factors governing the dynamics of total soil organic carbon (TSOC) and total soil nitrogen (TSN) in semi-arid areas remains elusive, impeding a comprehensive understanding of wetland ecological functions. The present study investigated variations in TSOC and TSN content as well as vegetation and soil physicochemical properties under five different land management practices (mowed wetlands, mowed and slightly grazed wetlands, moderately grazed wetlands, heavily grazed wetlands, and natural wetlands unaffected by human interference) in the semi-arid Songnen Plain region of China. The results revealed significant decreases in TSOC and TSN content within managed wetlands compared to natural wetlands. Moreover, positive correlations were observed between pairs of SOC-TN or their storage values for SOC (TSOC)-TN (TSN). Furthermore, TSOC and TSN exhibited significant positive associations with aboveground and belowground biomass levels, stem C:N, stem C:P, soil C:P, and soil N:P. Additionally, redundancy analysis indicated that species diversity accounted for 37.4% of the variations in TSOC-TSN while belowground biomass accounted for 8.5% of the variations. Furthermore, nutrient content within stems (particularly N content and C:P) contributed to a 37.2% variation in TSOC and TSN whereas root nutrient content (especially N:P, C:N, and C:P) contributed to a 15.3% variation. Soil C:P, C:N, and total phosphorous (TP) content accounted for 65.7%, 9.6%, and 7.5% of variations of TSOC and TSN, respectively. Besides, variation partitioning analysis revealed that plant community characteristics, community nutrient content, and soil physicochemical properties collectively influenced the dynamics of TSOC and TSN. Among these factors, soil physicochemical properties emerged as the primary drivers of carbon and nitrogen dynamics in degraded wetlands in semi-arid regions. The impact on TSN was more pronounced than that of TSOC. This study provides valuable insights for understanding the processes and mechanisms underlying carbon and nitrogen accumulation in degraded wetlands, facilitating the development of regionally adaptive management plans under different management practices.


Assuntos
Carbono , Nitrogênio , Solo , Áreas Alagadas , Nitrogênio/análise , Solo/química , Carbono/análise , China , Biomassa
20.
J Environ Manage ; 359: 121061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728983

RESUMO

China's commitment to attaining carbon neutrality by 2060 has galvanized research into carbon sequestration, a critical approach for mitigating climate change. Despite the rapid urbanization observed since the turn of the millennium, a comprehensive analysis of how urbanization influences urban carbon storage throughout China remains elusive. Our investigation delves into the nuanced effects of urbanization on carbon storage, dissecting both the direct and indirect influences by considering urban-suburban gradients and varying degrees of urban intensity. We particularly scrutinize the roles of climatic and anthropogenic factors in mediating the indirect effects of urbanization on carbon storage. Our findings reveal that urbanization in China has precipitated a direct reduction in carbon storage by approximately 13.89 Tg of carbon (Tg C). Remarkably, urban sprawl has led to a diminution of vegetation carbon storage by 8.65 Tg C and a decrease in soil carbon storage by 5.24 Tg C, the latter resulting from the sequestration of impervious surfaces and the elimination of organic matter inputs following vegetation removal. Meanwhile, carbon storage in urban greenspaces has exhibited an increase of 6.90 Tg C and offsetting 49.70% of the carbon loss induced by direct urbanization effects. However, the indirect effects of urbanization predominantly diminish carbon storage in urban greenspaces by an average of 5.40%. The degree of urban vegetation management emerges as a pivotal factor influencing the indirect effects of urbanization on carbon storage. To bolster urban carbon storage, curbing urban sprawl and augmenting urban green spaces are imperative strategies. Insights from this study are instrumental in steering sustainable urban planning and advancing towards the goal of carbon neutrality.


Assuntos
Sequestro de Carbono , Carbono , Mudança Climática , Urbanização , China , Carbono/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa