Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(21): e2219076120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186835

RESUMO

A model for intermediate-depth earthquakes of subduction zones is evaluated based on shear localization, shear heating, and runaway creep within thin carbonate layers in an altered downgoing oceanic plate and the overlying mantle wedge. Thermal shear instabilities in carbonate lenses add to potential mechanisms for intermediate-depth seismicity, which are based on serpentine dehydration and embrittlement of altered slabs or viscous shear instabilities in narrow fine-grained olivine shear zones. Peridotites in subducting plates and the overlying mantle wedge may be altered by reactions with CO2-bearing fluids sourced from seawater or the deep mantle, to form carbonate minerals, in addition to hydrous silicates. Effective viscosities of magnesian carbonates are higher than those for antigorite serpentine and they are markedly lower than those for H2O-saturated olivine. However, magnesian carbonates may extend to greater mantle depths than hydrous silicates at temperatures and pressures of subduction zones. Strain rates within altered downgoing mantle peridotites may be localized within carbonated layers following slab dehydration. A simple model of shear heating and temperature-sensitive creep of carbonate horizons, based on experimentally determined creep laws, predicts conditions of stable and unstable shear with strain rates up to 10/s, comparable to seismic velocities of frictional fault surfaces. Applied to intermediate-depth earthquakes of the Tonga subduction zone and the double Wadati-Benioff zone of NE Japan, this mechanism provides an alternative to the generation of earthquakes by dehydration embrittlement, beyond the stability of antigorite serpentine in subduction zones.

2.
Proc Natl Acad Sci U S A ; 119(43): e2210617119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252022

RESUMO

Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. Here, we present stable isotope and trace-element data from carbonate constituents in the Bahamas, including ooids, corals, foraminifera, and algae. We use geochemical fingerprinting to demonstrate that carbonate mud cannot be sourced from the abrasion and mixture of any combination of these macroscopic grains. Instead, an inverse Bayesian mixing model requires the presence of an additional aragonite source. We posit that this source represents a direct seawater precipitate. We use geological and geochemical data to show that "whitings" are unlikely to be the dominant source of this precipitate and, instead, present a model for mud precipitation on the bank margins that can explain the geographical distribution, clumped-isotope thermometry, and stable isotope signature of carbonate mud. Next, we address the enigma of why mud and ooids are so abundant in the Bahamas, yet so rare in the rest of the world: Mediterranean outflow feeds the Bahamas with the most alkaline waters in the modern ocean (>99.7th-percentile). Such high alkalinity appears to be a prerequisite for the nonskeletal carbonate factory because, when Mediterranean outflow was reduced in the Miocene, Bahamian carbonate export ceased for 3-million-years. Finally, we show how shutting off and turning on the shallow carbonate factory can send ripples through the global climate system.


Assuntos
Carbonatos , Sedimentos Geológicos , Teorema de Bayes , Carbonato de Cálcio , Carbonatos/análise , Água do Mar
3.
Proc Natl Acad Sci U S A ; 119(39): e2201388119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122219

RESUMO

Saturn's moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean-seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42-), and total dissolved inorganic P could reach 10-7 to 10-2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10-10 mol/kg H2O from previous estimates and close to or higher than ∼10-6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus's ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability.


Assuntos
Sulfeto de Hidrogênio , Fósforo , Amônia , Carbono , Dióxido de Carbono , Minerais , Oceanos e Mares , Fosfatos , Dióxido de Silício , Água
4.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256094

RESUMO

The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to achieve satisfactory yields. Metal-organic frameworks (MOFs) are recognised as being extremely promising for this purpose. Nevertheless, many of the proposed catalysts are based on ions of rare elements or elements not entirely safe for the environment; this is notable with commercially unavailable ligands. In an effort to develop novel catalysts for CO2 fixation on an industrial scale, we propose novel MOFs, which consist of aluminium ions coordinated with commercially available 1,4-naphthalene dicarboxylic acid (Al@NDC) and their nanocomposites with gold nanoparticles entrapped inside their structure (AlAu@NDC). Due to the application of 4-amino triazole and 5-amino tetrazole as crystallization mediators, the morphology of the synthesised materials can be modified. The introduction of gold nanoparticles (AuNPs) into the structure of the synthesised Al-based MOFs causes the change in morphology from nano cuboids to nanoflakes, simultaneously decreasing their porosity. However, the homogeneity of the nanostructures in the system is preserved. All synthesised MOF materials are highly crystalline, and the simulation of PXRD patterns suggests the same tetragonal crystallographic system for all fabricated nanomaterials. The fabricated materials are proven to be highly efficient catalysts for carbon dioxide cycloaddition with a series of model epoxides: epichlorohydrin; glycidol; styrene oxide; and propylene oxide. Applying the synthesised catalysts enables the reactions to be performed under mild conditions (90 °C; 1 MPa CO2) within a short time and with high conversion and yield (90% conversion of glycidol towards glycerol carbonate with 89% product yield within 2 h). The developed nanocatalysts can be easily separated from the reaction mixture and reused several times (both conversion and yield do not change after five cycles). The excellent performance of the fabricated catalytic materials might be explained by their high microporosity (from 421 m2 g-1 to 735 m2 g-1); many catalytic centres in the structure exhibit Lewis acids' behaviour, increased capacity for CO2 adsorption, and high stability. The presence of AuNPs in the synthesised nanocatalysts (0.8% w/w) enables the reaction to be performed with a higher yield within a shorter time; this is especially important for less-active epoxides such as propylene oxide (two times higher yield was obtained using a nanocomposite, in comparison with Al-MOF without nanoparticles).


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Propanóis , Dióxido de Carbono , Ouro , Alumínio , Compostos de Epóxi , Íons
5.
J Environ Manage ; 352: 120085, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219667

RESUMO

Soil erosion is a significant environmental issue worldwide, particularly in island regions where land resources are exceedingly scarce. Biological soil crusts play a crucial role in mitigating soil erosion, yet the precise effect and mechanism of biological soil crusts against erosion remain ambiguous. In this study, biological soil crusts at various developmental stages from a tropical coral island in the South China Sea were chosen to investigate the role of carbonic anhydrase in mitigating erosion. A cohesive strength meter, real-time quantitative PCR, and 16S rRNA gene high-throughput sequencing were employed to assess variations in soil antiscouribility as well as bacterial abundance and composition during the formation and development of biological soil crusts. Scanning electron microscopy was utilized to detect carbonates induced by bacterial carbonic anhydrase and elucidate their role in the solidification of sand particles. The findings indicate that the formation and development of biological soil crusts significantly enhance anti-scouribility. Comparison to those of bare coral sand, the shear stress increased from 0.35 to 1.11 N/m2 in the dark biocrusts. Moreover, significantly elevated carbonic anhydrase activity was observed in biological soil crusts, demonstrating a positive correlation with antiscouribility. In addition, there was a significant increase in bacterial abundance within the biological soil crusts. The enrichment of Cyanobacteriales and Chloroflexales potentially contributed to the increased carbonic anhydrase activity and antiscouribility. Furthermore, three cyanobacterial strains with carbonic anhydrase activity were isolated from biological soil crusts and subsequently confirmed to enhance sand solidification through microbial carbonate precipitation. This study presents initial evidence for the role of microbial carbonic anhydrase in enhancing the antiscouribility of biological soil crusts during their formation and development. These findings offer novel insights into the functional and mechanistic dimensions underlying the mitigation of soil erosion facilitated by biological soil crusts, which are valuable for implementing sustainable biorestoration and environmental management technologies to prevent soil erosion.


Assuntos
Cianobactérias , Solo , Erosão do Solo , Areia , RNA Ribossômico 16S/genética , Cianobactérias/genética , Microbiologia do Solo
6.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792168

RESUMO

The cycloaddition of CO2 to epoxides to afford versatile and useful cyclic carbonate compounds is a highly investigated method for the nonreductive upcycling of CO2. One of the main focuses of the current research in this area is the discovery of readily available, sustainable, and inexpensive catalysts, and of catalytic methodologies that allow their seamless solvent-free recycling. Water, often regarded as an undesirable pollutant in the cycloaddition process, is progressively emerging as a helpful reaction component. On the one hand, it serves as an inexpensive hydrogen bond donor (HBD) to enhance the performance of ionic compounds; on the other hand, aqueous media allow the development of diverse catalytic protocols that can boost catalytic performance or ease the recycling of molecular catalysts. An overview of the advances in the use of aqueous and biphasic aqueous systems for the cycloaddition of CO2 to epoxides is provided in this work along with recommendations for possible future developments.

7.
J Comput Chem ; 44(32): 2453-2460, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37610074

RESUMO

In this study, we present the results of a search for new stable structures of SrC 2 O 5 and BaC 2 O 5 in the pressure range of 0-100 GPa based on the density functional theory and crystal structure prediction approaches. We have shown that the recently synthesized pyrocarbonate structure SrC 2 O 5 - P 2 1 / c is thermodynamically stable for both SrC 2 O 5 and BaC 2 O 5 . Thus, SrC 2 O 5 - P 2 1 / c is stable relative to decomposition reaction above 10 GPa, while the lower-pressure stability limit for BaC 2 O 5 - P 2 1 / c is 5 GPa, which is the lowest value for the formation of pyrocarbonates. For SrC 2 O 5 , the following polymorphic transitions were found with increasing pressure: P 2 1 / c → F d d 2 at 40 GPa and 1000 K, F d d 2 → C 2 at 90 GPa and 1000 K. SrC 2 O 5 - F d d 2 and SrC 2 O 5 - C 2 are characterized by the framework and layered structures of [CO 4 ] 4 - tetrahedra, respectively. For BaC 2 O 5 , with increasing pressure, decomposition of BaC 2 O 5 - P 2 1 / c into BaCO 3 and CO 2 is observed at 34 GPa without any polymorphic transitions.

8.
Chemistry ; 29(4): e202202440, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260641

RESUMO

New covalently modified GO-guanidine materials have been realized in a gram-scale synthesis and purified by an innovative microfiltration. The use of these composites in the fixation of CO2 into cyclic carbonates is demonstrated. Mild operating conditions, high yields (up to 85 %), wide scope (15 examples) and recoverability/reusability (up to 5 cycles) of the material account for the efficiency of the protocol. Dedicated control experiments shed light on the activation modes exerted by GO-l-arginine during the ring-opening/closing synthetic sequence.

9.
Chemistry ; 29(49): e202301502, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338224

RESUMO

Benzamide-derived organochalcogens (chalcogen=S, Se, and Te) have shown promising interest in biological and synthetic chemistry. Ebselen molecule derived from benzamide moiety is the most studied organoselenium. However, its heavier congener organotellurium is under-explored. Here, an efficient copper-catalyzed atom economical synthetic method has been developed to synthesize 2-phenyl-benzamide tellurenyl iodides by inserting a tellurium atom into carbon-iodine bond of 2-iodobenzamides in one pot with 78-95 % yields. Further, the Lewis acidic nature of Te center and Lewis basic nature of nitrogen of the synthesized 2-Iodo-N-(quinolin-8-yl)benzamide tellurenyl iodides enabled them as pre-catalyst for the activation of epoxide with CO2 at 1 atm for the preparation of cyclic carbonates with TOF and TON values of 1447 h-1 and 4343, respectively, under solvent-free conditions. In addition, 2-iodo-N-(quinolin-8-yl)benzamide tellurenyl iodides have also been used as pre-catalyst for activating anilines and CO2 to form a variety of 1,3-diaryl ureas up to 95 % yield. The mechanistic investigation for CO2 mitigation is done by 125 Te NMR and HRMS studies. It seems that the reaction proceeds via formation of catalytically active Te-N heterocycle, an ebtellur intermediate which is isolated and structurally characterized.

10.
Environ Sci Technol ; 57(28): 10348-10360, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37417589

RESUMO

In this article, the speciation and behavior of anthropogenic metallic uranium deposited on natural soil are approached by combining EXAFS (extended X-ray absorption fine structure) and TRLFS (time-resolved laser-induced fluorescence spectroscopy). First, uranium (uranyl) speciation was determined along the vertical profile of the soil and bedrock by linear combination fitting of the EXAFS spectra. It shows that uranium migration is strongly limited by the sorption reaction onto soil and rock constituents, mainly mineral carbonates and organic matter. Second, uranium sorption isotherms were established for calcite, chalk, and chalky soil materials along with EXAFS and TRLFS analysis. The presence of at least two adsorption complexes of uranyl onto carbonate materials (calcite) could be inferred from TRLFS. The first uranyl tricarbonate complex has a liebigite-type structure and is dominant for low loads on the carbonate surface (<10 mgU/kg(rock)). The second uranyl complex is incorporated into the calcite for intermediate (∼10 to 100 mgU/kg(rock)) to high (high: >100 mgU/kg(rock)) loads. Finally, the presence of a uranium-humic substance complex in subsurface soil materials was underlined in the EXAFS analysis by the occurrence of both monodentate and bidentate carboxylate (or/and carbonate) functions and confirmed by sorption isotherms in the presence of humic acid. This observation is of particular interest since humic substances may be mobilized from soil, potentially enhancing uranium migration under colloidal form.


Assuntos
Urânio , Urânio/química , Solo , Carbonato de Cálcio/química , Carbonatos/química , Espectrometria de Fluorescência/métodos , Substâncias Húmicas
11.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220250, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211028

RESUMO

Crystallization of alkaline earth metal carbonates from water is important for biomineralization and environmental geochemistry. Here, large-scale computer simulations are a useful approach to complement experimental studies by providing atomistic insights and even by quantitatively determining the thermodynamics of individual steps. However, this is dependent on the existence of force field models that are sufficiently accurate while being computationally efficient enough to sample complex systems. Here, we introduce a revised force field for aqueous alkaline earth metal carbonates that reproduces both the solubilities of the crystalline anhydrous minerals, as well as the hydration free energies of the ions. The model is also designed to run efficiently on graphical processing units thereby reducing the cost of such simulations. The performance of the revised force field is compared against previous results for important properties relevant to crystallization, including ion-pairing and mineral-water interfacial structure and dynamics. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

12.
Molecules ; 28(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838518

RESUMO

Novel polyhydroxylated ammonium, imidazolium, and pyridinium salt organocatalysts were prepared through N-alkylation sequences using glycidol as the key precursor. The most active pyridinium iodide catalyst effectively promoted the carbonation of a set of terminal epoxides (80 to >95% yields) at a low catalyst loading (5 mol%), ambient pressure of CO2, and moderate temperature (75 °C) in batch operations, also demonstrating high recyclability and simple downstream separation from the reaction mixture. Moving from batch to segmented flow conditions with the operation of thermostated (75 °C) and pressurized (8.5 atm) home-made reactors significantly reduced the process time (from hours to seconds), increasing the process productivity up to 20.1 mmol(product) h-1 mmol(cat)-1, a value ~17 times higher than that in batch mode.


Assuntos
Compostos de Amônio , Dióxido de Carbono , Carbonatos , Catálise
13.
J Environ Sci (China) ; 129: 139-151, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804230

RESUMO

This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst. It was found that the added CO32- increased both the catalytic activity and the stability of the catalyst. Under optimized reaction conditions in the presence of CO32-, the degradation removal of 4-methylphenol (4-MP) within 2 min reached 100%, and this was maintained in consecutive multi-cycle experiments. The degradation rate constant of 4-MP was 2.159 min-1, being 685% greater than that in the absence of CO32- (0.315 min-1). The comparison of dominated active species and 4-MP degradation pathways in both CO32--free and CO32--containing systems suggested that more CO3•-/1O2 was produced in the case of CO32-deducing an electron transfer medium, which tending to react with electron-rich moieties. Meanwhile, Characterization by X-ray photoelectron spectroscopic and cyclic voltammetry measurement verified CO32- enabled the effective reduction of Cu2+ to Cu+. By investigating the degradation of 11 phenolics with different substituents, the dependence of degradation kinetic rate constant of the phenolics on their chemical structures indicated that there was a good linear relationship between the Hammett constants σp of the aromatic phenolics and the logarithm of k in the CO32--containing system. This work provides a new strategy for efficient removal of electron-rich moieties under the driving of carbonate being widely present in actual water bodies.


Assuntos
Fenóis , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Peróxidos , Carbonatos/química
14.
Angew Chem Int Ed Engl ; 62(44): e202308339, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37599264

RESUMO

Polymeric foams are widely used in many industrial applications due to their light weight and superior thermal, mechanical, and optical properties. Currently, increasing research efforts is being directed towards the development of greener foam formulations that circumvent the use of isocyanates/blowing agents that are commonly used in the production of foam materials. Here, a straightforward, one-pot method is presented to prepare self-blown polycarbonate (PC) foams by exploiting the (decarboxylative) S-alkylation reaction for in situ generation of the blowing agent (CO2 ). The concomitant formation of a reactive alcohol intermediate promotes a cascade ring-opening polymerization of the cyclic carbonates to yield a cross-linked polymer network. It is shown that these hydroxyl-functionalized polycarbonate-based foams can be easily recycled into films through thermal compression molding. Furthermore, it is demonstrated that complete hydrolytic degradation of the foams is possible, thus offering the potential for zero-waste materials. This straightforward and versatile process broadens the scope of isocyanate-free, self-foaming materials, opening a new pathway for next-generation environmentally friendly foams.

15.
Angew Chem Int Ed Engl ; 62(51): e202314659, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37934031

RESUMO

We here report the organocatalytic and temperature-controlled depolymerization of biobased poly(limonene carbonate) providing access to its trans-configured cyclic carbonate as the major product. The base TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) offers a unique opportunity to break down polycarbonates via end-group activation or main chain scission pathways as supported by various controls and computational analysis. These energetically competitive processes represent an unprecedented divergent approach to polycarbonate recycling. The trans limonene carbonate can be converted back to its polycarbonate via ring-opening polymerization using the same organocatalyst in the presence of an alcohol initiator, offering thus a potential circular and practical route for polycarbonate recycling.

16.
Angew Chem Int Ed Engl ; 62(14): e202219064, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36759324

RESUMO

Transition-metal-catalysed reactions of cyclic ethynylethylene carbonates have been intensively studied because of their robustness in new bond formation and diversified molecule construction. Known reaction modes usually involve a substitution step occurring at either the propargylic or terminal alkyne positions. Here, we report an unprecedented reaction pattern in which cyclic ethynylethylene carbonates first undergo a rearrangement to release allenal intermediates, which subsequently react with diverse nucleophiles to furnish synthetically useful allylic and propargylic allenols, phosphorus ylides, and cyclopropylidene ketones through an addition process rather than a substitution pathway. The products enable various further transformations, and mechanistic studies and theoretical calculations reveal that the reaction does not proceed via a semipinacol type [1,2]-hydride shift, but through base-mediated deprotonation as the key step to induce the rearrangement.

17.
Angew Chem Int Ed Engl ; 62(31): e202301497, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912737

RESUMO

Ionic liquids (ILs) are considered to be potential material devices for CO2 capturing and conversion to energy-adducts. They form a cage (confined-space) around the catalyst providing an ionic nano-container environment which serves as physical-chemical barrier that selectively controls the diffusion of reactants, intermediates, and products to the catalytic active sites via their hydrophobicity and contact ion pairs. Hence, the electronic properties of the catalysts in ILs can be tuned by the proper choice of the IL-cations and anions that strongly influence the residence time/diffusion of the reactants, intermediates, and products in the nano-environment. On the other hand, ILs provide driving force towards photocatalytic redox process to increase the CO2 photoreduction. By combining ILs with the semiconductor, unique solid semiconductor-liquid commodities are generated that can lower the CO2 activation energy barrier by modulating the electronic properties of the semiconductor surface. This mini-review provides a brief overview of the recent advances in IL assisted thermal conversion of CO2 to hydrocarbons, formic acid, methanol, dimethyl carbonate, and cyclic carbonates as well as its photo-conversion to solar fuels.

18.
Small ; 18(38): e2201712, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026533

RESUMO

Inorganic electrides have been proved to be efficient hosts for incorporating transition metals, which can effectively act as active sites giving an outstanding catalytic performance. Here, it is demonstrated that a reusable and recyclable (for more than 7 times) copper-based intermetallic electride catalyst (LaCu0.67 Si1.33 ), in which the Cu sites activated by anionic electrons with low-work function are uniformly dispersed in the lattice framework, shows vast potential for the selective C-H oxidation of industrially important hydrocarbons and cycloaddition of CO2 with epoxide. This leads to the production of value-added cyclic carbonates under mild reaction conditions. Importantly, the LaCu0.67 Si1.33 catalyst enables much higher turnover frequencies for the C-H oxidation (up to 25 276 h-1 ) and cycloaddition of CO2 into epoxide (up to 800 000 h-1 ), thus exceeding most nonnoble as well as noble metal catalysts. Density functional theory investigations have revealed that the LaCu0.67 Si1.33 catalyst is involved in the conversion of N-hydroxyphthalimide (NHPI) into the phthalimido-N-oxyl (PINO), which then triggers selective abstraction of an H atom from ethylbenzene for the generation of a radical susceptible to further oxygenation in the presence of O2 .

19.
Inorg Chem ; 61(6): 2724-2732, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089029

RESUMO

A SiO2@MOF core-shell microsphere for environmentally friendly applications was introduced in this study. Several types of metal-organic framework core-shell microspheres were successfully synthesized. To achieve high stability and favorable catalytic performance, modification and coating methods were necessary for optimization. The improved SiO2@MOF core-shell microspheres were used in the cycloaddition reaction of carbon dioxide and propylene oxide. Dispersion ability was enhanced by the addition of core-shell microspheres, which also produced high catalytic activity. Accompanied with tetrabutylammonium bromide as a co-catalyst, SiO2@ZIF-67 had a maximum conversion of 97%, and the results revealed that SiO2@ZIF-67 could be used for 5 reaction cycles while maintaining high catalytic performance. This recycling catalyst was also reacted with a series of terminal epoxides to form corresponding cyclic carbonates with high conversion rates, indicating that SiO2@MOF core-shell microspheres exhibit promise in the field of catalysis.

20.
J Nanobiotechnology ; 20(1): 157, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337331

RESUMO

BACKGROUND: Late diagnosis of lung cancer is one of the leading causes of higher mortality in lung cancer patients worldwide. Significant research attention has focused on the use of magnetic resonance imaging (MRI) based nano contrast agents to efficiently locate cancer tumors for surgical removal or disease diagnostics. Although contrast agents offer significant advantages, further clinical applications require improvements in biocompatibility, biosafety and efficacy. RESULTS: To address these challenges, we fabricated ultra-fine Iron Carbonate Nanoparticles (FeCO3 NPs) for the first time via modified literature method. Synthesized NPs exhibit ultra-fine size (~ 17 nm), good dispersibility and excellent stability in both aqueous and biological media. We evaluated the MR contrast abilities of FeCO3 NPs and observed remarkable T2 weighted MRI contrast in a concentration dependent manner, with a transverse relaxivity (r2) value of 730.9 ± 4.8 mM-1 S-1at 9.4 T. Moreover, the r2 values of present FeCO3 NPs are respectively 1.95 and 2.3 times higher than the clinically approved contrast agents Resovist® and Friedx at same 9.4 T MR scanner. FeCO3 NPs demonstrate an enhanced T2 weighted contrast for in vivo lung tumors within 5 h of post intravenous administration with no apparent systemic toxicity or induction of inflammation observed in in vivo mice models. CONCLUSION: The excellent biocompatibility and T2 weighted contrast abilities of FeCO3 NPs suggest potential for future clinical use in early diagnosis of lung tumors.


Assuntos
Neoplasias Pulmonares , Imageamento por Ressonância Magnética , Animais , Meios de Contraste , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Magnetismo , Camundongos , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa