Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Macromol Rapid Commun ; : e2400532, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090528

RESUMO

A dual zwitterionic diblock copolymer (M100C100) consisting of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC, M) and poly(3-((2-(methacryloyloxy)ethyl) dimethylammonio) propionate) (PCBMA, C) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. A double hydrophilic diblock copolymer (M100S100) consist of PMPC and anionic poly(3-sulfopropyl methacrylate potassium salt) (PMPS, S) is synthesized via RAFT. The degrees of polymerization of each block are 100. The charges of PMPC are neutralized intramolecularly. At neutral pH, the charges in PCBMA are also neutralized intramolecularly due to its carboxybetaine structure. Under acidic conditions, PCBMA exhibits polycation behavior as the pendant carboxy groups become protonated, forming cationic tertiary amine groups. PMPS shows permanent anionic nature independent of pH. Charge neutralized mixture of cationic M100C100 and anionic M100S100 in acidic aqueous solution forms water-soluble polyion complex (PIC) micelle owing to electrostatic attractive interactions. The core is composed of the cationic PCBMA and anionic PMPS blocks, with the PMPC blocks serving as shells that covered the core surface, forming spherical core-shell PIC micelles. Above pH 4 the pendant carboxy groups in PCBMA undergo deprotonation, transitioning to a zwitterionic state, thereby eliminating the cationic charge in PCBMA. Therefore, above pH 4 the PIC micelles are dissociated due to the disappearance of the charge interactions.

2.
Chem Rec ; 23(2): e202200235, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461736

RESUMO

This article reviews the synthesis of polyzwitterions (PZs) (poly-carboxybetaines, -phosphonobetaines, and -sulfobetaines) having multiple pH-responsive centers. The synthesis follows the Butler cyclopolymerization protocol involving a multitude of diallylammonium salts and their copolymerization with SO2 and maleic acid. The PZs have been transformed into cationic-, anionic-polyelectrolytes, and polyampholytes under the influence of pH. Particular attention is given to the application of these polymers as antiscalants, mild steel corrosion inhibitors, components in constructing Aqueous Two-Phase Systems (ATPSs), and membrane modifiers. The ATPSs could be used to separate various biomolecules, including proteins. Many amphiphilic polymers incorporating a few mol % hydrophobic monomers have shown enhanced viscosities and could be suitable for applications in oil fields. The progress of applying Butler cyclopolymerization in reversible addition-fragmentation chain transfer (RAFT) chemistry has been discussed. Future works are expected to focus on RAFT cyclopolymerization to construct block copolymers.

3.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499625

RESUMO

As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity). Additionally, the interaction of macrocycles with bovine serum albumin as a model plasma protein is estimated by various methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy, circular dichroic spectroscopy, and dynamic light scattering). The results demonstrate the low toxicity of the macrocycles, their anti-platelet effects at the level of acetylsalicylic acid, and weak anticoagulant activity. The study of BSA-macrocycle interactions demonstrates the dependence on macrocycle hydrophilic/hydrophobic group structure; in the case of carboxybetaines, the formation of complexes prevents self-aggregation of BSA molecules in solution. The present study demonstrates new data on potential drug delivery nanosystems based on amphiphilic calix[4]resorcinarenes for their cytotoxicity and effects on blood components.


Assuntos
Ésteres , Soroalbumina Bovina , Ésteres/farmacologia , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Água/química
4.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260367

RESUMO

Biofilms are formed on surfaces inside the oral cavity covered by the acquired pellicle and develop into a complex, dynamic, microbial environment. Oral biofilm is a causative factor of dental and periodontal diseases. Accordingly, novel materials that can resist biofilm formation have attracted significant attention. Zwitterionic polymers (ZPs) have unique features that resist protein adhesion and prevent biofilm formation while maintaining biocompatibility. Recent literature has reflected a rapid increase in the application of ZPs as coatings and additives with promising outcomes. In this review, we briefly introduce ZPs and their mechanism of antifouling action, properties of human oral biofilms, and present trends in anti-biofouling, zwitterionic, dental materials. Furthermore, we highlight the existing challenges in the standardization of biofilm research and the future of antifouling, zwitterated, dental materials.


Assuntos
Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Dentários/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Humanos , Boca/microbiologia , Polímeros/química , Polímeros/farmacologia
5.
ACS Appl Mater Interfaces ; 16(30): 39129-39139, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39039989

RESUMO

Catheter-associated urinary tract infections represent a major share of nosocomial infections, and are associated with longer periods of hospitalization and a huge financial burden. Currently, there are only a handful of commercial materials that reduce biofilm formation on urinary catheters, mostly relying on silver alloys. Therefore, we combined silver-phenolated lignin nanoparticles with poly(carboxybetaine) zwitterions to build a composite antibiotic-free coating with bactericidal and antifouling properties. Importantly, the versatile lignin chemistry enabled the formation of the coating in situ, enabling both the nanoparticle grafting and the radical polymerization by using only the oxidative activity of laccase. The resulting surface efficiently prevented nonspecific protein adsorption and reduced the bacterial viability on the catheter surface by more than 2 logs under hydrodynamic flow, without exhibiting any apparent signs of cytotoxicity. Moreover, the said functionality was maintained over a week both in vitro and in vivo, whereby the animal models showed excellent biocompatibility.


Assuntos
Lacase , Cateteres Urinários , Cateteres Urinários/microbiologia , Animais , Lacase/química , Prata/química , Prata/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Lignina/química , Camundongos , Humanos , Biofilmes/efeitos dos fármacos , Infecções Urinárias/prevenção & controle , Infecções Urinárias/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Nanopartículas/química , Staphylococcus aureus/efeitos dos fármacos
6.
Theranostics ; 14(14): 5596-5607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310111

RESUMO

Background: Oral insulin delivery is considered a revolutionary alternative to daily subcutaneous injection. However, the oral bioavailability of insulin is very low due to the poor oral absorption into blood circulation. Methods: To promote penetration across the intestinal epithelium and achieve enhanced and safe glucose-responsive oral insulin delivery, pH and H2O2 dual-sensitive nanoparticles (NPs) were constructed. The NPs were loaded of glucose oxidase (GOx) and insulin by pH and H2O2 dual-sensitive amphiphilic polymer incorporated with phenylboronic ester-conjugated poly(2-hydroxyethyl methacrylate) and poly(carboxybetaine) (PCB). The dual-sensitive NPs were utilized for the treatment of type 1 diabetes mellitus (T1DM) after oral administration. Results: The dual-sensitive NPs could enhance the transport of insulin across the intestinal epithelium into blood facilitated by zwitterionic PCB. By virtue of the generated low pH and high H2O2 with GOx in hyperglycemic environment, the pH and H2O2 dual-sensitive NPs were disassembled to achieve rapid and sustained release of insulin. After oral administration of the dual-sensitive NPs in enteric capsules into T1DM mouse model, the oral bioavailability of insulin reached 20.24%, and the NPs achieved hypoglycemic effect for a few hours longer than subcutaneously injected insulin. Importantly, the pH and H2O2 dual-sensitive NPs could ameliorate the local decline of pH and rise of H2O2 to avoid the toxic side effect. Conclusion: Therefore, this work would provide a promising platform for the enhanced and safe treatment of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Peróxido de Hidrogênio , Hipoglicemiantes , Insulina , Nanopartículas , Animais , Administração Oral , Insulina/administração & dosagem , Insulina/farmacocinética , Nanopartículas/química , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose Oxidase/administração & dosagem , Humanos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Glicemia/efeitos dos fármacos , Glucose/metabolismo , Disponibilidade Biológica
7.
J Chromatogr A ; 1734: 465316, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39216281

RESUMO

The structure of zwitterion has great impact on the separation properties of zwitterionic hydrophilic stationary phases. To better understand the role of anionic groups of zwitterions, a novel carboxybetaine-based zwitterionic monolithic column was first prepared through thermo-initiated copolymerization of functional monomer (3-acrylamidopropyl)-dimethyl-(2-carboxymethyl) ammonium (CBAA) and crosslinker ethylene dimethacrylate (EDMA) within 100 µm ID capillary. The optimal poly(CBAA-co-EDMA) monolithic column exhibited satisfactory mechanical and chemical stability, good repeatability, high column efficiency (96,000 plates/m), and excellent separation performance for different classes of polar compounds (i.e., phenols, monophosphate nucleotides, urea and allantoin). A comparative study was then performed among three zwitterionic hydrophilic stationary phases containing different anionic groups, i.e. poly(CBAA-co-EDMA) (carboxybetaine), poly(2-{2-(methacryloyloxy) ethyldimethylammonium}ethyl n-butyl phosphate-co-EDMA) (phosphocholine), and poly(N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl) ammonium betaine-co-EDMA) (sulfobetaine) using benzoic acid derivatives, amine compounds, nucleobases and nucleosides as model analytes. The carboxybetaine-based monolithic column exhibited much higher positive zeta-potential and hydrophilicity, which endows it with a stronger retention capacity for acidic and neutral compounds, but sulfobetaine-based monolithic column exhibited much higher selectivity and retention capacity for the amines. Moreover, their enrichment efficiencies for N-glycopeptides were also evaluated based on their different hydrophilicity, and it was observed that the poly(CBAA-co-EDMA) monolithic material captured 4-8 times more N-glycopeptides compared to the other two materials.


Assuntos
Ânions , Interações Hidrofóbicas e Hidrofílicas , Ânions/química , Betaína/química , Betaína/análogos & derivados , Metacrilatos/química , Cromatografia Líquida de Alta Pressão/métodos , Fenóis/química , Fenóis/isolamento & purificação , Reprodutibilidade dos Testes , Polímeros/química
8.
Dent Mater ; 40(10): 1575-1583, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068090

RESUMO

OBJECTIVES: This study aimed to use a carboxybetaine methacrylate (CBMA) copolymer solution to surface treat 3D printed clear aligners at different fabrication stages, to impart antifouling properties, and assess the surface treatment at various fabrication stages' impact on physico-mechanical characteristics. METHODS: Surface treatments using a blend of 2-hydroxyethyl methacrylate (HEMA) and CBMA, termed CCS, were performed at various stages of 3D printed clear aligner fabrication. Experimental groups, CB1, CB2, and CB3, were determined by the stage of surface treatment during post-processing. CB1, CB2, and CB3 received treatment before post-curing, after post-curing, and after post-processing, respectively. Untreated samples served as controls. Physical and mechanical properties were assessed through tensile testing, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and UV-Vis spectroscopy. The surface was further characterized through scanning electron microscopy and contact angle measurements. The cytotoxicity was assessed with 7-day elution and agar diffusion assays. Lastly, bacterial biofilm resistance was evaluated using confocal laser scanning microscopy. Crystal violet assay was performed using Streptococcus mutans. RESULTS: Surface treatment during CB1 stage exerted the most significantly unfavorable influence on properties of the 3D printed aligner resin. CB2 samples showed the maximum preservation of translucency even after 7-day aging. CB2 and CB3 phases showed enhanced hydrophilicity of sample surfaces with reduced adhesion of multispecies biofilm and S. mutans. SIGNIFICANCE: Application of CCS surface treatment immediately after post-curing (CB2) can enhance the biofilm resistance of 3D printed clear aligners while maintaining high fidelity to optical translucency and constituent mechanical properties.


Assuntos
Biofilmes , Teste de Materiais , Metacrilatos , Impressão Tridimensional , Propriedades de Superfície , Biofilmes/efeitos dos fármacos , Metacrilatos/química , Betaína/química , Betaína/farmacologia , Betaína/análogos & derivados , Microscopia Eletrônica de Varredura , Streptococcus mutans/efeitos dos fármacos , Polímeros/química , Resistência à Tração , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Adv Healthc Mater ; : e2301831, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501337

RESUMO

Zwitterionic hydrogels have high potential for cartilage tissue engineering due to their ultra-hydrophilicity, nonimmunogenicity, and superior antifouling properties. However, their application in this field has been limited so far, due to the lack of injectable zwitterionic hydrogels that allow for encapsulation of cells in a biocompatible manner. Herein, a novel strategy is developed to engineer cartilage employing zwitterionic granular hydrogels that are injectable, self-healing, in situ crosslinkable and allow for direct encapsulation of cells with biocompatibility. The granular hydrogel is produced by mechanical fragmentation of bulk photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA), or a mixture of CBAA and zwitterionic sulfobetaine methacrylate (SBMA). The produced microgels are enzymatically crosslinkable using horseradish peroxidase, to quickly stabilize the construct, resulting in a microporous hydrogel. Encapsulated human primary chondrocytes are highly viable and able to proliferate, migrate, and produce cartilaginous extracellular matrix (ECM) in the zwitterionic granular hydrogel. It is also shown that by increasing hydrogel porosity and incorporation of SBMA, cell proliferation and ECM secretion are further improved. This strategy is a simple and scalable method, which has high potential for expanding the versatility and application of zwitterionic hydrogels for diverse tissue engineering applications.

10.
Gels ; 9(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36826260

RESUMO

The study reports the synthesis and characterization of novel triple stimuli responsive interpenetrating polymer network (IPN) based on two polyzwitterionic networks, namely of poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate). The zwitterionic IPN hydrogel demonstrates the ability to expand or shrink in response to changes in three "biological" external stimuli such as temperature, pH, and salt concentration. The IPN hydrogel shows good mechanical stability. In addition, other important features such as non-cytotoxicity and antibiofouling activity against three widespread bacteria as P. Aeruginosa, A. Baumanii, and K. Pneumoniae are demonstrated. The in vivo behavior of the novel zwitterionic IPN hydrogel suggests that this smart material has very good potential as a biomaterial.

11.
Acta Pharm Sin B ; 11(10): 3060-3091, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33977080

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.

12.
J Biomater Appl ; 35(3): 371-384, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32571174

RESUMO

Zwitterionic modification can prolong the blood circulation time of nanocarrier in vivo, but zwitterionic content will affect the functions of nanocarrier such as enzyme-responsive and intracellular or extracellular delivery. Therefore, it is necessary to explore the relationship between the zwitterionic content and circulation time of nanocarrier so as to figure out what content of zwitterion can enable the nanocarrier to obtain both the long blood circulation ability and other functions mentioned above. Herein, using nanocapsule as a research model, we investigated the nanocapsule modified with zwitterion of phosphorylcholine (PC) or carboxybetaine (CB) respectively, and through 1H-NMR quantification we determined the zwitterionic surface content, so as to study the effect of PC or CB surface content on blood circulation performance of nanocapsule. In vivo study showed that the nanocapsule possessed an optimal surface filling ratios range for blood circulation of 43-68% for PC and of 20-68% for CB, with the longest t1/2=37.35 h for PC-nanocapsule and t1/2=45.27 h for CB-nanocapsule. Furthermore, the protein adsorption and macrophage endocytosis experiments indicated that when the surface filling ratio reached 43% for PC-nanocapsule and 20% for CB-nanocapsule, it could effectively reduce the protein adsorption and weaken macrophage endocytosis, thus explaining the phenomenon of long circulation time of nanocapsules from the point of protein adsorption and interaction with immune cells. This study proposes a new direction for designing long-circulating nanocarrier, and provides basis for constructing enzyme-responsive and intracellular or extracellular delivery platform.


Assuntos
Tempo de Circulação Sanguínea/efeitos dos fármacos , Nanocápsulas/química , Compostos de Amônio Quaternário/química , Animais , Reagentes de Ligações Cruzadas/química , Endocitose , Humanos , Cinética , Camundongos , Fosforilcolina/química , Células RAW 264.7 , Soroalbumina Bovina/química , Relação Estrutura-Atividade , Propriedades de Superfície
13.
Int J Biol Macromol ; 150: 948-954, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730948

RESUMO

In this study, we developed a smart microfluidic device to prepare biocatalyst HRP-pCBMA. HRP-pCBMA is composed of horseradish peroxidase (HRP) and zwitterionic polymers poly(carboxybetaine methacrylate) (pCBMA), and could be applied to biodegrade bisphenol A (BPA) efficiently. Compared to free HRP, HRP-pCBMA exhibited an obviously enhanced degrading capability for 1 mM BPA with 99.42% degradation efficiency within 20 min, even being superior to 20-fold amount of free HPR. Besides, HRP-pCBMA displayed high stability against the abrupt changes of environmental factors (temperature, pH and organic solvents), and HRP-pCBMA exhibited a relatively high BPA degradation rate of more than 90% even after 10 cycles. The Kcat and Vmax values of HRP-pCBMA were both 7-fold higher than that of free HRP, indicating significant improvement of the catalytic activity. Furthermore, the cytotoxicity assay indicated HRP-pCBMA has excellent biocompatibility. These results demonstrated that HRP-pCBMA possessed great potential in the bioremediation of BPA.


Assuntos
Compostos Benzidrílicos/metabolismo , Biodegradação Ambiental , Enzimas/química , Fenóis/metabolismo , Adsorção , Compostos Benzidrílicos/química , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Concentração de Íons de Hidrogênio , Dispositivos Lab-On-A-Chip , Teste de Materiais , Metacrilatos , Fenóis/química , Polímeros , Temperatura
14.
Acta Biomater ; 109: 51-60, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251778

RESUMO

The shelf-life of human platelets preserved in vitro for therapeutic transfusion is limited because of bacterial contamination and platelet storage lesion (PSL). The PSL is the predominant factor and limiting unfavorable interactions between the platelets and the non-biocompatible storage bag surfaces is the key to alleviate PSL. Here we describe a surface modification method for biocompatible platelet storage bags that dramatically extends platelet shelf-life beyond the current US Food and Drug Administration (FDA) standards of 5 days. The surface coating of the bags can be achieved through a simple yet effective dip-coating and light-irradiation method using a biocompatible polymer. The biocompatible polymers with tunable functional groups can be routinely fabricated at any scale and impart super-hydrophilicity and non-fouling capability on commercial hydrophobic platelet storage bags. As critical parameters reflecting the platelets quality, the activation level and binding affinity with von Willebrand factor (VWF) of the platelets stored in the biocompatible platelet bags at 8 days are comparable with those in the commercial bags at 5 days. This technique also demonstrates promise for a wide range of medical and engineering applications requiring biocompatible surfaces. STATEMENT OF SIGNIFICANCE: Current standard platelet preservation techniques agitate platelets at room temperature (20-24 °C) inside a hydrophobic (e.g., polyvinyl chloride (PVC)) storage bag, thereby allowing preservation of platelets only for 5 days. A key factor leading to quality loss is the unfavorable interaction between the platelets and the non-biocompatible storage bag surfaces. Here, a surface modification method for biocompatible platelet storage bags has been created to dramatically extend platelet shelf-life beyond the current FDA standards of 5 days. The surface coating of the bags can be achieved via a simple yet effective dip-coating and light-irradiation method using a carboxybetaine polymer. This technique is also applicable to many other applications requiring biocompatible surfaces.


Assuntos
Resinas Acrílicas/química , Plaquetas/efeitos dos fármacos , Preservação de Sangue/métodos , Materiais Revestidos Biocompatíveis/química , Compostos de Amônio Quaternário/química , Animais , Aderência Bacteriana/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Preservação de Sangue/instrumentação , Humanos , Camundongos , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
15.
Front Chem ; 8: 553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793549

RESUMO

For efficient and effective utilization of MXene such as biosensing or advanced applications, interfacial modification of MXene needs to be considered. To this end, we describe modification of Ti3C2Tx MXene by aryldiazonium-based grafting with derivatives bearing a sulfo- (SB) or carboxy- (CB) betaine pendant moiety. Since MXene contains free electrons, betaine derivatives could be grafted to MXene spontaneously. Kinetics of spontaneous grafting of SB and CB toward MXene was electrochemically examined in two different ways, and such experiments confirmed much quicker spontaneous SB grafting compared to spontaneous CB grafting. Moreover, a wide range of electrochemical methods investigating non-Faradaic and Faradaic redox behavior also in the presence of two redox probes together with contact-angle measurements and secondary ion mass spectrometry (SIMS) confirmed substantial differences in formation and interfacial presentation of betaine layers, when spontaneously grafted on MXene. Besides spontaneous grafting of CB and SB toward MXene, also electrochemical grafting by a redox trigger was performed. Results suggest that electrochemical grafting provides a denser layer of SB and CB on the MXene interface compared to spontaneous grafting of SB and CB. Moreover, an electrochemically grafted SB layer offers much lower interfacial resistance and an electrochemically active surface area compared to an electrochemically grafted CB layer. Thus, by adjusting the SB/CB ratio in the solution during electrochemical grafting, it is possible to effectively tune the redox behavior of an MXene-modified interface. Finally, electrochemically grafted CB and SB layers on MXene were evaluated against non-specific protein binding and compared to the anti-fouling behavior of an unmodified MXene interface.

16.
ACS Appl Mater Interfaces ; 12(37): 41026-41037, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32876425

RESUMO

Protein and cell interactions on implanted, blood-contacting medical device surfaces can lead to adverse biological reactions. Medical-grade poly(vinyl chloride) (PVC) materials have been used for decades, particularly as blood-contacting tubes and containers. However, there are numerous concerns with their performance including platelet activation, complement activation, and thrombin generation and also leaching of plasticizers, particularly in clinical applications. Here, we report a surface modification method that can dramatically prevent blood protein adsorption, human platelet activation, and complement activation on commercial medical-grade PVC materials under various test conditions. The surface modification can be accomplished through simple dip-coating followed by light illumination utilizing biocompatible polymers comprising zwitterionic carboxybetaine (CB) moieties and photosensitive cross-linking moieties. This surface treatment can be manufactured routinely at small or large scales and can impart to commercial PVC materials superhydrophilicity and nonfouling capability. Furthermore, the polymer effectively prevented leaching of plasticizers out from commercial medical-grade PVC materials. This coating technique is readily applicable to many other polymers and medical devices requiring surfaces that will enhance performance in clinical settings.


Assuntos
Materiais Biocompatíveis/química , Plastificantes/química , Polímeros/química , Adsorção , Animais , Camundongos , Estrutura Molecular , Células NIH 3T3 , Tamanho da Partícula , Processos Fotoquímicos , Polímeros/síntese química , Propriedades de Superfície
17.
Methods Mol Biol ; 2135: 125-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32246332

RESUMO

Small, stable, and bright quantum dots (QDs) are of interest in many biosensing and biomedical imaging applications, but current methodologies for obtaining these characteristics can be highly specialized or expensive. We describe a straightforward, low-cost protocol for functionalizing poly(isobutylene-alt-maleic anhydride) (PIMA) with moieties that anchor to the QD surface (histamine), impart hydrophilicity [(2-aminoethyl)trimethylammonium chloride (Me3N+-NH2)], and provide a platform for biofunctionalization via click chemistry (dibenzocyclooctyne (DBCO)). Guidelines to successfully use this polymer for QD ligand exchange are presented, and an example of biofunctionalization with DNA is shown. Stable QD-DNA conjugates are obtained with high yield and without requiring additional purification steps.


Assuntos
Química Click/métodos , Anidridos Maleicos/química , Polímeros/química , Pontos Quânticos/química , Ciclo-Octanos/química , DNA/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Pontos Quânticos/análise
18.
Acta Biomater ; 92: 71-81, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082571

RESUMO

Current artificial lungs fail in 1-4 weeks due to surface-induced thrombosis. Biomaterial coatings may be applied to anticoagulate artificial surfaces, but none have shown marked long-term effectiveness. Poly-carboxybetaine (pCB) coatings have shown promising results in reducing protein and platelet-fouling in vitro. However, in vivo hemocompatibility remains to be investigated. Thus, three different pCB-grafting approaches to artificial lung surfaces were first investigated: 1) graft-to approach using 3,4-dihydroxyphenylalanine (DOPA) conjugated with pCB (DOPA-pCB); 2) graft-from approach using the Activators ReGenerated by Electron Transfer method of atom transfer radical polymerization (ARGET-ATRP); and 3) graft-to approach using pCB randomly copolymerized with hydrophobic moieties. One device coated with each of these methods and one uncoated device were attached in parallel within a veno-venous sheep extracorporeal circuit with no continuous anticoagulation (N = 5 circuits). The DOPA-pCB approach showed the least increase in blood flow resistance and the lowest incidence of device failure over 36-hours. Next, we further investigated the impact of tip-to-tip DOPA-pCB coating in a 4-hour rabbit study with veno-venous micro-artificial lung circuit at a higher activated clotting time of 220-300 s (N ≥ 5). Here, DOPA-pCB reduced fibrin formation (p = 0.06) and gross thrombus formation by 59% (p < 0.05). Therefore, DOPA-pCB is a promising material for improving the anticoagulation of artificial lungs. STATEMENT OF SIGNIFICANCE: Chronic lung diseases lead to 168,000 deaths each year in America, but only 2300 lung transplantations happen each year. Hollow fiber membrane oxygenators are clinically used as artificial lungs to provide respiratory support for patients, but their long-term viability is hindered by surface-induced clot formation that leads to premature device failure. Among different coatings investigated for blood-contacting applications, poly-carboxybetaine (pCB) coatings have shown remarkable reduction in protein adsorption in vitro. However, their efficacy in vivo remains unclear. This is the first work that investigates various pCB-coating methods on artificial lung surfaces and their biocompatibility in sheep and rabbit studies. This work highlights the promise of applying pCB coatings on artificial lungs to extend its durability and enable long-term respiratory support for lung disease patients.


Assuntos
Betaína/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Pulmão/patologia , Trombose/patologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Fibrina/metabolismo , Pulmão/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Coelhos , Ovinos , Propriedades de Superfície
19.
Front Chem ; 7: 770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824916

RESUMO

Nanocarriers with responsibility and surface functionality of targeting molecules have been widely used to improve therapeutic efficiency. Hence, we report the assembly of pH-responsive and targeted polymer nanoparticles (NPs) composed of poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) as the core and poly(carboxybetaine methacrylate) (PCBMA) as the shell, functionalized with cyclic peptides containing Arginine-Glycine-Aspartic acid-D-Phenylalanine-Lysine (RGD). The resulting polymer NPs (PDPA@PCBMA-RGD NPs) can maintain the pH-responsivity of PDPA (pKa ~6.5) and low-fouling property of PCBMA that significantly resist non-specific interactions with RAW 264.7 and HeLa cells. Meanwhile, PDPA@PCBMA-RGD NPs could specifically target αvß3 integrin-expressed human glioblastoma (U87) cells. The pH-responsiveness and low-fouling properties of PDPA@PCBMA NPs are comparable to PDPA@poly(ethylene glycol) (PDPA@PEG) NPs, which indicates that PCBMA is an alternative to PEG for low-fouling coatings. The advantage of PDPA@PCBMA NPs lies in the presence of carboxyl groups on their surfaces for further modification (e.g., RGD functionalization for cell targeting). The reported polymer NPs represent a new carrier that have the potential for targeted therapeutic delivery.

20.
Bioelectrochemistry ; 125: 90-96, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30342231

RESUMO

Biocompatible materials, such as zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), are of extraordinary importance in growth of bioelectronics and biosensors, because they not only greatly suppress nonspecific protein adsorption, but also have rich functional groups to facilitate the fixation of biological molecules. A novel nanocomposite was synthesized herein through modification polyCBMA onto conducting polymer polyaniline (PANI) nanowire surface. The prepared polyCBMA/PANI composite, integrating the good conductivity of PANI nanowires with the excellent antifouling capability of polyCBMA, provided a wonderful matrix for the growth of ultrasensitive and low fouling biosensor. Carcinoembryonic antigen (CEA), an important biomarker for a variety of cancers, was utilized as a model test. Furthermore its antibody was fixed onto polyCBMA/PANI for the preparation of CEA biosensor. DPV was applied as a sensing principle with information at which peak potential and current the signals were recorded. The peak currents were in inverse proportion to the logarithm of CEA concentration in the range from 1.0×10-14gmL-1 to 1.0×10-10gmL-1, with a detect limit of 3.05fgmL-1. Furthermore, this low fouling, label-free biosensor has been utilized for assaying in undiluted human serum samples with resisting serious nonspecific protein adsorption, demonstrating its feasible potential application in clinical analysis of CEA.


Assuntos
Compostos de Anilina/química , Anticorpos Imobilizados/química , Betaína/química , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário/sangue , Nanofios/química , Ácidos Polimetacrílicos/química , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Humanos , Imunoensaio/métodos , Limite de Detecção , Nanofios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa