Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.152
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 34: 173-202, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26772211

RESUMO

The formation and accumulation of crystalline material in tissues is a hallmark of many metabolic and inflammatory conditions. The discovery that the phase transition of physiologically soluble substances to their crystalline forms can be detected by the immune system and activate innate immune pathways has revolutionized our understanding of how crystals cause inflammation. It is now appreciated that crystals are part of the pathogenesis of numerous diseases, including gout, silicosis, asbestosis, and atherosclerosis. In this review we discuss current knowledge of the complex mechanisms of crystal formation in diseased tissues and their interplay with the nutrients, metabolites, and immune cells that account for crystal-induced inflammation.


Assuntos
Asbestose/imunologia , Aterosclerose/imunologia , Cristalização , Gota/imunologia , Imunidade Inata , Inflamação/metabolismo , Silicose/imunologia , Animais , Humanos , Interleucina-1/metabolismo , Nanotecnologia , Transição de Fase
2.
Cell ; 174(6): 1361-1372.e10, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193110

RESUMO

A key aspect of genomic medicine is to make individualized clinical decisions from personal genomes. We developed a machine-learning framework to integrate personal genomes and electronic health record (EHR) data and used this framework to study abdominal aortic aneurysm (AAA), a prevalent irreversible cardiovascular disease with unclear etiology. Performing whole-genome sequencing on AAA patients and controls, we demonstrated its predictive precision solely from personal genomes. By modeling personal genomes with EHRs, this framework quantitatively assessed the effectiveness of adjusting personal lifestyles given personal genome baselines, demonstrating its utility as a personal health management tool. We showed that this new framework agnostically identified genetic components involved in AAA, which were subsequently validated in human aortic tissues and in murine models. Our study presents a new framework for disease genome analysis, which can be used for both health management and understanding the biological architecture of complex diseases. VIDEO ABSTRACT.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Genômica , Animais , Aneurisma da Aorta Abdominal/genética , Área Sob a Curva , Modelos Animais de Doenças , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Aprendizado de Máquina , Camundongos , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Curva ROC , Sequenciamento Completo do Genoma
3.
Cell ; 170(3): 522-533.e15, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753427

RESUMO

Genome-wide association studies (GWASs) implicate the PHACTR1 locus (6p24) in risk for five vascular diseases, including coronary artery disease, migraine headache, cervical artery dissection, fibromuscular dysplasia, and hypertension. Through genetic fine mapping, we prioritized rs9349379, a common SNP in the third intron of the PHACTR1 gene, as the putative causal variant. Epigenomic data from human tissue revealed an enhancer signature at rs9349379 exclusively in aorta, suggesting a regulatory function for this SNP in the vasculature. CRISPR-edited stem cell-derived endothelial cells demonstrate rs9349379 regulates expression of endothelin 1 (EDN1), a gene located 600 kb upstream of PHACTR1. The known physiologic effects of EDN1 on the vasculature may explain the pattern of risk for the five associated diseases. Overall, these data illustrate the integration of genetic, phenotypic, and epigenetic analysis to identify the biologic mechanism by which a common, non-coding variant can distally regulate a gene and contribute to the pathogenesis of multiple vascular diseases.


Assuntos
Doença da Artéria Coronariana/genética , Endotelina-1/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Doenças Vasculares/genética , Acetilação , Células Cultivadas , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Humanos Par 6 , Células Endoteliais/citologia , Endotelina-1/sangue , Epigenômica , Edição de Genes , Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Músculo Liso Vascular/citologia
4.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863252

RESUMO

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Doenças do Sistema Imunitário/genética , Alelos , Diferenciação Celular , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças do Sistema Imunitário/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , População Branca/genética
5.
Physiol Rev ; 103(1): 609-647, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049114

RESUMO

Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senescence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardiomyopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighboring cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a treatment option in heart disease.


Assuntos
Doenças Cardiovasculares , Humanos , Envelhecimento/fisiologia , Qualidade de Vida , Senescência Celular/fisiologia
6.
Semin Cell Dev Biol ; 155(Pt B): 66-73, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391348

RESUMO

Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.


Assuntos
Doenças Cardiovasculares , Trombospondinas , Humanos , Trombospondinas/genética , Trombospondinas/química , Trombospondinas/metabolismo , Matriz Extracelular/metabolismo , Movimento Celular , Morfogênese , Doenças Cardiovasculares/metabolismo
7.
Circ Res ; 134(12): 1824-1840, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843291

RESUMO

Immunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes. The impact of this intercellular crosstalk can manifest as alterations to the steady state flux of metabolites and impact cardiac contractile function. Although much of our knowledge is derived from acute inflammatory response, recent work emphasizes heterogeneity and flexibility in metabolism between cardiomyocytes and immune cells during pathological states, including ischemic, cardiometabolic, and cancer-associated disease. Metabolic adaptation is crucial because it influences immune cell activation, cytokine release, and potential therapeutic vulnerabilities. This review describes current concepts about immunometabolic regulation in the heart, focusing on intercellular crosstalk and intrinsic factors driving cellular regulation. We discuss experimental approaches to measure the cardio-immunologic crosstalk, which are necessary to uncover unknown mechanisms underlying the immune and cardiac interface. Deeper insight into these axes holds promise for therapeutic strategies that optimize cardioimmunology crosstalk for cardiac health.


Assuntos
Miócitos Cardíacos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/imunologia , Metabolismo Energético , Cardiomiopatias/metabolismo , Cardiomiopatias/imunologia , Miocárdio/metabolismo , Miocárdio/imunologia , Miocárdio/patologia
8.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39056179

RESUMO

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Assuntos
Macrófagos , Muramidase , Obesidade , Receptores CCR2 , Animais , Obesidade/complicações , Obesidade/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Camundongos , Muramidase/metabolismo , Muramidase/genética , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Transdução de Sinais , Inflamação/metabolismo , Inflamação/genética , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/genética
9.
Circ Res ; 134(1): 60-80, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38084631

RESUMO

BACKGROUND: Increasing evidence suggests that long noncoding RNAs play significant roles in vascular biology and disease development. One such long noncoding RNA, PSMB8-AS1, has been implicated in the development of tumors. Nevertheless, the precise role of PSMB8-AS1 in cardiovascular diseases, particularly atherosclerosis, has not been thoroughly elucidated. Thus, the primary aim of this investigation is to assess the influence of PSMB8-AS1 on vascular inflammation and the initiation of atherosclerosis. METHODS: We generated PSMB8-AS1 knockin and Apoe (Apolipoprotein E) knockout mice (Apoe-/-PSMB8-AS1KI) and global Apoe and proteasome subunit-ß type-9 (Psmb9) double knockout mice (Apoe-/-Psmb9-/-). To explore the roles of PSMB8-AS1 and Psmb9 in atherosclerosis, we fed the mice with a Western diet for 12 weeks. RESULTS: Long noncoding RNA PSMB8-AS1 is significantly elevated in human atherosclerotic plaques. Strikingly, Apoe-/-PSMB8-AS1KI mice exhibited increased atherosclerosis development, plaque vulnerability, and vascular inflammation compared with Apoe-/- mice. Moreover, the levels of VCAM1 (vascular adhesion molecule 1) and ICAM1 (intracellular adhesion molecule 1) were significantly upregulated in atherosclerotic lesions and serum of Apoe-/-PSMB8-AS1KI mice. Consistently, in vitro gain- and loss-of-function studies demonstrated that PSMB8-AS1 induced monocyte/macrophage adhesion to endothelial cells and increased VCAM1 and ICAM1 levels in a PSMB9-dependent manner. Mechanistic studies revealed that PSMB8-AS1 induced PSMB9 transcription by recruiting the transcription factor NONO (non-POU domain-containing octamer-binding protein) and binding to the PSMB9 promoter. PSMB9 (proteasome subunit-ß type-9) elevated VCAM1 and ICAM1 expression via the upregulation of ZEB1 (zinc finger E-box-binding homeobox 1). Psmb9 deficiency decreased atherosclerotic lesion size, plaque vulnerability, and vascular inflammation in Apoe-/- mice in vivo. Importantly, endothelial overexpression of PSMB8-AS1-increased atherosclerosis and vascular inflammation were attenuated by Psmb9 knockout. CONCLUSIONS: PSMB8-AS1 promotes vascular inflammation and atherosclerosis via the NONO/PSMB9/ZEB1 axis. Our findings support the development of new long noncoding RNA-based strategies to counteract atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia , Complexo de Endopeptidases do Proteassoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
Circ Res ; 134(12): 1791-1807, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843293

RESUMO

Cardiac macrophages represent a functionally diverse population of cells involved in cardiac homeostasis, repair, and remodeling. With recent advancements in single-cell technologies, it is possible to elucidate specific macrophage subsets based on transcriptional signatures and cell surface protein expression to gain a deep understanding of macrophage diversity in the heart. The use of fate-mapping technologies and parabiosis studies have provided insight into the ontogeny and dynamics of macrophages identifying subsets derived from embryonic and adult definitive hematopoietic progenitors that include tissue-resident and bone marrow monocyte-derived macrophages, respectively. Within the heart, these subsets have distinct tissue niches and functional roles in the setting of homeostasis and disease, with cardiac resident macrophages representing a protective cell population while bone marrow monocyte-derived cardiac macrophages have a context-dependent effect, triggering both proinflammatory tissue injury, but also promoting reparative functions. With the increased understanding of the clinical relevance of cardiac macrophage subsets, there has been an increasing need to detect and measure cardiac macrophage compositions in living animals and patients. New molecular tracers compatible with positron emission tomography/computerized tomography and positron emission tomography/ magnetic resonance imaging have enabled investigators to noninvasively and serially visualize cardiac macrophage subsets within the heart to define associations with disease and measure treatment responses. Today, advancements within this thriving field are poised to fuel an era of clinical translation.


Assuntos
Macrófagos , Miocárdio , Animais , Macrófagos/metabolismo , Humanos , Miocárdio/metabolismo , Miocárdio/citologia
11.
Circ Res ; 134(12): 1703-1717, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843287

RESUMO

Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.


Assuntos
Fibroblastos , Homeostase , Miocárdio , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/imunologia , Miocárdio/patologia , Miocárdio/imunologia , Miocárdio/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/imunologia , Miocardite/imunologia , Miocardite/patologia , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Comunicação Celular
12.
Circ Res ; 134(11): 1636-1660, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781295

RESUMO

Contemporary World Health Organization data indicates that ≈39 million people are living with the human immunodeficiency virus. Of these, 24 million have been reported to have successfully accessed combination antiretroviral therapy. In 1996, the World Health Organization endorsed the widespread use of combination antiretroviral therapy, transforming human immunodeficiency virus infection from being a life-threatening disease to a chronic illness characterized by multiple comorbidities. The increased access to combination antiretroviral therapy has translated to people living with human immunodeficiency virus (PLWH) no longer having a reduced life expectancy. Although aging as a biological process increases exposure to oxidative stress and subsequent systemic inflammation, this effect is likely enhanced in PLWH as they age. This narrative review engages the intricate interplay between human immunodeficiency virus associated chronic inflammation, combination antiretroviral therapy, and cardiac and renal comorbidities development in aging PLWH. We examine the evolving demographic profile of PLWH, emphasizing the increasing prevalence of aging individuals within this population. A central focus of the review discusses the pathophysiological mechanisms that underpin the heightened susceptibility of PLWH to renal and cardiac diseases as they age.


Assuntos
Envelhecimento , Comorbidade , Infecções por HIV , Humanos , Infecções por HIV/epidemiologia , Infecções por HIV/tratamento farmacológico , Nefropatias/epidemiologia , Cardiopatias/epidemiologia , Idoso
13.
Circ Res ; 134(11): 1566-1580, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781299

RESUMO

This interdisciplinary review explores the intricate nexus between HIV infection, nutrition, adrenal gland function, and cardiovascular health, highlighting a critical aspect of HIV management often overlooked in current literature. With the advent of antiretroviral therapy, the life expectancy of people living with HIV has dramatically improved, transforming HIV into a manageable chronic condition. However, this success brings forth new challenges, notably an increased risk of cardiovascular diseases among people living with HIV. We examine the normal physiology of the adrenal gland, including its role in mineral metabolism, a crucial facet of nutrition. We discuss the evolution of knowledge tying adrenal pathology to cardiovascular disease. We explore the impact of HIV on adrenal gland findings from a gross pathology perspective, as well as the clinical impact of adrenal insufficiency in HIV. The review further elucidates the role of nutrition in this context, considering the double burden of undernutrition and obesity prevalent in regions heavily affected by HIV. By aggregating findings from longitudinal studies and recent clinical trials, the review presents compelling evidence of increased cardiovascular disease among people living with HIV compared with people without HIV. It highlights the critical role of the adrenal glands in regulating nutrient metabolism and its implications for cardiovascular health, drawing attention to the potential for dietary interventions and targeted therapies to mitigate these risks. This review urges a paradigm shift in the management of HIV, advocating for a holistic approach that incorporates nutritional assessment and interventions into routine HIV care to address the complex interplay between HIV, adrenal function, and cardiovascular health. Through this lens, we offer insights into novel therapeutic strategies aimed at reducing cardiovascular risk in people living with HIV, contributing to the ongoing efforts to enhance the quality of life and longevity in this population.


Assuntos
Glândulas Suprarrenais , Doenças Cardiovasculares , Infecções por HIV , Estado Nutricional , Humanos , Infecções por HIV/complicações , Doenças Cardiovasculares/etiologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/fisiopatologia , Insuficiência Adrenal/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Sistema Cardiovascular/metabolismo
14.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563133

RESUMO

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Assuntos
Fibroblastos , Fibrose , Pericitos , Proteínas RGS , Pericitos/metabolismo , Pericitos/patologia , Animais , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas RGS/deficiência , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Células Cultivadas , Envelhecimento/metabolismo , Envelhecimento/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Técnicas de Cocultura
15.
Circ Res ; 134(9): 1136-1159, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662859

RESUMO

Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting. As such, our exposure to PFAS is essentially ubiquitous. Given the long half-lives of these degradation-resistant chemicals, virtually, all people are carrying a body burden of PFAS. Health concerns related to PFAS are growing such that the National Academies of Sciences, Engineering and Medicine has recommended standards for clinical follow-up of individuals with high PFAS blood levels, including prioritizing screening for dyslipidemia. The link between PFAS and dyslipidemia has been extensively investigated, and evidence for associations is compelling. However, dyslipidemia is not the only cardiovascular risk factor with which PFAS is associated. Here, we review the epidemiological evidence for links between PFAS of concern identified by the National Academies of Sciences, Engineering and Medicine and risk factors for cardiovascular disease, including overweight/obesity, glucose intolerance, hypertension, dyslipidemia, and hyperuricemia. Moreover, we review the potential connections of PFAS with vascular disease and atherosclerosis. While observational data support associations between the National Academies of Sciences, Engineering and Medicine PFAS and selected cardiac risk factors, additional research is needed to establish causation and better understand how exposure to PFAS leads to the development of these conditions.


Assuntos
Doenças Cardiovasculares , Exposição Ambiental , Fluorocarbonos , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Fluorocarbonos/efeitos adversos , Fluorocarbonos/toxicidade , Exposição Ambiental/efeitos adversos , Animais , Dislipidemias/epidemiologia , Dislipidemias/sangue , Dislipidemias/induzido quimicamente , Fatores de Risco
16.
Circ Res ; 134(9): 1160-1178, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662861

RESUMO

Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.


Assuntos
Doenças Cardiovasculares , Exposição Ambiental , Metais Pesados , Humanos , Metais Pesados/toxicidade , Metais Pesados/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Animais , Estresse Oxidativo/efeitos dos fármacos , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes
17.
Circ Res ; 134(9): 1048-1060, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662864

RESUMO

Environmental stressors associated with human activities (eg, air and noise pollution, light disturbance at night) and climate change (eg, heat, wildfires, extreme weather events) are increasingly recognized as contributing to cardiovascular morbidity and mortality. These harmful exposures have been shown to elicit changes in stress responses, circadian rhythms, immune cell activation, and oxidative stress, as well as traditional cardiovascular risk factors (eg, hypertension, diabetes, obesity) that promote cardiovascular diseases. In this overview, we summarize evidence from human and animal studies of the impacts of environmental exposures and climate change on cardiovascular health. In addition, we discuss strategies to reduce the impact of environmental risk factors on current and future cardiovascular disease burden, including urban planning, personal monitoring, and mitigation measures.


Assuntos
Doenças Cardiovasculares , Mudança Climática , Exposição Ambiental , Humanos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/epidemiologia , Animais , Exposição Ambiental/efeitos adversos , Fatores de Risco
18.
Circ Res ; 134(9): 1098-1112, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662866

RESUMO

As global temperatures rise, extreme heat events are projected to become more frequent and intense. Extreme heat causes a wide range of health effects, including an overall increase in morbidity and mortality. It is important to note that while there is sufficient epidemiological evidence for heat-related increases in all-cause mortality, evidence on the association between heat and cause-specific deaths such as cardiovascular disease (CVD) mortality (and its more specific causes) is limited, with inconsistent findings. Existing systematic reviews and meta-analyses of epidemiological studies on heat and CVD mortality have summarized the available evidence. However, the target audience of such reviews is mainly limited to the specific field of environmental epidemiology. This overarching perspective aims to provide health professionals with a comprehensive overview of recent epidemiological evidence of how extreme heat is associated with CVD mortality. The rationale behind this broad perspective is that a better understanding of the effect of extreme heat on CVD mortality will help CVD health professionals optimize their plans to adapt to the changes brought about by climate change and heat events. To policymakers, this perspective would help formulate targeted mitigation, strengthen early warning systems, and develop better adaptation strategies. Despite the heterogeneity in evidence worldwide, due in part to different climatic conditions and population dynamics, there is a clear link between heat and CVD mortality. The risk has often been found to be higher in vulnerable subgroups, including older people, people with preexisting conditions, and the socioeconomically deprived. This perspective also highlights the lack of evidence from low- and middle-income countries and focuses on cause-specific CVD deaths. In addition, the perspective highlights the temporal changes in heat-related CVD deaths as well as the interactive effect of heat with other environmental factors and the potential biological pathways. Importantly, these various aspects of epidemiological studies have never been fully investigated and, therefore, the true extent of the impact of heat on CVD deaths remains largely unknown. Furthermore, this perspective also highlights the research gaps in epidemiological studies and the potential solutions to generate more robust evidence on the future consequences of heat on CVD deaths.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/epidemiologia , Mudança Climática , Calor Extremo/efeitos adversos , Temperatura Alta/efeitos adversos , Fatores de Risco
19.
Circ Res ; 134(11): 1451-1464, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639088

RESUMO

BACKGROUND: Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS: To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS: Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins (mito2HOBA) normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS: These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.


Assuntos
Endotélio Vascular , Hipertensão , Mitocôndrias , Sirtuína 3 , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilação , Angiotensina II , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/enzimologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso , Estresse Oxidativo , Sirtuína 3/metabolismo , Sirtuína 3/genética
20.
Circ Res ; 135(1): 222-260, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900855

RESUMO

Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.


Assuntos
Ácido Araquidônico , Doenças Cardiovasculares , Humanos , Ácido Araquidônico/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Transdução de Sinais , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Fatores de Risco Cardiometabólico , Obesidade/metabolismo , Obesidade/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa